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Lecture 7

Detectors and Descriptors
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Administrative

2

A1 was due on Oct 14!!!

- You can use up to 2 late days

A2 is out

- Due Oct 28th
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So far: General approach for search
N

 p
ix

e
ls

N pixels

Similarity 

measure

e.g. color e.g. color

1. Find a set of distinctive 

key-points 

3. Normalize the region 

content  

2. Define a region/patch

around each keypoint   

4. Compute a local descriptor

from the normalized region

5. Match local descriptors

A1

A2 A3
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So far: Corners as key-points

- We should easily recognize the corner point by looking through a small 
window (locality)

- Shifting the window in any direction should give a large change in intensity 
(good localization)

“edge”:

no change along 

the edge direction

“corner”:

significant change 

in all directions

“flat” region:

no change in 

all directions
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So far: Harris Corner Detector [Harris88]

● Compute second moment matrix

(autocorrelation matrix) 1. Image 

derivatives

Ix Iy

2. Square of    

derivatives

Ix
2 Iy

2 IxIy

3. Gaussian 

filter g(σI) g(Ix
2) g(Iy

2) g(IxIy)

R

4. Cornerness function – two strong eigenvalues

5. Perform non-maximum suppression

Slide credit: Krystian Mikolajczyk5Linda Shapiro  Oct 16, 2025
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So far: Harris Detector Properties

● Translation invariance?

Slide credit: Kristen Grauman6Linda Shapiro  Oct 16, 2025
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So far: Harris Detector Properties

● Translation invariance

● Rotation invariance?

Ellipse rotates but its shape (i.e. 

eigenvalues) remains the same

Corner response θ is invariant to image rotation
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So far: Harris Detector Properties

● Translation invariance

● Rotation invariance

● Scale invariance?

Not invariant to image scale!

All points will be 

classified as edges!

Corner

Slide credit: Kristen Grauman8Linda Shapiro  Oct 16, 2025
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Today’s agenda

9

● Scale invariant keypoint detection

● Local detectors (SIFT)

● Local descriptors (SIFT)

● Global descriptors (HoG)

Linda Shapiro  Oct 16, 2025
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What will we learn today?

10

● Scale invariant keypoint detection

● Local detectors (SIFT)

● Local descriptors (SIFT)

● Global descriptors (HoG)
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● Consider regions (e.g. circles) of different sizes around a point

● What region size do we choose, so that the regions look the same in both 

images?

Scale Invariant Detection

11Linda Shapiro  Oct 16, 2025
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Problem: How do we choose region sizes independently

in each image?

f

region size

Image 2

f

region size

Image 1
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● Assume that the detector is made up of a series of functions,

○ each function depends on the pixel values and the region’s size

● The function on the region should have the same value even if the keypoints 

are at different scales

Solution: design a “scale-invariant” detector

f

region size

Image 2

f

region size

Image 1
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● Common approach to choose scale:

○Take a local maximum of this function

● Important: this scale invariant region size is found in each image for each 

corner!

● Observation: the region size at the maximum should be correlated to the 

keypoint’s scale. In other words, the size is correlated with the size of the 

corner

Scale Invariant Detection

14

f

region size

Image 2

f

region size

Image 1
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● Common approach to choose scale:

○ Take a local maximum of this function

● Important: this scale invariant region size is found in each image for each 
corner!

● Observation: the region size at the maximum should be correlated to the 
keypoint’s scale. In other words, the size is correlated with the size of the 
corner

Scale Invariant Detection

f

region size

Image 2

f

region size

Image 1
scale = 2x

s1 s2
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● A “good” function for scale selection has one stable sharp peak

● For usual images: a good function would be one which responds to 

contrast (sharp local intensity change)

f

region size

bad

f

region size

bad

f

region size

Good !

