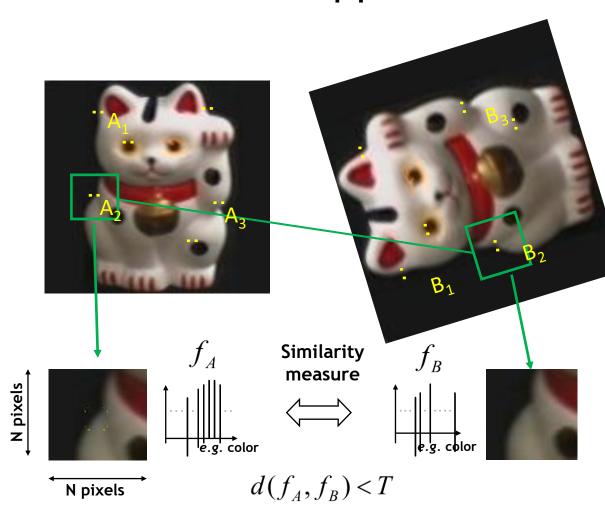
Lecture 8 Descriptors & Homographies

Administrative

A2 is out

- Due Oct 28

So far: General approach for search



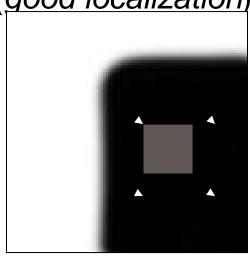
- 1. Find a set of distinctive key-points
- 2. Define a region/patch around each keypoint
- 3. Normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

So far: Corners as key-points

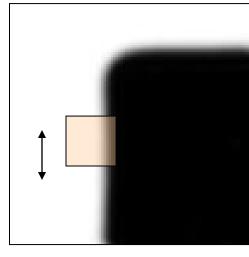
 We should easily recognize the corner point by looking through a small window (*locality*)

- Shifting the window in *any direction* should give a large change in intensity

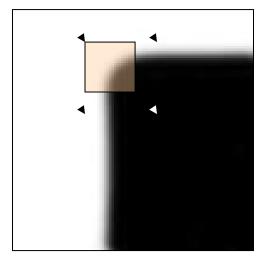
(good localization)



"flat" region: no change in all directions



"edge":
no change along
the edge direction



"corner": significant change in all directions

So far: Harris Corner Detector [Harris88]

 Compute second moment matrix (autocorrelation matrix)

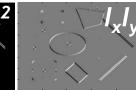
$$M(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

 σ_D : for Gaussian in the derivative calculation σ_I : for Gaussian in the windowing function

1. Image derivatives

3. Gaussian

filter $g(\sigma_l)$



4. Cornerness function - two strong eigenvalues

$$\theta = \det[M(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(M(\sigma_{I}, \sigma_{D}))]^{2}$$

$$= g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

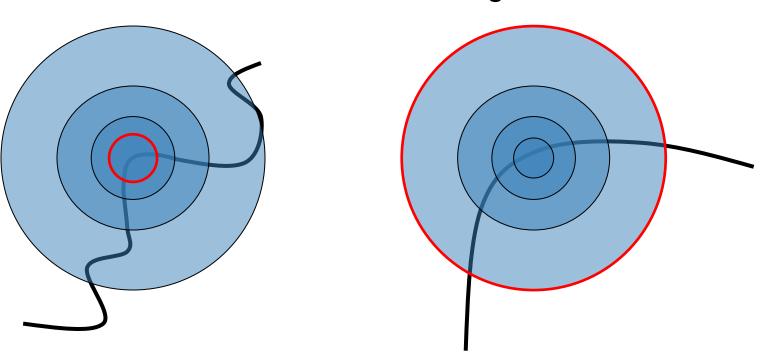
5. Perform non-maximum suppression

So far: Harris is not a Scale Invariant Detection

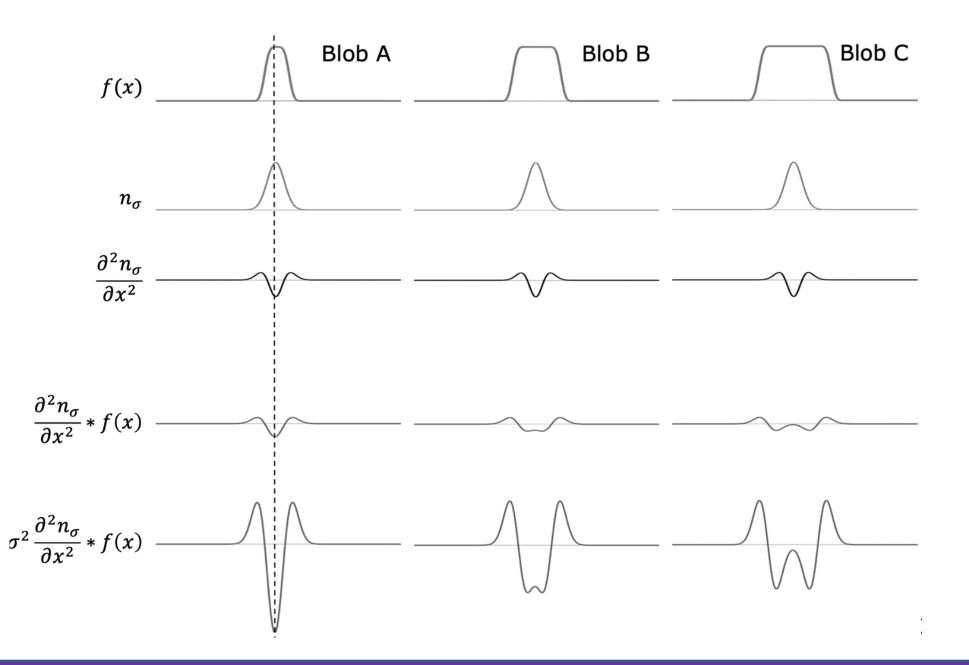
• Consider regions (e.g. circles) of different sizes around a point

What region size do we choose, so that the regions look the same in both

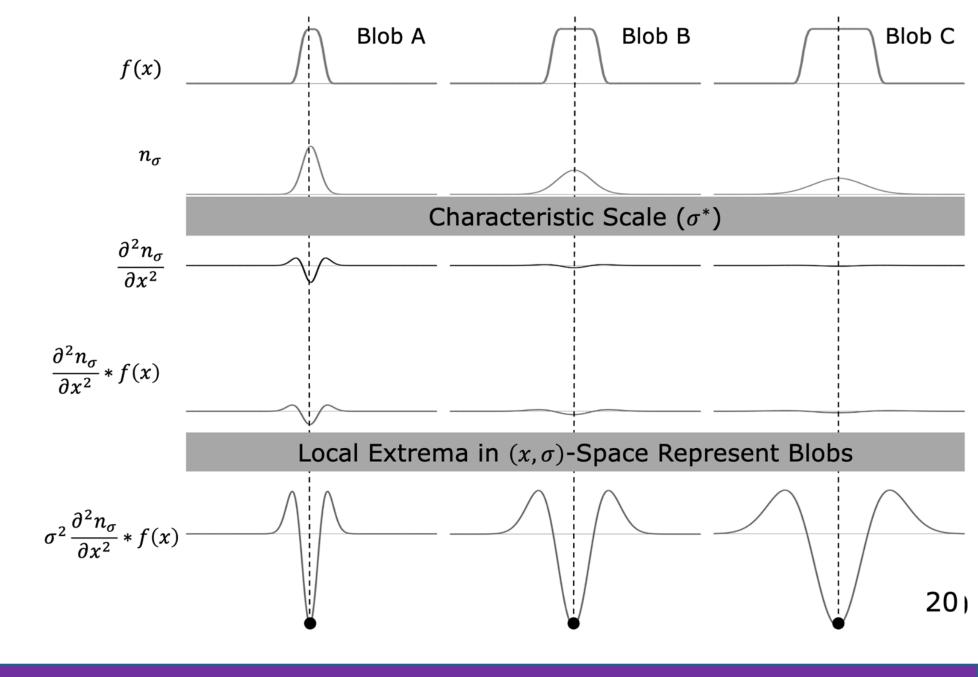
images?



