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Administrative

Al was due on Oct 14!
- You can use up to 2 late days

A2 IS out
- Due Oct 28th
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So far: General approach for search
1. Find a set of distinctive
key-points

2. Define a region/patch
around each keypoint

3. Normalize the region
content

Similarity fB

measure
‘ ‘e g. color p.g. color

“Npixels d(f4/5)<T 5. Match local descriptors
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4. Compute a local descriptor
from the normalized region

N pixels




So far: Corners as key-points

- We should easily recognize the corner point by looking through a small
window (locality)

- Shifting the window In any direction should give a large change in intensity
(aood localization)

“flat” region: “edge”: “corner”:
no change in no change along significant change
all directions the edge direction in all directions
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So far: Harris Corner Detector juarisss

e Compute second moment matrix
(autocorrelation matrix)

(o, 11,(0),)
11(c,) I;(o),) 2. Square of

op: for Gaussian in the derivative calculation derivatives
o;: for Gaussian in the windowing function

M(O-[’O.D):g(o-[)*|:

3. Gaussian
filter g(o))

4. Cornerness function - two strong eigenvalues
0 =det[M (o ,,0 ,)]-aftrace(M (c,,0 )]’
=g(I)HgI)-[g(I )T —alg(I})+gU)T

5. Perform non-maximum suppression
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So far: Harris Detector Properties

e Translation invariance?
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So far: Harris Detector Properties

e Translation invariance
e Rotation invariance?

Ellipse rotates but its shape (i.e.
eigenvalues) remains the same

Corner response 6 is invariant to image rotation
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So far: Harris Detector Properties

e Translation invariance
e Rotation invariance
e Scale invariance?

N

A mm £

Corner All points will be
classified as edges!

Not invariant to image scale!
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Today's agenda

Scale invariant keypoint detection
Local detectors (SIFT)

Local descriptors (SIFT)

Global descriptors (HoG)
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What will we learn today?

Scale invariant keypoint detection
Local detectors (SIFT)

Local descriptors (SIFT)

Global descriptors (HoG)
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Scale Invariant Detection

e Consider regions (e.g. circles) of different sizes around a point

e \What region size do we choose, so that the regions look the same in both
Images?
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Problem: How do we choose region sizes independently
In each image?

Image 1 Image 2

region size region size
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Solution: design a “scale-invariant” detector

e Assume that the detector is made up of a series of functions,
o each function depends on the pixel values and the region’s size

e The function on the region should have the same value even if the keypoints
are at different scales

/\ Image 1 Image 2
region size region size ‘
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Scale Invariant Detection

e Common approach to choose scale:
o Take a local maximum of this function

e Important: this scale invariant region size is found in each image for each
corner!

e Observation: the region size at the maximum should be correlated to the
keypoint’s scale. In other words, the size is correlated with the size of the

corner
/\ Image 1 Image 2
region size /mgikize):
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Scale Invariant Detection

e Common approach to choose scale:
o Take a local maximum of this function

e Important: this scale invariant region size is found in each image for each
corner!

e Observation: the region size at the maximum should be correlated to the
keypoint’s scale. In other words, the size is correlated with the size of the
corner

fA fu
Image 1

Imaqge 2
scale = 2x . 9
) |
1
region size ' region size R

S, g
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Scale Invariant Detection

e A “good” function for scale selection has one stable sharp peak

= = e

region size region size region size

e For usual images: a good function would be one which responds to
contrast (sharp local intensity change)
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Why we care about knowing the keypoint patch size??
1. Find a set of distinctive

key-points

2. Define a region/patch
around each keypoint

3. Normalize the region
content

Similarity fB

measure
‘ ‘e g. color p.g. color

“Npixels d(f4/5)<T 5. Match local descriptors
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4. Compute a local descriptor
from the normalized region

N pixels




Before we design this function, let's
review: Characterizing edges

An edge is a place of rapid change in the image intensity function

intensity function first
image (along horizontal scanline) derivative

Wfﬂ{i

edges correspond to
extrema of derivative
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Review: detecting edges

s
Image [ 2
9 ®
| | | | | 1 | | 1 ]
0O 200 400 600 800 1000 1200 1400 1600 1800 2000
! J J ! J ' ' ! !
- - Tg :
Gaussian Filter /; £ ;
x :
600 1600 1800 2000
e ! ! ! ! r
sf R
. = . .
Convolution /;, x f - .
e — e
0 200 400 600 1600 1800 2000
5 ' ; ; ' 1 .r 1 ;
L 3, '.g : ——— Peak = edge location
Derivative —(h * f) ]
ox 8 } . .
50_ ........ i I T— l_

1 1 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Review: Because convolutions are linear:

Sigma = 50

Se(hx ) = (g5h) * f

I L L I I ] I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

I I I I I ! ! ! !
0 200 400 600 800 1000 1200 1400 1600 1800 2000

(h) * f

Convolution

O_ ........ :
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Another similar filter: The Laplacian

2 2
Laplacian 7* f = % + ng,« 01=110
1] 4 |1
0-10
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Another similar filter: The Laplacian (second
derivative) of a Gaussian

Sigma = 50
|

1000 1200 1400 1600 1800 2000

1 ; , 1 R S— SRS S S 0(-110
0 200 400 600 800
T T T T

82

a2
Laplacian of Gaussian : i i : ; : i : i
O 200 400 600 800 1000 1200 1400 1600 1800 2000
| | C Edge_at Zero
52 5 f Ccrossing
% Bolcorf—i 1L R
(Guzh) > 1 §| |

1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Laplacian of a Gaussian

2000

| 1500!]----- bt TR fresieist AN & ey STAS

Characteristic scale

Linda Shapiro Oct 16, 2025



LoG Is very good to detecting not just edges or
corners but any “blob” and SIFT keypoints

III |'| l -"'f_%x'“-.
l' || ' ‘|' Il
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1D [\ Blob A /“\ Blob B /_\_Bib_i
fx)

example

Blob B is 2x as wide as blob A
Of hOW Blob C is 3x as wide as blob B
blobs are
detected
with LoG
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1D o [\ Blob A /—\ Blob B /_\T
example

of how /\ J\ J\
blobs are 7%,

detected . /\/\ o v
with LoG
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1D [\ Blob A /“\ Blob B /_\T
fx) i |

example i
of how .\ J\ J\
blobs are 7n, A
detected
with LoG

Where no means a Gaussian with standard deviation o.
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1D 1\l O Gt O v
fx)

example

of how WA N

blobs are on,

A/
detected
with LoG ,
aa:;*f(x) —/\1/\ s N
LI M W

Linda Shapiro Oct 16, 2025



[\ Blob A m Blob B /_;_\Blob C
By f@ i i |

Increasin ) : 5 ;

we can o*n,g s
detect 5
blobs of
different
Sizes
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Given: 1D signal f(x)

2

,0°n,
m ;
Compute: ¢2 2

* f(x) at many scales (g, 04,0, ..., 0%).

az
0x?

- f (%)

Find: | (x*,0*) = arg max
(x,0)

x*: Blob Position

o”: Characteristic Scale (Blob Size)
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Example in 2D

Normalized LoG (NLoG) is used to find blobs in images

Laplacian Gaussian NLoG
ik T T
2 -~ 47
’ 6x2+ L
Ng Vn Ng

Location of Blobs identified by Local maxima after applying
NLoG at many scales.
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What do laplacian filters look like?

The size of the filter increases with increasing sigma.

Meaning that larger blobs require a larger filter.
Q. Why is this a problem?

0 0 -1 0 0]
0 -1 -2 -1 0

0|-1]0 -1 -2 16 -2 -1
-1] 4 |-1 0 -1 -2 —-1 0
0|-1/0 0 0 -1 0 0
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This Is a very expensive algorithm!
Given an image I(x,y)

Convolve the image using NLoG at many scales o

Find:

(x*,y*,0%) = arg max |a%V?n, * 1(x,y)]
(x,y,0)

(x*,y*): Position of the blob
o*: Size of the blob
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Laplacian of a Gaussian

. o 8
d — O
Lap_lau_an (2" S s Function
derlvat_lve) of N o response
Gaussian
(LoG) >

[
>

o . ‘ Image blob size



Problem: We have to convolve multiple filters
of different sized laplacians to find all blobs.
This Is computationally expensive!

Laplacian (2" 5 Function
derivative) of response

Gaussian
(LoG)

Scale
space

>

F

o . ‘ Image blob size




Today's agenda

e Local detectors (SIFT)
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The LoG Is very similar to the difference of
Gaussians (DoG)

= \Af ~ Laplacian of Gaussian
(LOG)

dgn — 9
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LoG and DoG are very similar

== Laplacian
| == DoG

0.4+

Note: both filters are invariant to
scale and rotation
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Why does this approximation matter?