Scale Invariant Detection
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Why we care about knowing the keypoint patch size??
N

 p
ix

e
ls

N pixels

Similarity 

measure

e.g. color e.g. color

1. Find a set of distinctive 

key-points 

3. Normalize the region 

content  

2. Define a region/patch

around each keypoint   

4. Compute a local descriptor

from the normalized region

5. Match local descriptors

A1

A2 A3
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Before we design this function, let’s 

review: Characterizing edges
An edge is a place of rapid change in the image intensity function

image
intensity function

(along horizontal scanline)
first 

derivative

edges correspond to

extrema of derivative
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Review: detecting edges

19Linda Shapiro  Oct 16, 2025
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Review: Because convolutions are linear:
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Another similar filter: The Laplacian

21Linda Shapiro  Oct 16, 2025
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Another similar filter: The Laplacian (second 

derivative) of a Gaussian 

Edge at zero 

crossing

22Linda Shapiro  Oct 16, 2025
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Laplacian of a Gaussian 

23Linda Shapiro  Oct 16, 2025
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LoG is very good to detecting not just edges or 

corners but any “blob” and SIFT keypoints

24Linda Shapiro  Oct 16, 2025
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Blob B is 2x as wide as blob A

Blob C is 3x as wide as blob B

1D 

example 

of how 

blobs are 

detected 

with LoG
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1D 

example 

of how 

blobs are 

detected 

with LoG
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1D 

example 

of how 

blobs are 

detected 

with LoG

27

Where nσ means a Gaussian with standard deviation σ.
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1D 

example 

of how 

blobs are 

detected 

with LoG
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By 

increasin

g sigma, 

we can 

detect 

blobs of 

different 

sizes
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Example in 2D

Normalized LoG (NLoG) is used to find blobs in images

Location of Blobs identified by Local maxima after applying

NLoG at many scales.

31Linda Shapiro  Oct 16, 2025
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What do laplacian filters look like?

The size of the filter increases with increasing sigma.

Meaning that larger blobs require a larger filter. 

Q. Why is this a problem?

32Linda Shapiro  Oct 16, 2025
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This is a very expensive algorithm!

33Linda Shapiro  Oct 16, 2025
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Laplacian of a Gaussian

Laplacian (2nd 

derivative) of 

Gaussian 

(LoG)

34

Image blob size

S
c
a
le

 

s
p

a
c
e

Function 

response
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Problem: We have to convolve multiple filters 

of different sized laplacians to find all blobs. 

This is computationally expensive!

Laplacian (2nd 

derivative) of 

Gaussian 

(LoG)

35

Image blob size

S
c
a
le

 

s
p

a
c
e

Function 

response
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● Scale invariant keypoint detection

● Local detectors (SIFT)

● Local descriptors (SIFT)

● Global descriptors (HoG)

Today’s agenda

36Linda Shapiro  Oct 16, 2025



Ranjay Krishna January 28, 2025Lecture 7 -

The LoG is very similar to the difference of 

Gaussians (DoG)

37Linda Shapiro  Oct 16, 2025
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LoG and DoG are very similar

Note: both filters are invariant to 

scale and rotation

38Linda Shapiro  Oct 16, 2025
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Why does this approximation matter?

Original video Blurred with a 
Gaussian kernel

Blurred with a different 
Gaussian kernel

Q. What happens if you subtract one blurred image from another?

Source: https://www.youtube.com/watch?v=oTud1De_W4s39Linda Shapiro  Oct 16, 2025
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Difference of Gaussians (DoG) example

Original video Blurred with a 
Gaussian kernel: k1

Blurred with a different 
Gaussian kernel: k2

DoG: k1 – k2

Source: https://www.youtube.com/watch?v=oTud1De_W4s

DoG: k1 – k3 DoG: k1 – k4

40Linda Shapiro  Oct 16, 2025
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Example in 2D

Scale Space: Stack of images created by filtering an image with

Gaussians of different sigma values

41Linda Shapiro  Oct 16, 2025
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Selecting sigmas to generate the scale-space:

Example in 2D

42Linda Shapiro  Oct 16, 2025
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Selecting sigmas to generate the scale-space:

sigma represents size of a filter

43
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Selecting sigmas to generate the scale-space:

44
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But wait, aren’t we again using larger filter? 