So far: Laplacians can detect blobs of different sizes

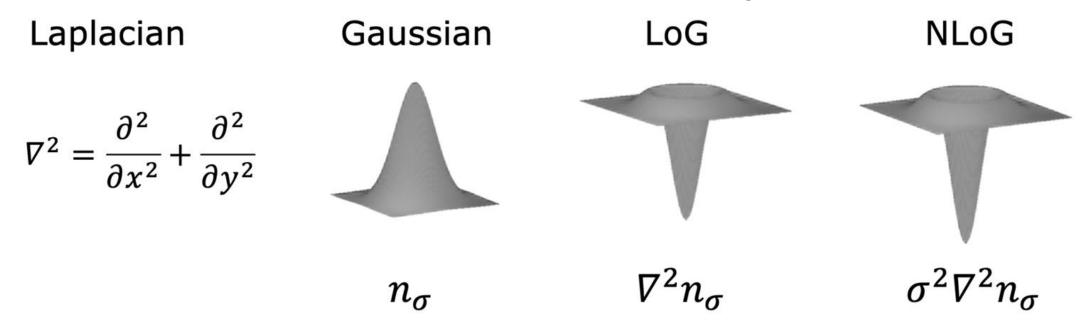


So far: By increasing sigma, we can detect blobs of different sizes



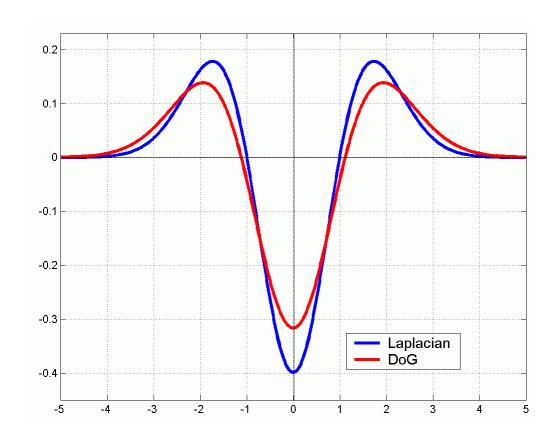
So far: Laplacians in 2D

Normalized LoG (NLoG) is used to find blobs in images



Location of Blobs identified by Local maxima after applying NLoG at many scales.

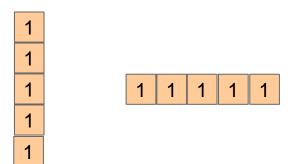
So far: SIFT detectors approximated Laplacians with difference of Gaussians (DoG)



Note: both filters are invariant to scale and rotation

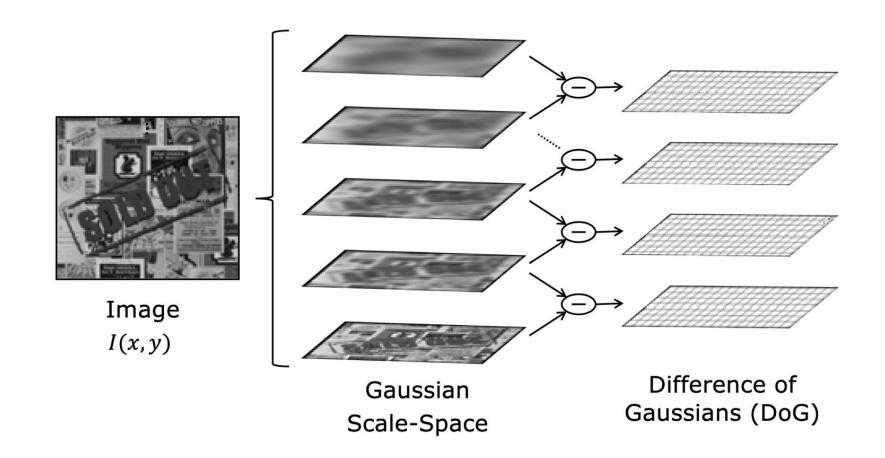
So far: More efficient because of separate filters

Convolving with two 1D convolution filters = convolving with a large 2D filter



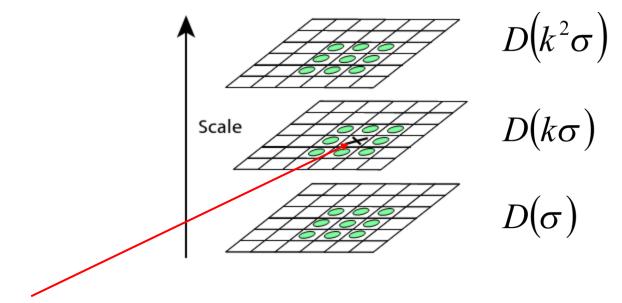
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

So far: Overall SIFT detector algorithm



So far: Extracting SIFT keypoints and scales

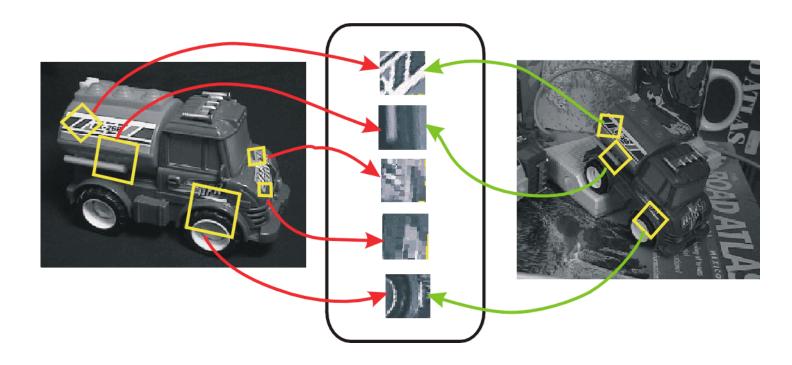
Choose the maxima within 3x3x3 neighborhood.



X is selected if it is larger or smaller than all 26 neighbors

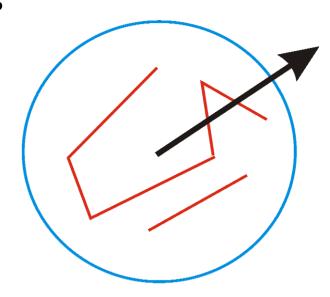
So far, Invariant Local Descriptors

Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters



So Far, Constructing a rotation invariant descriptor

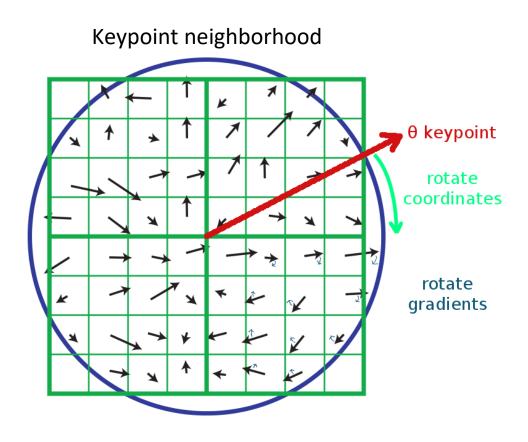
- We are given a keypoint and its scale from DoG
- We will select the direction of maximum gradient as the orientation for the keypoint
- We will describe all features relative to this orientation



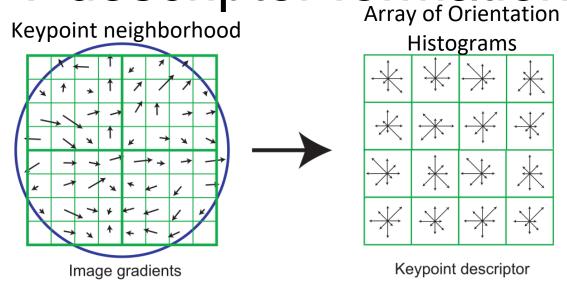
So far, SIFT descriptor (Scale-Invariant Feature Transform)

Gradient-based descriptor to capture texture in the keypoint neighborhood

- 1.Blur the keypoint's image patch to remove noise
- 2.Calculate image **gradients** over the neighborhood patch.
- 3.To become rotation invariant, rotate the gradients by $-\theta$ (- maximum direction)
 - Now we've cancelled out rotation and have gradients expressed at locations relative to maximum direction θ
- 4. Generate a descriptor

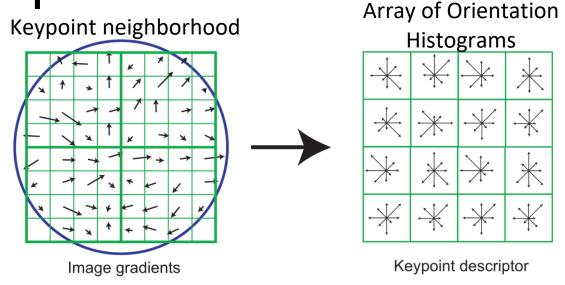


So far, SIFT descriptor formation



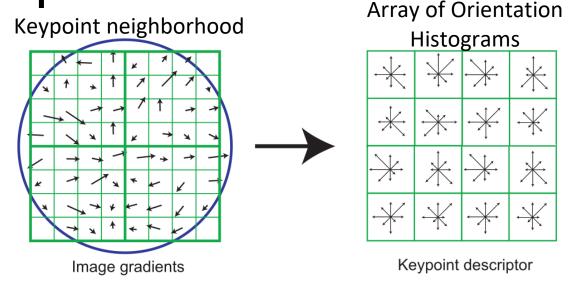
- Each cell gives us a histogram vector. We have a total of 4x4 vectors
- Calculate the overall gradients in each patch into their local orientated histograms
 - Also, scale down gradient contributions for gradients far from the center
 - Each histogram is quantized into 8 directions (each 45 degrees)

SIFT descriptor formation

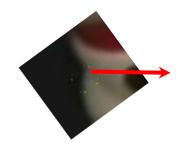


• Q. What is the size of the descriptor?

