Lecture 7 Detectors and Descriptors

Administrative

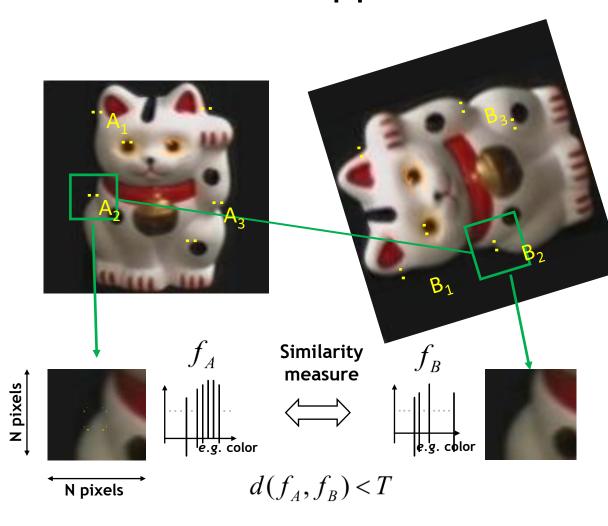
A1 was due on Oct 14!!!

- You can use up to 2 late days

A2 is out

- Due Oct 28th

So far: General approach for search



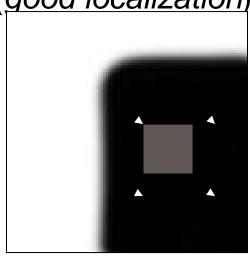
- 1. Find a set of distinctive key-points
- 2. Define a region/patch around each keypoint
- 3. Normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

So far: Corners as key-points

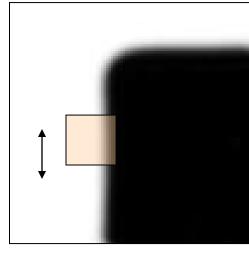
 We should easily recognize the corner point by looking through a small window (*locality*)

- Shifting the window in *any direction* should give a large change in intensity

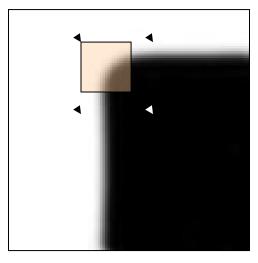
(good localization)



"flat" region: no change in all directions



"edge":
no change along
the edge direction



"corner": significant change in all directions

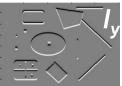
So far: Harris Corner Detector [Harris88]

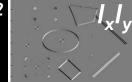
 Compute second moment matrix (autocorrelation matrix)

$$M(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

 σ_D : for Gaussian in the derivative calculation σ_I : for Gaussian in the windowing function

1. Image derivatives





3. Gaussian filter $g(\sigma_l)$

4. Cornerness function - two strong eigenvalues

$$\theta = \det[M(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(M(\sigma_{I}, \sigma_{D}))]^{2}$$

$$= g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

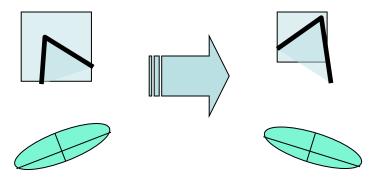
5. Perform non-maximum suppression

So far: Harris Detector Properties

Translation invariance?

So far: Harris Detector Properties

- Translation invariance
- Rotation invariance?

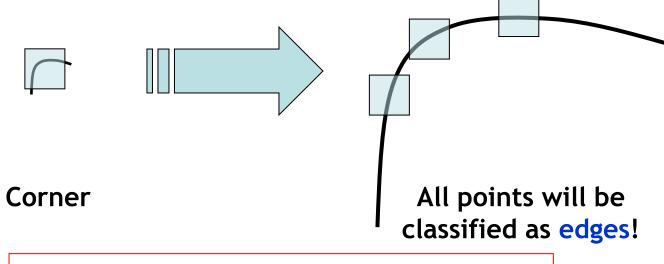


Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response θ is invariant to image rotation

So far: Harris Detector Properties

- Translation invariance
- Rotation invariance
- Scale invariance?



Not invariant to image scale!