Original video Blurred with a Blurred with a different
Gaussian kernel Gaussian kernel

Q. What happens if you subtract one blurred image from another?
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https://www.youtube.com/watch?v=oTud1De_W4s

Difference of Gaussians (DoG) example

A &

Original video Blurred with a Blurred with a different
Gaussian kernel: k, Gaussian kernel: k,

DoG: k; — kg DoG: k; — k,
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https://www.youtube.com/watch?v=oTud1De_W4s

Example in 2D

S(x;}’:o'o) S(x;)’;0'1)

S(x;y;o'z) S(x;}’»%)

>

Increasing o, Higher Scale, Lower Resolution

Scale Space: Stack of images created by filtering an image with

Gaussians of different sigma values

S(x,y,0) =n(x,y,0) *1(x,y)
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Example in 2D

S(x:)’:ao) S(x,y,a1) S(xiy'UZ) S(x:yrGB)

>

Increasing o, Higher Scale, Lower Resolution

Selecting sigmas to generate the scale-space: O = 0ps® | k=0123,..

s: Constant multiplier
g,: Initial Scale
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sigma represents size of a filter

,’1'7 ,

!. |
‘ 1{1]1)1]1
111111 SBJEN 1({1]1]1]1
NEEE 1)1)1]1 1{1]1]21
111]1]1 1({1(1]1]1
ST [ S(x,, 0, SR (% ¥ 73) 11]1]1]1
>
Increasing o, Higher Scale, Lower Resolution
Selecting sigmas to generate the scale-space: O = 0ps® | k=0123,..

s: Constant multiplier
g,: Initial Scale
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But wait, aren’'t we again using larger filter?

Doesn’t this mean that using Gaussian filters is
. . -

111/1]1|1
ol N ARERERE
. 1)1)1]1 1(1]|1)1]1
11111 111|111
S(x,y,0) Sy Ta s SGyo i T eye)
>
Increasing o, Higher Scale, Lower Resolution
Selecting sigmas to generate the scale-space: o = gps® | k=01,23,..

s: Constant multiplier
g,: Initial Scale
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Remember from Al: Gaussian kernels are
separable

Convolving with two 1D convolution filters = convolving with a large 2D filter

1 111111
1 1({1(1|1]1
1 11111111 1({1(1]1]1
1 111111
1 111111
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Example in 2D

O Extremum
|
|
|
|
|
I
|
|
|

0o 01 () 03 Scale

Characteristic Scale (o)
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Example in 2D

S(x,y,00) S(x,y,01) S(x,y,0,) S(x,y,03)

No Strong Extremum = No Blob

Op 04 Oy 03 Scale
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Overall SIFT detector algorithm

Gaussian Difference of
Gaussians (DoG)

Scale-Space
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Extracting SIFT keypoints and scales

e Choose the maxima within 3x3x3 neighborhood.

&
s
& L L s
ST O
/ i

X is selected if it is larger or smaller than all 26 neighbors
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Extracting SIFT keypoints and scales

e Sigma value tells you how big the blob is or how large an area
around a keypoint is
important.
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1K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. 1JCV 2004

Scale Invariant Detectors

: : scale
e Harris-Laplaciant A — !
Find local maximum of: g . s
o Harris corner detector in 2
space (image coordinates) Y S~ _ll
o Laplacian in scale ~ Haris >
e DoG (from SIFT by Lowe)?
: ) scale
Find local maximum of: A — )
— Difference of Gaussians in = C
space and scale /é
y e l
«— DoG — ))(
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Scale Invariant Detectors

e Experimental evaluatlon of detectors
W.T. t Scale Change i ; —O—IHarris—LellpIacian

0.9} | =w= S|FT (Lowe)

5 | == Harris

Repeatability rate:

# correspondences
# possible correspondences

06

repeatability rate

05F

04+

03r

02F

01

[ 1 | i | i
1 15 2 2.5 3 3.5 4 45
scale
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Scale Invariant Detection: Summary

e Given: two images of the same scene with a large scale
difference between them

e Goal: find the same interest points independently in each image

e Solution: search for maxima of suitable functions in scale (DoG
with different size) and in space (convolution over the image)

Methods:

1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over scale,
Harris’ measure of corner response over the image

2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space
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Today's agenda

e Local descriptors (SIFT)
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What's next?

We now can detect keypoints at varying scales. But what can we do with
those keypoints?

Things we would like to do:
« Search:

« We would need to find similar key points in other images
« Panorama stitching

« Match keypoints from one image to another.
« Etc...

For all such applications, we need a way of ‘describing the keypoints.
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Why we care about knowing the keypoint patch size??
1. Find a set of distinctive

key-points

2. Define a region/patch
around each keypoint

3. Normalize the region
content

Similarity fB

measure
‘ ‘e g. color p.g. color

“Npixels d(f4/5)<T 5. Match local descriptors
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4. Compute a local descriptor
from the normalized region

N pixels




Local Descriptors are vectors

e \We know how to detect points
e Next question: How to describe them for matching?

e Descriptor: Vector that summarizes the content of the keypoint
neighborhood.

Point descriptor should be:
1. Invariant
2. Distinctive
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Invariant Local Descriptors

Image content is transformed into local feature coordinates that are
Invariant to translation, rotation, scale, and other imaging parameters
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Rotation invariant descriptors

So far, we have figured out the scale of the

keypoints.