SIFT descriptor formation

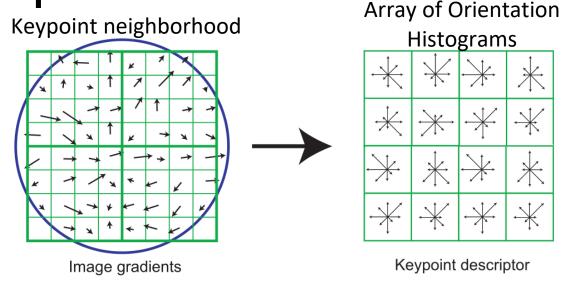


- 8 orientation bins per histogram,
- 4x4 histogram vectors,
- total is $8 \times 4 \times 4 = 128$ numbers.
- So a SIFT descriptor is a length 128 vector



$$\mathcal{H}o\mathcal{G}(k) = egin{bmatrix} g_1 \\ g_2 \\ \dots \\ g_{128} \end{bmatrix}$$

SIFT descriptor formation



- SIFT descriptor is invariant to rotation (because we rotated the patch) and scale (because we worked with the scaled image from DoG)
- We can compare each vector from image A to each vector from image B to find matching keypoints!
 - O How do we match distances?

Making descriptors robust

Image gradients

Keypoint descriptor

- Adding robustness to illumination changes:
- Each descriptor is made of gradients (differences between pixels),
 - It's already invariant to changes in brightness
 - (e.g. adding 10 to all image pixels yields the exact same descriptor)
- A sharpening filter applied to the image will increase the magnitude of gradients linearly.
 - To correct for contrast changes, normalize the histogram (scale to magnitude=1.0)
- Very large image gradients are usually from unreliable 3D illumination effects (glare, etc).
 - To reduce their effect, clamp all values in the vector to be ≤ 0.2 (an experimentally tuned value). Then normalize the vector again.
- Result is a vector which is fairly invariant to illumination changes.

SIFT descriptor distances

Given keypoints k₁ and k₂, we can calculate their HoG features:

 $HoG(k_1)$

 $HoG(k_2)$

We can calculate their matching score as:

$$d_{\mathcal{H}o\mathcal{G}}(k_1, k_2) = \sqrt{\sum_{i} (\mathcal{H}o\mathcal{G}(k_1)_i - \mathcal{H}o\mathcal{G}(k_2)_i)^2}$$

Find nearest neighbor for each keypoint in image A in image B

Given keypoints k₁ and k₂, we can calculate their HoG features:

 $HoG(k_1)$

 $HoG(k_2)$

We can calculate their matching score as:

$$d_{\mathcal{H}o\mathcal{G}}(k_1, k_2) = \sqrt{\sum_{i} (\mathcal{H}o\mathcal{G}(k_1)_i - \mathcal{H}o\mathcal{G}(k_2)_i)^2}$$

Sensitivity to number of histogram orientations

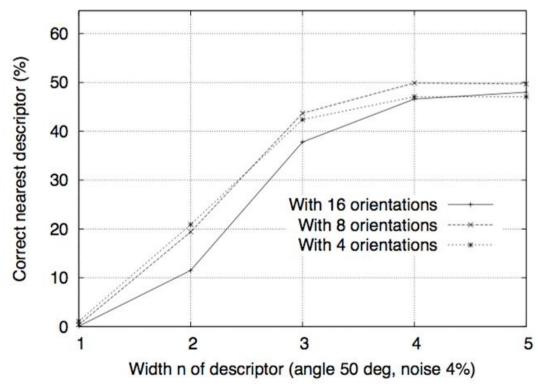
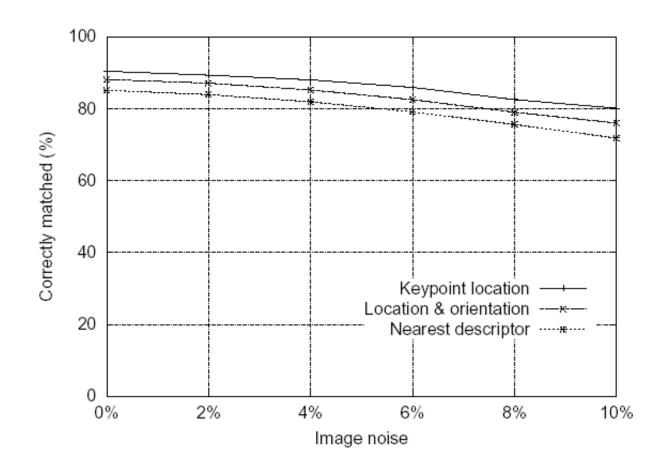


Figure 8: This graph shows the percent of keypoints giving the correct match to a database of 40,000 keypoints as a function of width of the $n \times n$ keypoint descriptor and the number of orientations in each histogram. The graph is computed for images with affine viewpoint change of 50 degrees and addition of 4% noise.

David G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

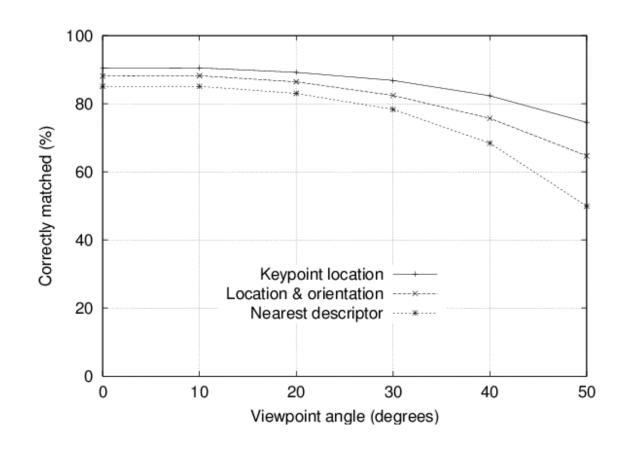
Feature stability to noise

- Match features after random change in image scale & orientation, with differing levels of image noise
- Find nearest neighbor in database of 30,000 features



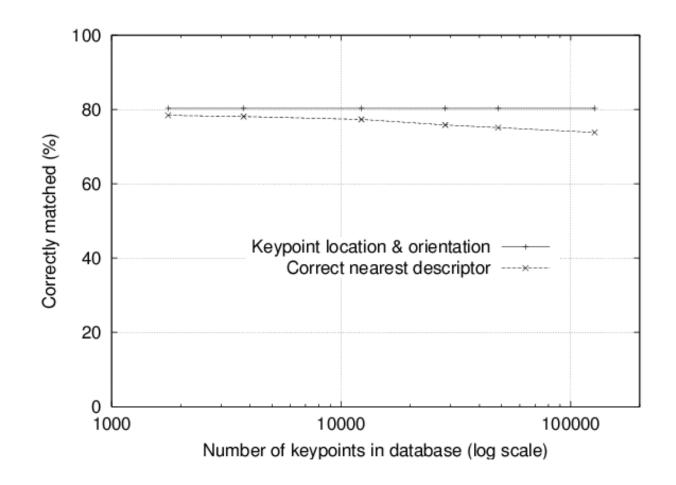
Feature stability to affine changes

- Match features after random change in image scale & orientation, with 2% image noise, and affine distortion
- Find nearest neighbor in database of 30,000 features



Distinctiveness of features

- Vary size of database of features, with 30 degree affine change, 2% image noise
- Measure % correct for single nearest neighbor match



Useful SIFT resources

- An online tutorial: http://www.aishack.in/2010/05/sift-scale-invariant-feature-transform/
- Wikipedia: http://en.wikipedia.org/wiki/Scale-invariant_feature_transform

Figure 12: The training images for two objects are shown on the left. These can be recognized in a cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown on the right. A parallelogram is drawn around each recognized object showing the boundaries of the original training image under the affi ne transformation solved for during recognition. Smaller squares indicate the keypoints that were used for recognition.

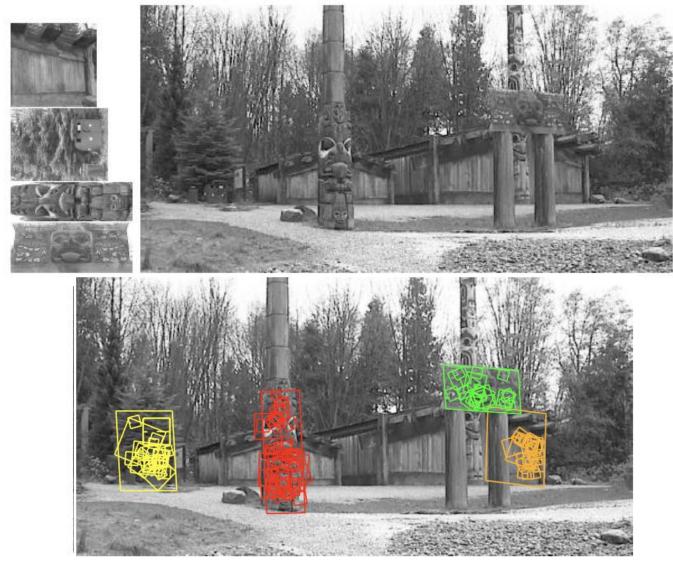
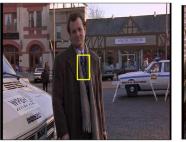


Figure 13: This example shows location recognition within a complex scene. The training images for locations are shown at the upper left and the 640x315 pixel test image taken from a different viewpoint is on the upper right. The recognized regions are shown on the lower image, with keypoints shown as squares and an outer parallelogram showing the boundaries of the training images under the affi ne transform used for recognition.