Doesn’t this mean that using Gaussian filters is 

computationally expensive too?
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Remember from A1: Gaussian kernels are 

separable

Convolving with two 1D convolution filters = convolving with a large 2D filter

45
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Example in 2D
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Example in 2D
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Overall SIFT detector algorithm

48Linda Shapiro  Oct 16, 2025
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Extracting SIFT keypoints and scales

●Choose the maxima within 3x3x3 neighborhood. 

X is selected if it is larger or smaller than all 26 neighbors

49Linda Shapiro  Oct 16, 2025
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Extracting SIFT keypoints and scales

●Sigma value tells you how big the blob is or how large an area

around a keypoint is

important.
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Scale Invariant Detectors

●Harris-Laplacian1

Find local maximum of:

○Harris corner detector in 
space (image coordinates)

○Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”.  IJCV 2004

scale

x

y

← Harris →

←
 L

a
p
la

c
ia

n
 →

• DoG (from SIFT by Lowe)2

Find local maximum of:

– Difference of Gaussians in 
space and scale

scale

x

y

← DoG →

←
 D

o
G

 →
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Scale Invariant Detectors

●Experimental evaluation of detectors 

w.r.t. scale change

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

Repeatability rate:

# correspondences

# possible correspondences

53Linda Shapiro  Oct 16, 2025
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Scale Invariant Detection: Summary

●Given: two images of the same scene with a large scale 
difference between them

●Goal: find the same interest points independently in each image

●Solution: search for maxima of suitable functions in scale (DoG 
with different size) and in space (convolution over the image)

Methods: 

1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over scale, 

Harris’ measure of corner response over the image

2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space

54Linda Shapiro  Oct 16, 2025
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Today’s agenda

55

● Scale invariant keypoint detection

● Local detectors (SIFT)

● Local descriptors (SIFT)

● Global descriptors (HoG)

Linda Shapiro  Oct 16, 2025
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What’s next?

We now can detect keypoints at varying scales. But what can we do with 

those keypoints?

Things we would like to do:

• Search:

• We would need to find similar key points in other images 

• Panorama stitching

• Match keypoints from one image to another.

• Etc…

For all such applications, we need a way of `describing` the keypoints.

56Linda Shapiro  Oct 16, 2025
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Why we care about knowing the keypoint patch size??
N

 p
ix

e
ls

N pixels

Similarity 

measure

e.g. color e.g. color

1. Find a set of distinctive 

key-points 

3. Normalize the region 

content  

2. Define a region/patch

around each keypoint   

4. Compute a local descriptor

from the normalized region

5. Match local descriptors

A1

A2 A3
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Local Descriptors are vectors
● We know how to detect points

● Next question: How to describe them for matching?

● Descriptor: Vector that summarizes the content of the keypoint 

neighborhood.

? Point descriptor should be:

1. Invariant

2. Distinctive

58Linda Shapiro  Oct 16, 2025
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Invariant Local Descriptors

Image content is transformed into local feature coordinates that are 

invariant to translation, rotation, scale, and other imaging parameters

59
59Linda Shapiro  Oct 16, 2025
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Rotation invariant descriptors

60

So far, we have figured out the scale of the 

keypoints. 

- So we can normalize them to be the 

same size.

Q. How do we re-orient the patches so that 

they are rotation invariant?

Linda Shapiro  Oct 16, 2025
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● We are given a keypoint and its scale from DoG

● We will select the direction of maximum gradient as 

the orientation for the keypoint 

● We will describe all features relative to this 

orientation

Constructing a rotation invariant descriptor

61Linda Shapiro  Oct 16, 2025
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Visualizing what that looks like

62

Q. Which one is the direction of the maximum gradient 

for this keypoint patch?
A)

B)

C)

D)

Linda Shapiro  Oct 16, 2025
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Visualizing what that looks like

63

C)

Q. Which one is the direction of the maximum gradient 

for this ketpoint patch?