Today's agenda

- Scale invariant keypoint detection
- Local detectors (SIFT)
- Local descriptors (SIFT)
- Global descriptors (HoG)

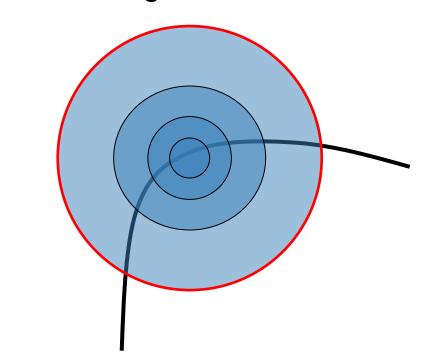
What will we learn today?

- Scale invariant keypoint detection
- Local detectors (SIFT)
- Local descriptors (SIFT)
- Global descriptors (HoG)

• Consider regions (e.g. circles) of different sizes around a point

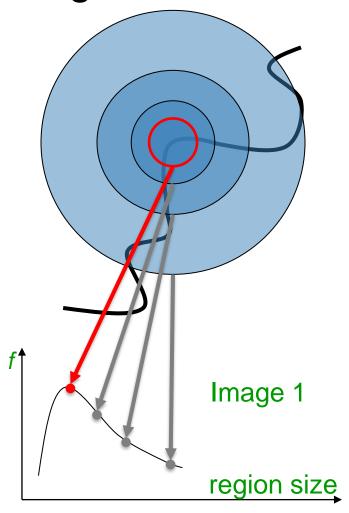
• What region size do we choose, so that the regions look the same in both

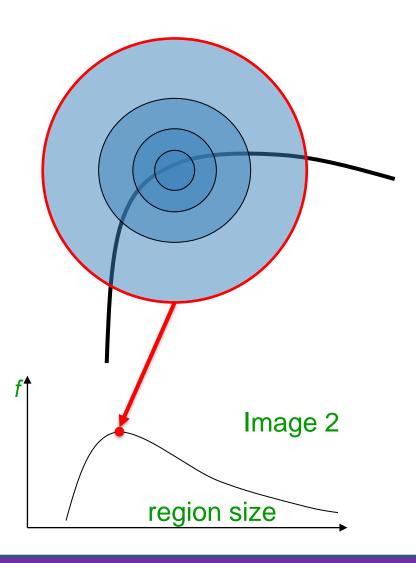
images?



Problem: How do we choose region sizes independently

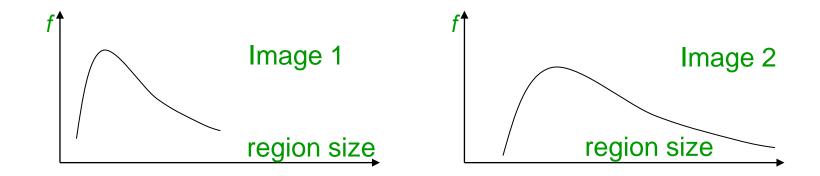
in each image?



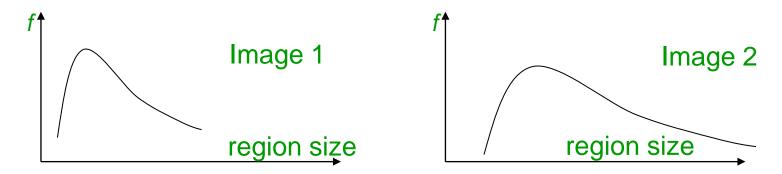


Solution: design a "scale-invariant" detector

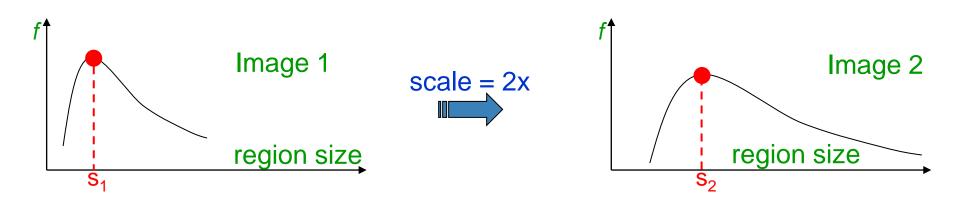
- Assume that the detector is made up of a series of functions,
 - each function depends on the pixel values and the region's size
- The function on the region should have the same value even if the keypoints are at different scales