Recognition of specific objects, scenes

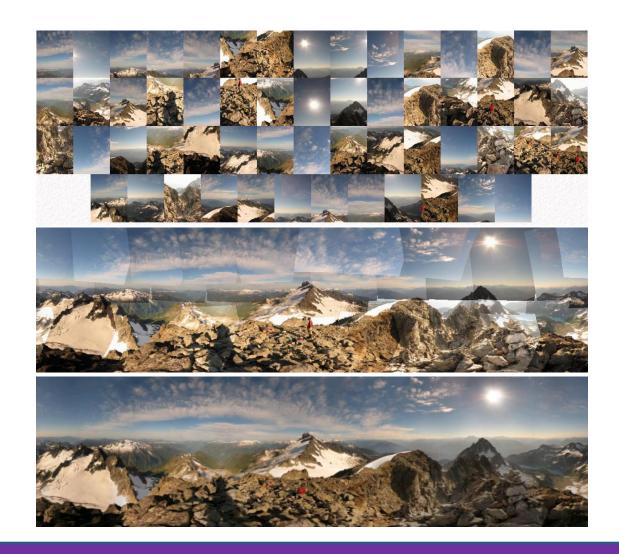
Schmid and Mohr 1997



Sivic and Zisserman, 2003

Rothganger et al. 2003

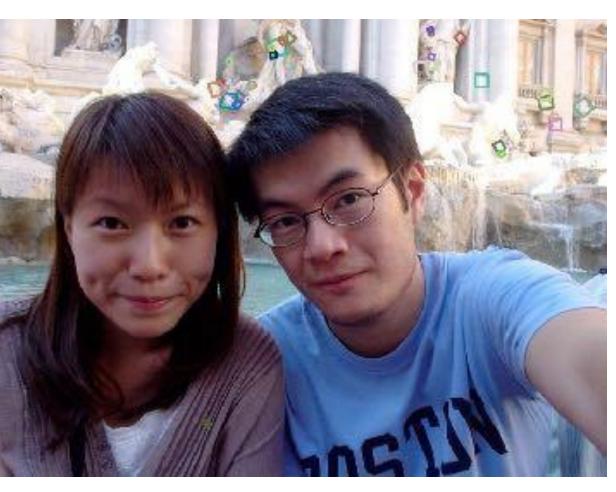
Panorama stitching/Automatic image mosaic



http://matthewalunbrown.com/autostitch/autostitch.html

Wide baseline stereo

Even robust to extreme occlusions



Applications of local invariant features

- Recognition
- Wide baseline stereo
- Panorama stitching
- Mobile robot navigation
- Motion tracking
- 3D reconstruction

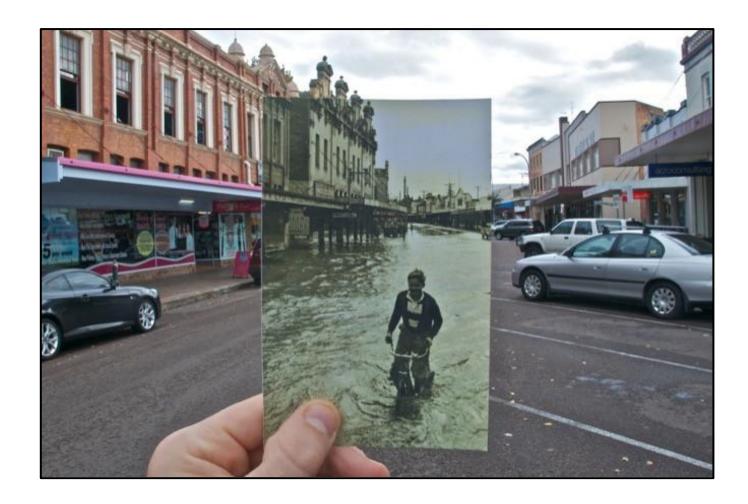
• ...

Today's agenda

- Local descriptors (SIFT)
 - Making keypoints rotation invariant
 - Designing a descriptor
 - Designing a matching function
- Image Homography
- Global descriptors (HoG)

Image homographies

a geometric transformation that maps points from one image plane to another



How do you create a panorama?

Panorama: an image of (near) 360° field of view.

How do you create a panorama?

Could use a very wide-angle lens.

Pros: Everything is done optically, single capture.

Cons: Lens is super expensive and bulky, lots of distortion (can be dealt-with in post).

Or you can capture multiple photos and

combine them

How do we stitch images from different viewpoints?

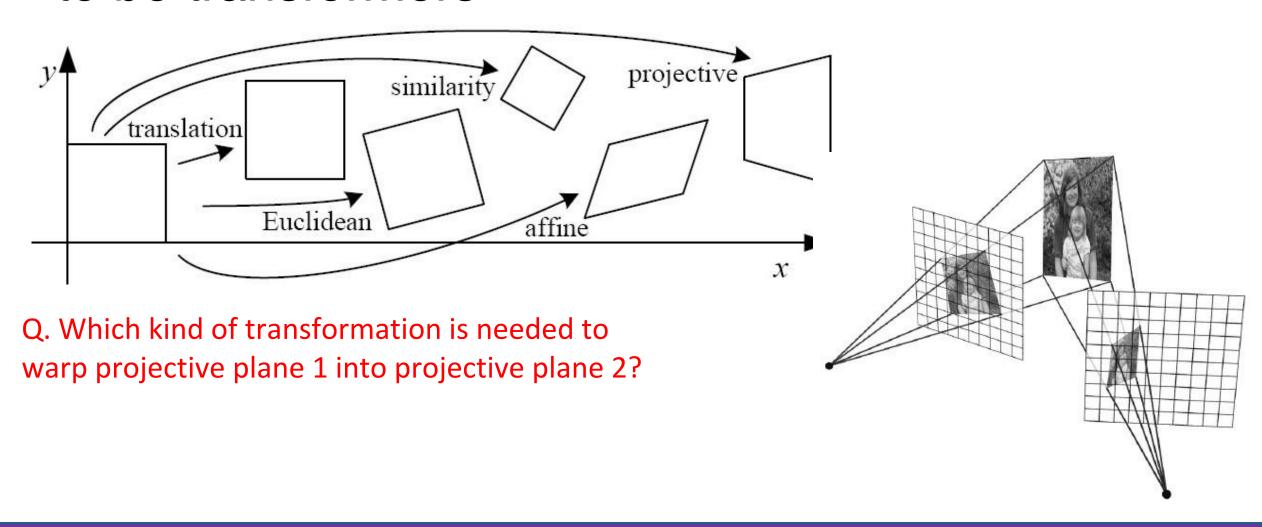
How do we stitch images from different viewpoints?

We can't simply place on on top of another.

right on top

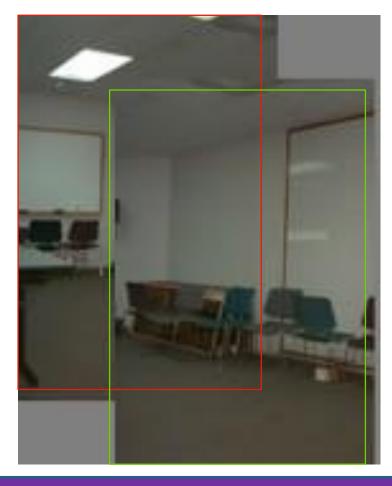
This is where homographies come in

Homographies explain how one image needs to be transformers

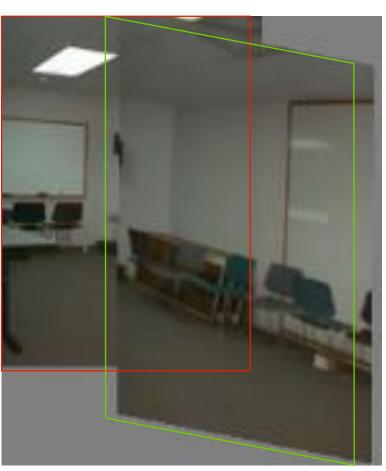


Warping with different transformations

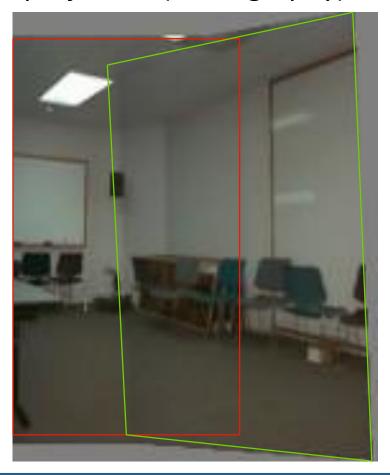
translation



affine

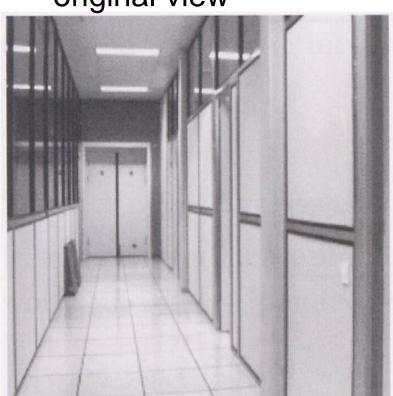


projective (homography)



What happens when you transform one image to another view?