Rotated patch to make sure 

the gradient θ = 0

Linda Shapiro  Oct 16, 2025
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Feature descriptors become rotation invariant

64

● If the keypoint appears rotated in another image, the features will be the same, 

because they’re relative to the characteristic orientation

Linda Shapiro  Oct 16, 2025
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Gradient-based descriptor to capture texture 

in the keypoint neighborhood

1.Blur the keypoint’s image patch to remove 

noise

2.Calculate image gradients over the 

neighborhood patch.

3.To become rotation invariant, rotate the 

gradients by -θ (- maximum direction)

○ Now we’ve cancelled out rotation and have 

gradients expressed at locations relative to 

maximum direction θ

4.Generate a descriptor

SIFT descriptor (Scale-Invariant Feature Transform)

Keypoint neighborhood

65Linda Shapiro  Oct 16, 2025
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● Q. How do we turn this into a vector?

Generating the descriptor from rotated patch

0 2π

Keypoint neighborhood
Orientation Histogram

Orientation 
Histogram

67Linda Shapiro  Oct 16, 2025
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● We can turn every pixel into a histogram

● Histogram contains 8 buckets, all of them zero except for one.

● Make the bucket of the direction of the gradient equal to 1

Generating the descriptor from rotated patch

0 2π

Keypoint neighborhood
Orientation Histogram

Orientation 
Histogram

68Linda Shapiro  Oct 16, 2025
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● Do this for every single pixel

Q. What would the size of the keypoint vector be?

Generating the descriptor from rotated patch

0 2π

Keypoint neighborhood
Orientation Histogram

Orientation 
Histogram
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● Do this for every single pixel

Q. Why might this be a bad strategy? What could go wrong?

Hint: think about how matching might fail

Generating the descriptor from rotated patch

0 2π

Keypoint neighborhood
Orientation Histogram

Orientation 
Histogram
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Generating the descriptor from rotated patch

0 2π

Keypoint neighborhood
Orientation Histogram

Orientation 
Histogram

71

● Solution: divide keypoint up into 4x4 “cells”

● Calculate a histogram per cell and sum them together

Linda Shapiro  Oct 16, 2025
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● Each cell gives us a histogram vector. We have a total of 4x4 vectors

● Calculate the overall gradients in each patch into their local orientated 

histograms

○ Also, scale down gradient contributions for gradients far from the center

○ Each histogram is quantized into 8 directions (each 45 degrees)

SIFT descriptor formation
Keypoint neighborhood

Array of Orientation 
Histograms
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SIFT descriptor formation
Keypoint neighborhood

Array of Orientation 
Histograms

73

● Q. What is the size of the descriptor?
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● 8 orientation bins per histogram, 

● 4x4 histogram vectors, 

● total is 8 x 4x4 = 128 numbers.

● So a SIFT descriptor is a length 128 vector

SIFT descriptor formation
Keypoint neighborhood

Array of Orientation 
Histograms

74Linda Shapiro  Oct 16, 2025
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● SIFT descriptor is invariant to rotation (because we rotated the patch) and 

scale (because we worked with the scaled image from DoG)

● We can compare each vector from image A to each vector from image B to 

find matching keypoints!

○ How do we match distances?

SIFT descriptor formation
Keypoint neighborhood

Array of Orientation 
Histograms
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SIFT descriptor distances

Given keypoints k1 and k2, we can calculate their HoG features:

HoG(k1)

HoG(k2)

We can calculate their matching score as:
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Find nearest neighbor for each keypoint in 

image A in image B

Given keypoints k1 and k2, we can calculate their HoG features:

HoG(k1)

HoG(k2)

We can calculate their matching score as:
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Next time

Local and Global descriptors

Linda Shapiro  Oct 16, 2025