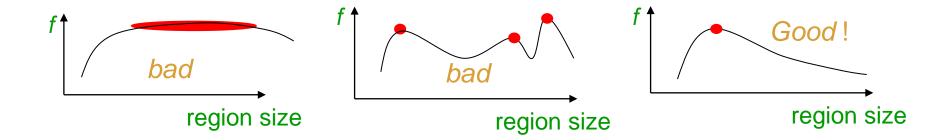
- Common approach to choose scale:
 - Take a local maximum of this function
- **Important**: this scale invariant region size is found in each image for each corner!
- Observation: the region size at the maximum should be correlated to the keypoint's scale. In other words, the size is correlated with the size of the corner



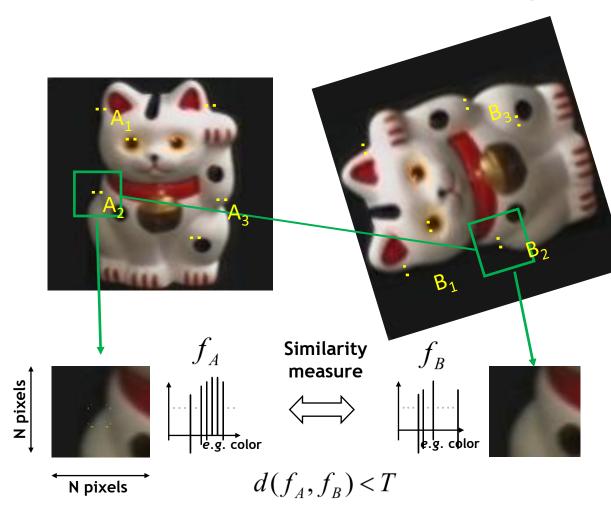
- Common approach to choose scale:
 - Take a local maximum of this function
- Important: this scale invariant region size is found in each image for each corner!
- Observation: the region size at the maximum should be correlated to the keypoint's scale. In other words, the size is correlated with the size of the corner



A "good" function for scale selection has one stable sharp peak



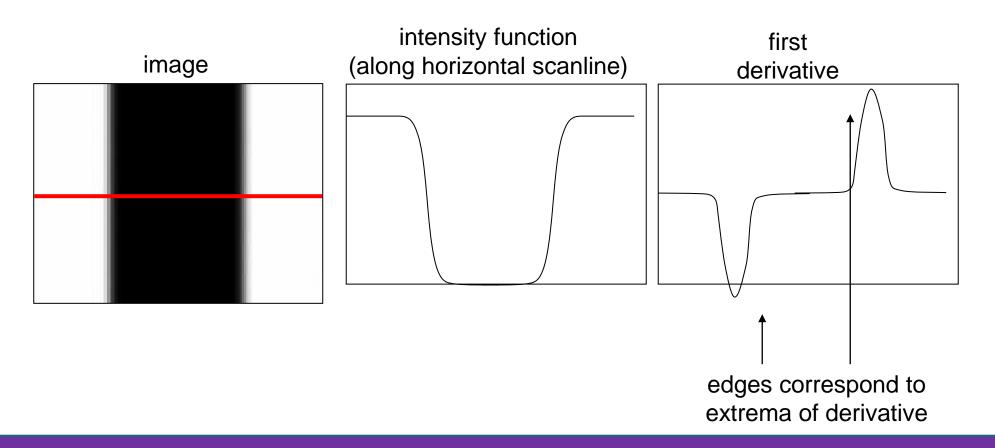
 For usual images: a good function would be one which responds to contrast (sharp local intensity change) Why we care about knowing the keypoint patch size??



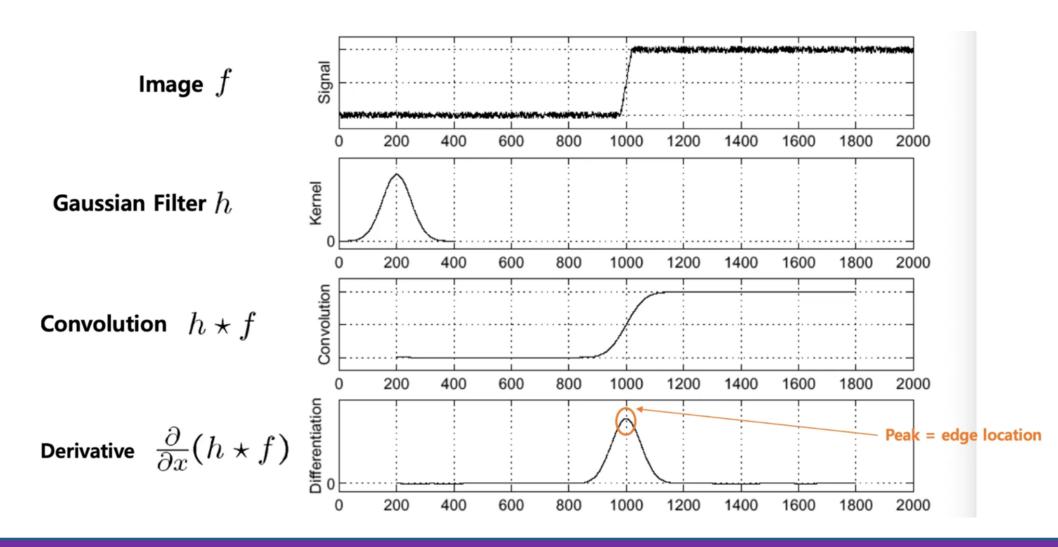
- 1. Find a set of distinctive key-points
- 2. Define a region/patch around each keypoint
- 3. Normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Before we design this function, let's review: Characterizing edges