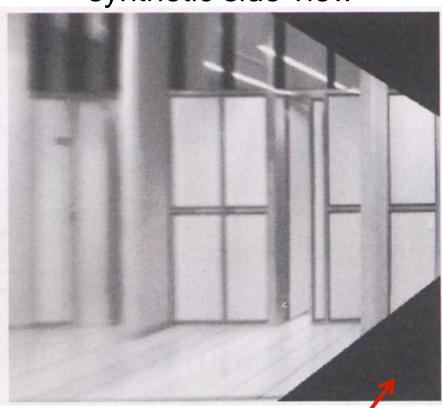
original view



synthetic top view



synthetic side view



What are these black areas near the boundaries?

Virtual camera rotations

original view

synthetic rotations

two original

images

Image rectification

rectified and stitched

Street art

Carpet illusion

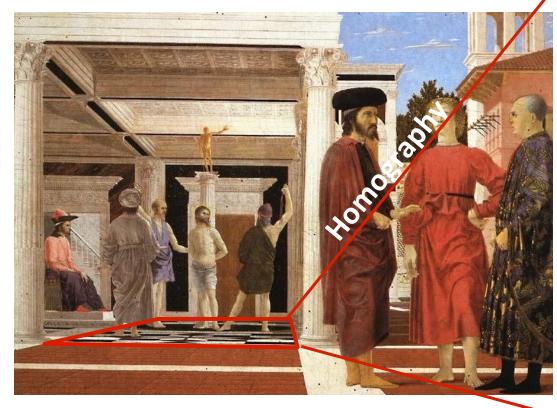
Understanding geometric patterns

What is the pattern on the floor?

magnified view of floor

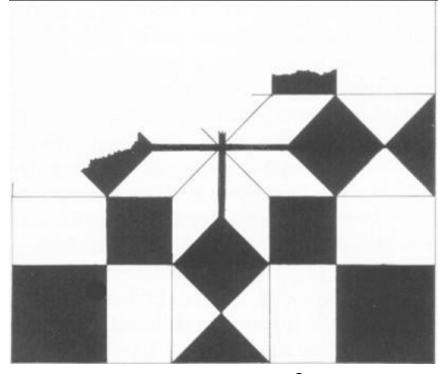
Understanding geometric patterns

What is the pattern on the floor?



magnified view of floor

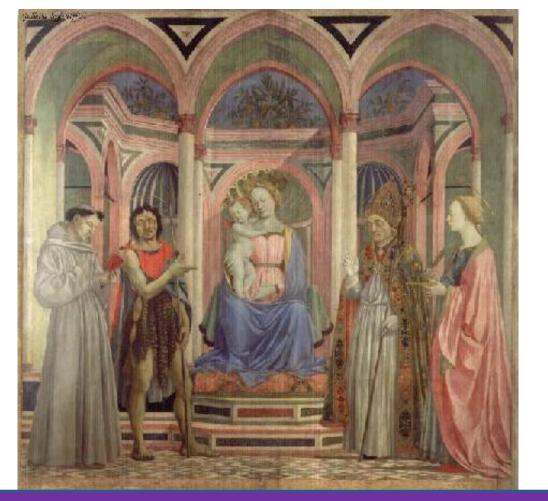
rectified view



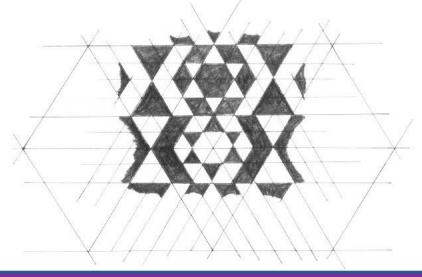
reconstruction from rectified view

Understanding geometric patterns

What is the pattern on the floor?



rectified view of floor



reconstruction

A weird painting

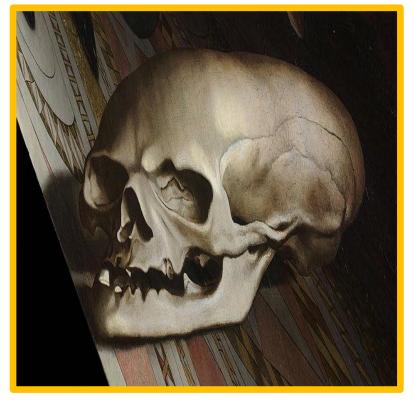
Holbein, "The Ambassadors"

A weird painting

What's this???

Holbein, "The Ambassadors"

A weird painting



rectified view

rectified viewskull under anamorphic perspective

Holbein, "The Ambassadors"

What we will focus on: Panoramas

 Capture multiple images from different viewpoints.

2. Stitch them together into a virtual wide-angle image.

When can we calculate homographies?

when the scene is planar; or

when the scene is very far or has small (relative) depth variation

→ scene is approximately planar

When can we calculate homographies?

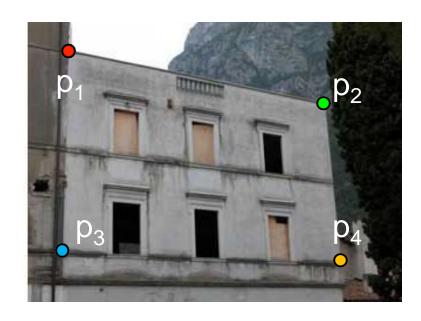
For now: when the scene is captured under camera rotation only (no translation or pose change)

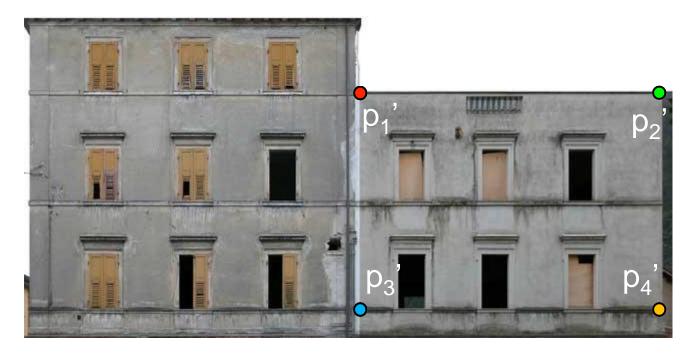


How do we do it? Keypoint matching!

The homography matrix H!

$$P' = H \cdot P$$





original image target image

$$P! = H \cdot P$$

Write out linear equation for each correspondence:

$$P^! = H \cdot P$$
 or $\left[egin{array}{c} x' \ y' \ 1 \end{array}
ight] = lpha \left[egin{array}{c} h_1 & h_2 & h_3 \ h_4 & h_5 & h_6 \ h_7 & h_8 & h_9 \end{array}
ight] \left[egin{array}{c} x \ y \ 1 \end{array}
ight]$

Write out linear equation for each correspondence:

$$P^! = H \cdot P ext{ or } egin{bmatrix} x' \ y' \ 1 \end{bmatrix} = lpha egin{bmatrix} h_1 & h_2 & h_3 \ h_4 & h_5 & h_6 \ h_7 & h_8 & h_9 \end{bmatrix} egin{bmatrix} x \ y \ 1 \end{bmatrix}$$

Q. Why is there a 1 here?

Write out linear equation for each correspondence:

$$P^! = H \cdot P$$
 or $\begin{vmatrix} x' \\ y' \\ 1 \end{vmatrix} = lpha \begin{vmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{vmatrix} \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$

Q. Why is there a 1 here? Homogenous coordinates:
$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 More general to use w.

Write out linear equation for each correspondence:

$$P^! = H \cdot P$$
 or $\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = lpha \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

Q. Why is there a 1 here? Homogenous coordinates:
$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

The output x' and y' in image space is found by: $x' = \frac{x'}{w'}$, $y' = \frac{y'}{w'}$

Write out linear equation for each correspondence:

$$P^! = H \cdot P$$
 or $\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = lpha \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

Q. Why is there a 1 here? Homogenous coordinates:
$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 More general to use w'

Q. What can you say about points where w' = 0?

Write out linear equation for each correspondence:

$$P^! = H \cdot P$$
 or $\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = lpha \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

Q. Why is there an alpha there?

Because we are mapping 3D points to 2D. There is an unknown factor to be accounted for.