- So we can normalize them to be the
same Ssize.

Q. How do we re-orient the patches so that
they are rotation invariant?
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Constructing a rotation invariant descriptor

e \We are given a keypoint and its scale from DoG

e We will select the direction of maximum gradient as
the orientation for the keypoint

e \We will describe all features relative to this
orientation

Linda Shapiro Oct 16, 2025




Visualizing what that looks like

Q. Which one is the direction of the maximum gradient
for this keypoint patch?
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Visualizing what that looks like

Q. Which one is the direction of the maximum gradient
for this ketpoint patch?

Rotated patch to make sure
the gradient 8 = 0
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Feature descriptors become rotation invariant

e If the keypoint appears rotated in another image, the features will be the same,
because they’re relative to the characteristic orientation
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SIFT descriptor (Scale-Invariant Feature Transform)

Gradient-based descriptor to capture texture Keypoint neighborhood
In the keypoint neighborhood

1.Blur the keypoint’s image patch to remove
noise

2.Calculate image gradients over the
neighborhood patch.

3.To become rotation invariant, rotate the
gradients by -0 (- maximum direction)

o Now we’ve cancelled out rotation and have
gradients expressed at locations relative to
maximum direction 6

4.Generate a descriptor
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8 keypoint

rotate
gradients




Generating the descriptor from rotated patch

Keypoint neighborhood

e Q. How do we turn this into a vector?
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Generating the descriptor from rotated patch

Keypoint neighborhood

e \We can turn every pixel into a histogram
e Histogram contains 8 buckets, all of them zero except for one.
e Make the bucket of the direction of the gradient equal to 1
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Generating the descriptor from rotated patch

Keypoint neighborhood

e Do this for every single pixel

Q. What would the size of the keypoint vector be?
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Generating the descriptor from rotated patch

Keypoint neighborhood

e Do this for every single pixel

Q. Why might this be a bad strategy? What could go wrong?
Hint: think about how matching might fail

Linda Shapiro Oct 16, 2025



Generating the descriptor from rotated patch

Keypoint neighborhood

e Solution: divide keypoint up into 4x4 “cells”
e (Calculate a histogram per cell and sum them together
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SIFT descriptor formation

Array of Orientation
Keypoint neighborhood Y

" Histograms
th,ka ’\:\\ \’K Q’l\/ *
N A K| S| | K

q . o + _>
BEE S ARE S kPR K
N KKK K

Image gradients Keypoint descriptor

e Each cell gives us a histogram vector. We have a total of 4x4 vectors

e Calculate the overall gradients in each patch into their local orientated
histograms
o Also, scale down gradient contributions for gradients far from the center
o Each histogram is quantized into 8 directions (each 45 degrees)
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SIFT descriptor formation

Array of Orientation
Keypoint neighborhood Y

Histograms
— | T], |7
/{f.,‘l‘f /\\ \’K\]’l\/ *
JIRIN Il I B R R
| e RN E PR Ko |2k | K
SEEADSRE > 5 KB &
N H|K | E K

Image gradients Keypoint descriptor

e Q. What is the size of the descriptor?
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SIFT descriptor formation

Array of Orientation
Keypoint neighborhood Y

Histograms
— | T], |7
/: t LT 7 /\\ \’K Q’l\/ *
o A [T o
| e RN E PR Ko |2k | K
BAEESDSAE = k [PF |k
N KKK K
Image gradients Keypoint descriptor
e 8 orientation bins per histogram,
e 4x4 histogram vectors, Histogram of Gradients
e total is 8 x 4x4 = 128 numbers. I
. . 1
e S0 a SIFT descriptor is a length 128 vector gz
HoG (k) =
| 9128
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SIFT descriptor formation

Array of Orientation
Keypoint neighborhood Y

" Histograms
th,ka ’\:\\ \’K Q’l\/ *
N A K| S| | K

q . o + _>
BEE S ARE S kPR K
N KKK K

Image gradients Keypoint descriptor

e SIFT descriptor is invariant to rotation (because we rotated the patch) and
scale (because we worked with the scaled image from DoG)

e \We can compare each vector from image A to each vector from image B to
find matching keypoints!
o How do we match distances?
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SIFT descriptor distances

Given keypoints k; and k,, we can calculate their HoG features:
HoG(k,)

HoG(k,)

We can calculate their matching score as:

deog(kl, ]Cz) = \/Z(%Og(kl)z — Hog(kQ)z)z
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Find nearest neighbor for each keypoint in
Image A in image B

Given keypoints k; and k,, we can calculate their HoG features:
HoG(k,) '
HoG(k,)

We can calculate their matching score as:

d'HOg(kl, kz) = \/Z(%Og(kl)z — Hog(kQ)z)z
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Next time

Local and Global descriptors
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