Write out linear equation for each correspondence:

$$P^! = H \cdot P$$
 or $\begin{vmatrix} x' \\ y' \\ 1 \end{vmatrix} = lpha \begin{vmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{vmatrix} \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$

Expand matrix multiplication:

$$x' = \alpha(h_1x + h_2y + h_3)$$
$$y' = \alpha(h_4x + h_5y + h_6)$$
$$1 = \alpha(h_7x + h_8y + h_9)$$

Write out linear equation for each correspondence:

$$P^! = H \cdot P$$
 or $\begin{vmatrix} x' \\ y' \\ 1 \end{vmatrix} = lpha \begin{vmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{vmatrix} \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$

Expand matrix multiplication:

$$x' = \alpha(h_1x + h_2y + h_3)$$
$$y' = \alpha(h_4x + h_5y + h_6)$$
$$1 = \alpha(h_7x + h_8y + h_9)$$

Divide out unknown scale factor:

$$x'(h_7x+h_8y+h_9)=(h_1x+h_2y+h_3) \ ext{Ok so we have} \ y'(h_7x+h_8y+h_9)=(h_4x+h_5y+h_6) \ ext{9 unknowns!}$$

$$x'(h_7x + h_8y + h_9) = (h_1x + h_2y + h_3)$$
$$y'(h_7x + h_8y + h_9) = (h_4x + h_5y + h_6)$$

Let's rearrange the terms:

$$h_7xx' + h_8yx' + h_9x' - h_1x - h_2y - h_3 = 0$$

$$h_7xy' + h_8yy' + h_9y' - h_4x - h_5y - h_6 = 0$$

Same equations from previous slide:

$$h_7xx' + h_8yx' + h_9x' - h_1x - h_2y - h_3 = 0$$

$$h_7xy' + h_8yy' + h_9y' - h_4x - h_5y - h_6 = 0$$

Re-write in matrix form:

$$\mathbf{A}_i \mathbf{h} = \mathbf{0}$$

Same equations from previous slide:

$$h_7xx' + h_8yx' + h_9x' - h_1x - h_2y - h_3 = 0$$

$$h_7xy' + h_8yy' + h_9y' - h_4x - h_5y - h_6 = 0$$

Re-write in matrix form:

$$\mathbf{A}_i \mathbf{h} = \mathbf{0}$$

What is this form useful?

$$\mathbf{A}h = \mathbf{0}$$

We get 2 rows per matching keypoint

Stack together constraints from multiple point correspondences: $\mathbf{A}h = \mathbf{0}$

This is called the *Homogeneous* linear least squares problem

Q. Do you remember this equation from your linear algebra course?

$$\mathbf{A}h = \mathbf{0}$$

$$\left[egin{array}{c} h_1 \ h_2 \ h_3 \ h_4 \ h_5 \ h_6 \ h_7 \ h_8 \ h_9 \ \end{array}
ight] = \left[egin{array}{c} 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ \end{array}
ight]$$

This is called the *Homogeneous* linear least squares problem

We can solve this using SVD

SVD decomposition: $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{ op}$

h parameters are the eigenvector in V associated with the smallest eigenvalue in Σ

$$oldsymbol{h} = oldsymbol{v}_{\hat{i}}$$

Putting it all together to create a panorama

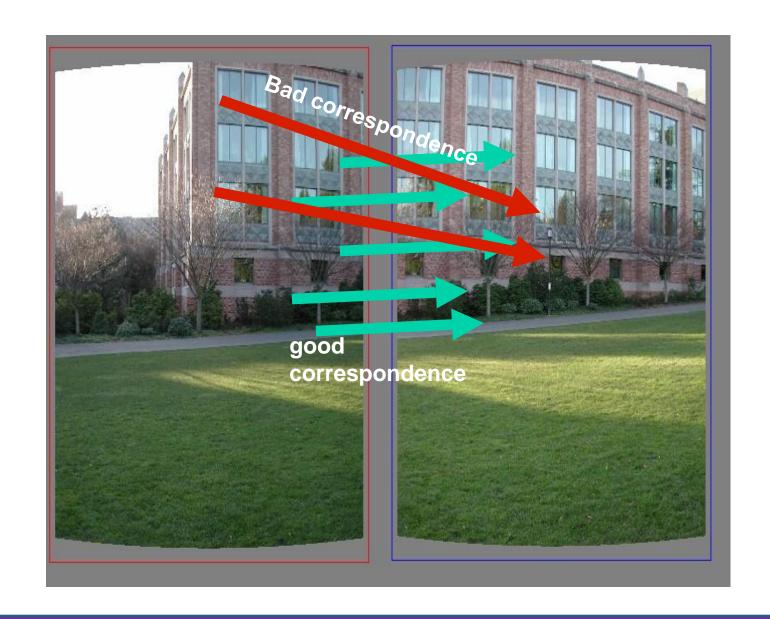
- 1. Find keypoints using SIFT or Harris corner
- 2. Find matches using local feature descriptors
- 3. Put all the matching points in the matrix form in the previous slide
- 4. Use SVD to solve for homography matrix h

Putting it all together to create a panorama

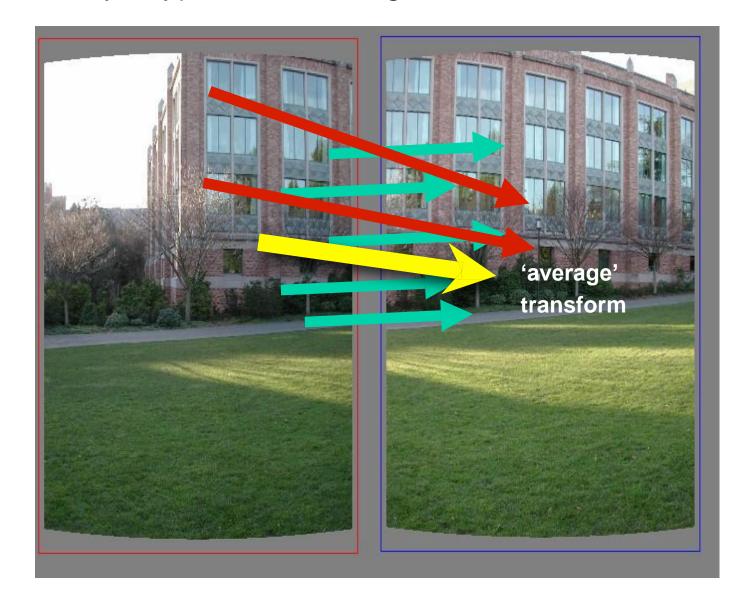
- 1. Find keypoints using SIFT or Harris corner
- 2. Find matches using local feature descriptors
- 3. Put all the matching points in the matrix form in the previous slide
- 4. Use SVD to solve for homography matrix h

Q. But wait, what if the keypoints are noisy and you have some bad matches?

Won't that give you a bad homography???

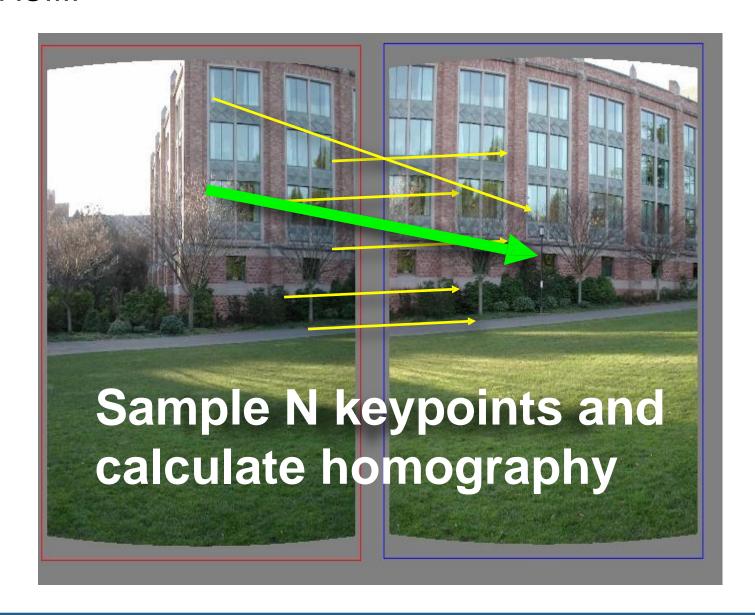


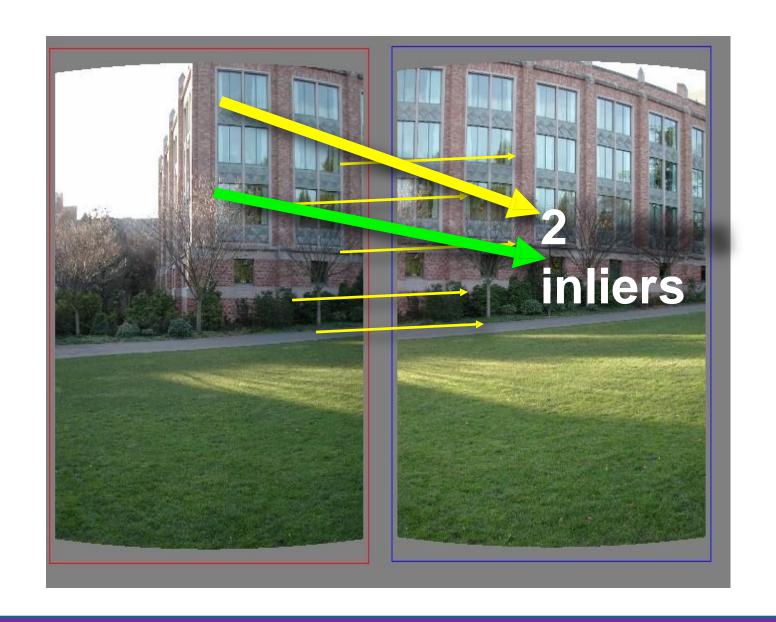
If we use noisy keypoints, we will get this bad transformation.

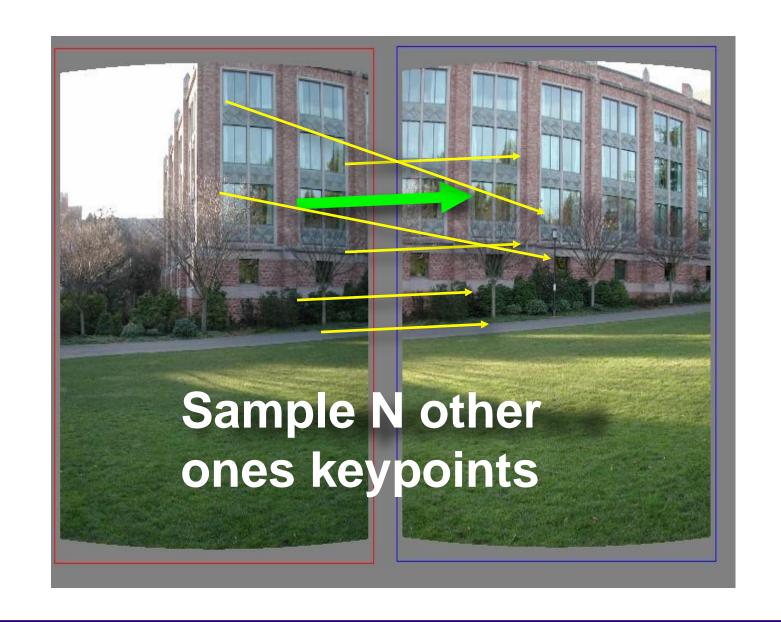


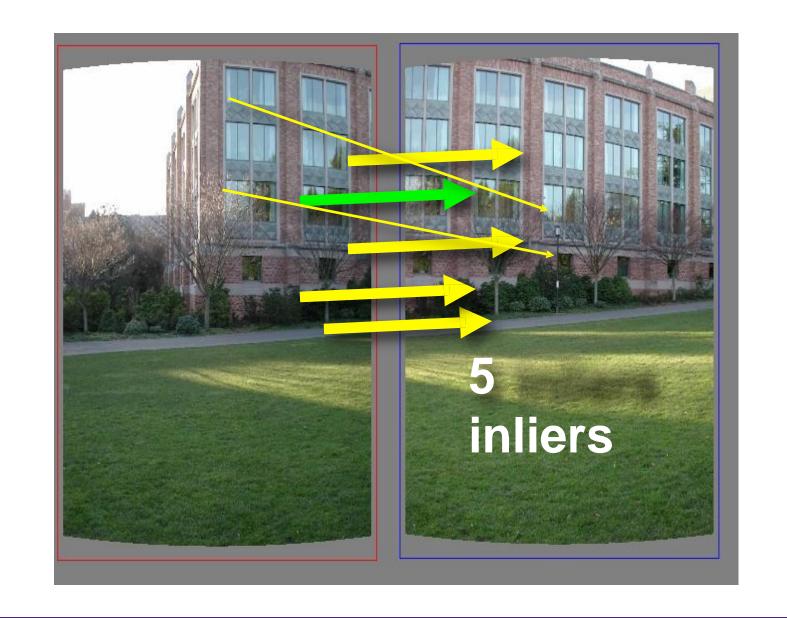
Q. Can you think of an algorithm we have learned that can fix this problem?

RANSAC!!!!







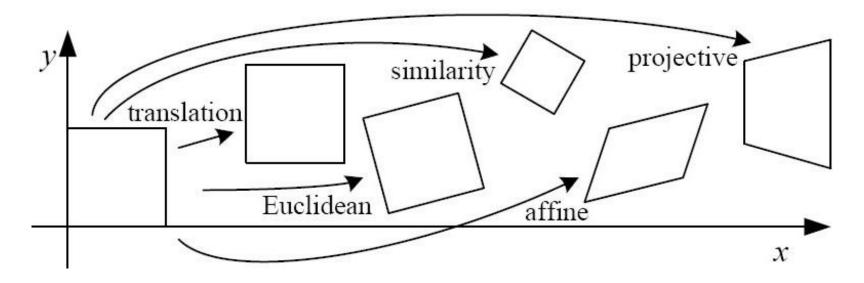


Putting it all together to create a panorama

- 1. Find keypoints using SIFT or Harris corner
- 2. Find matches using local feature descriptors
- 3. Sample N keypoints
 - a. Put the sampled points in the matrix form Ah = 0
 - b. Use SVD to solve for homography matrix h
 - c. Calculate inliers
 - d. Repeat
- 4. Re-calculate h using the inliers from best homography

What is this loop?

Aside: Remember that we are doing projective transformations.



If the transformation was affine, the homography matrix would be simpler. We would only have rotation, translation and scaling.

For affine transformations, the solution is simpler!

Affine transformation:
$$H_{\mathrm{affine}}=egin{bmatrix} h_{11} & h_{12} & h_{13} \ h_{21} & h_{22} & h_{23} \ 0 & 0 & 1 \end{bmatrix}$$

For affine transformations, the solution is simpler!

Affine transformation:

$$H_{
m affine} = egin{bmatrix} h_{11} & h_{12} & h_{13} \ h_{21} & h_{22} & h_{23} \ 0 & 0 & 1 \end{bmatrix}$$

Vectorize transformation parameters:

Stack equations from point correspondences:

Today's agenda

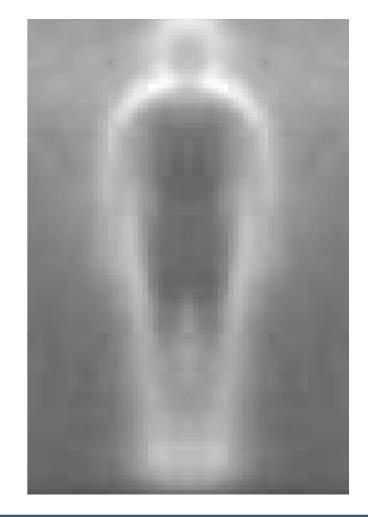
- Local descriptors (SIFT)
 - Making keypoints rotation invariant
 - Designing a descriptor
 - Designing a matching function
- Image Homography
- Global descriptors (HoG)

Global Feature descriptors

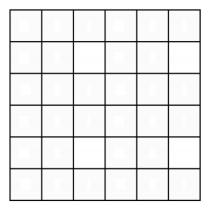
- Find robust feature set that allows object shape to be recognized.
- Challenges
 - Wide range of pose and large variations in appearances
 - Cluttered backgrounds under different illumination
 - Computation speed
- Histogram of Oriented Gradients (HoG)

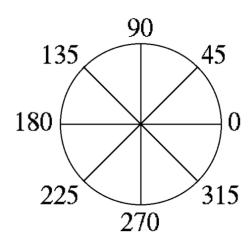
^[2] Chandrasekhar et al. CHoG: Compressed Histogram of Gradients - A low bit rate feature descriptor, CVPR 2009

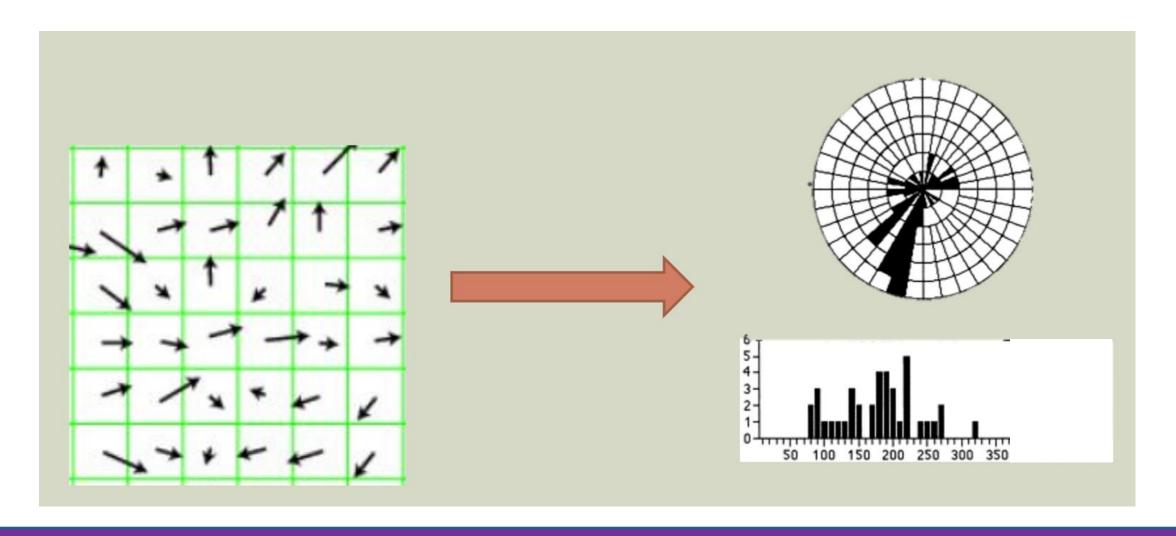
- Local object appearance and shape can often be characterized well using gradients.
- Specifically, the distribution of local intensity gradients or edge directions.

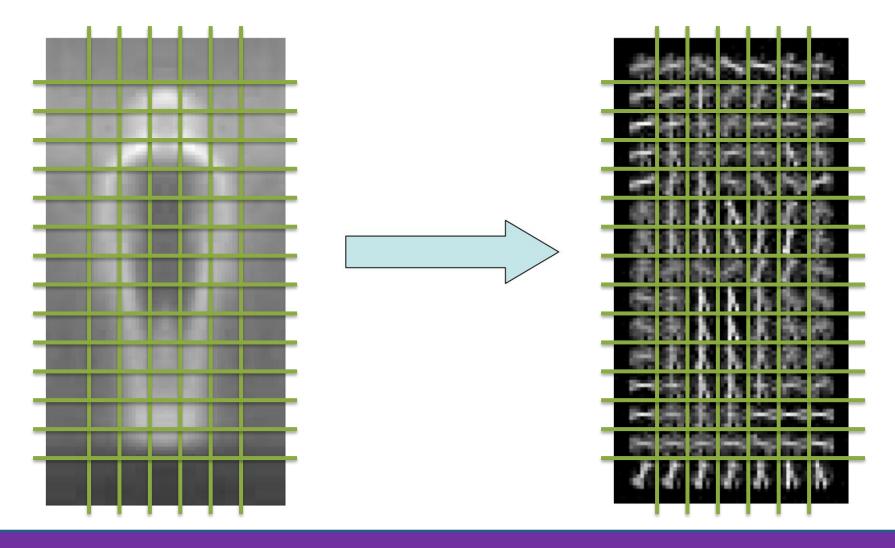


- Dividing the image window into small spatial regions (cells)
- Cells can be either rectangle or radial.
- Each window sums up local 1-D histogram of gradient directions over the pixels of the cell.



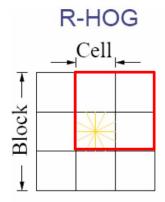


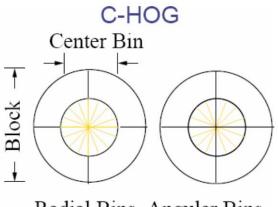


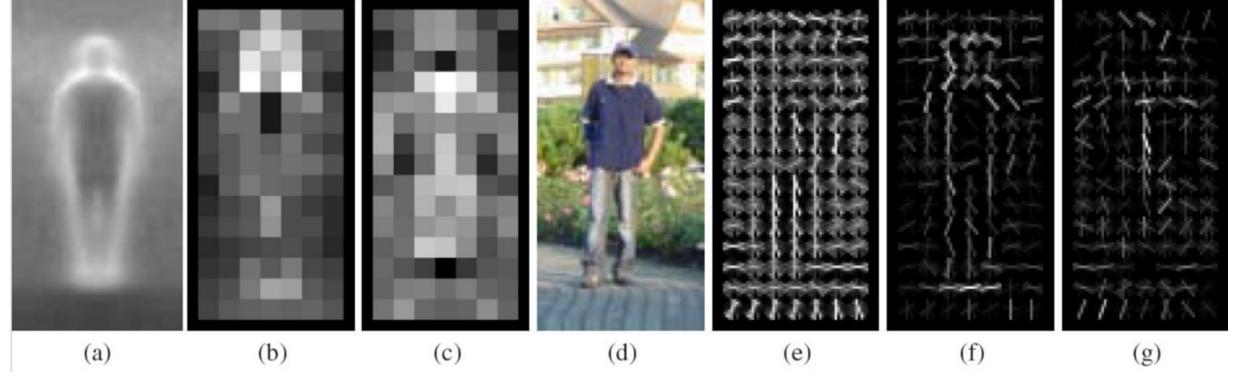


Normalization

- To make HoG invariant to illumination and shadows, it is useful to normalize the local responses
- Normalize each cell's histogram using histogram over a larger regions ("blocks").



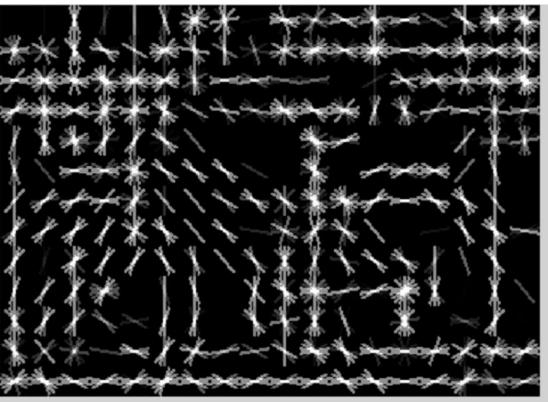




- a. Average gradient over example photo of a person
- b. "Positive" blocks that help match to other photos of people
- c. "Negative" blocks that do not match to photos of other people
- d. A test image
- e. It's HOG descriptor visualized
- f. HOG descriptor weighted by positive weights
- g. HOG descriptor weighted by negative weights

Visualizing HoG

Visualizing HoG



Difference between HoG and SIFT

- HoG is usually used to describe larger image regions.
- SIFT is used for key point matching

- SIFT histograms are normalized with respect to the dominant gradient.
- HoG gradients are normalized using neighborhood blocks.

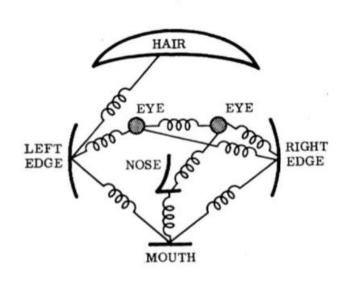
Deformable Parts Model (Pedro Felzenszwalb)

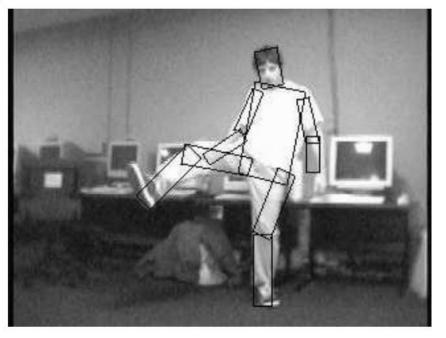
- Takes the idea a little further
- Instead of one rigid HOG model, we have multiple HOG models in a spatial arrangement
- One root part to find first and multiple other parts in a tree structure.

The Idea

Articulated parts model

- Object is configuration of parts
- Each part is detectable



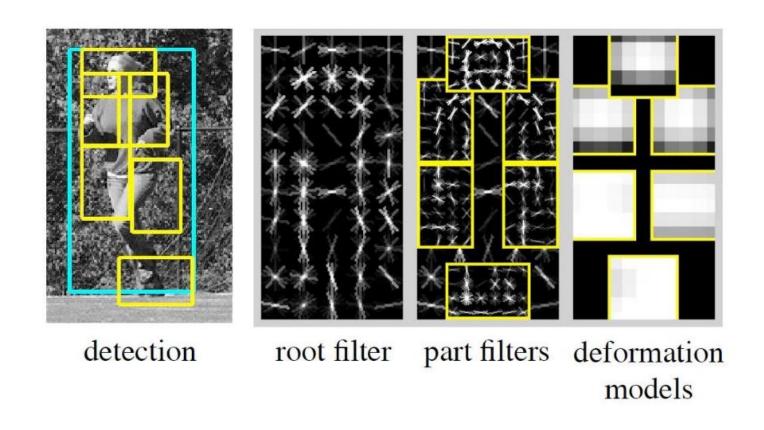


Images from Felzenszwalb

Deformable objects

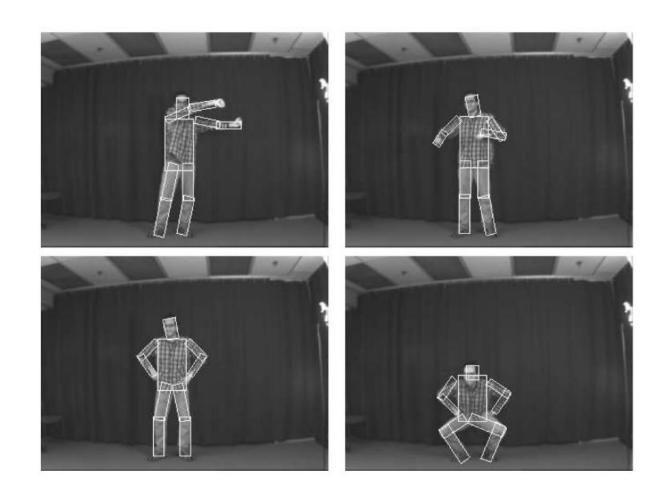
Images from Caltech-256

Slide Credit: Duan Tran



Model has a root filter plus deformable parts

Results for person matching



Today's agenda

- Local descriptors (SIFT)
 - Making keypoints rotation invariant
 - Designing a descriptor
 - Designing a matching function
- Image Homography
- Global descriptors (HoG) plus Deformable Parts Model

Next time

Geometry and Cameras