An edge is a place of rapid change in the image intensity function



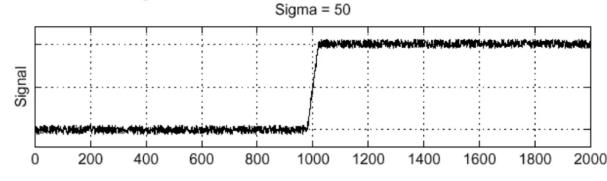
Review: detecting edges



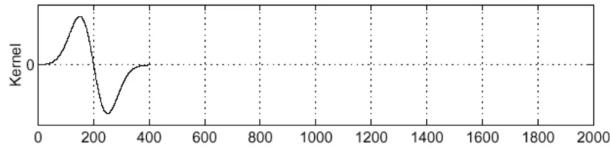
Review: Because convolutions are linear:

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

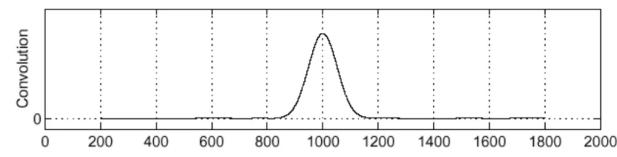
f



 $\frac{\partial}{\partial x}h$



 $(\frac{\partial}{\partial x}h)\star f$

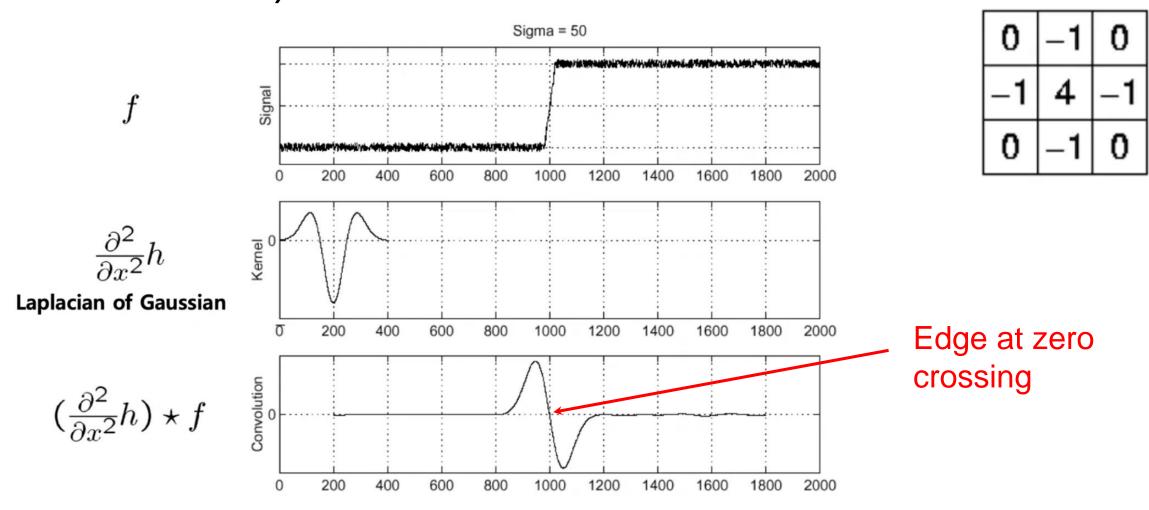


Another similar filter: The Laplacian

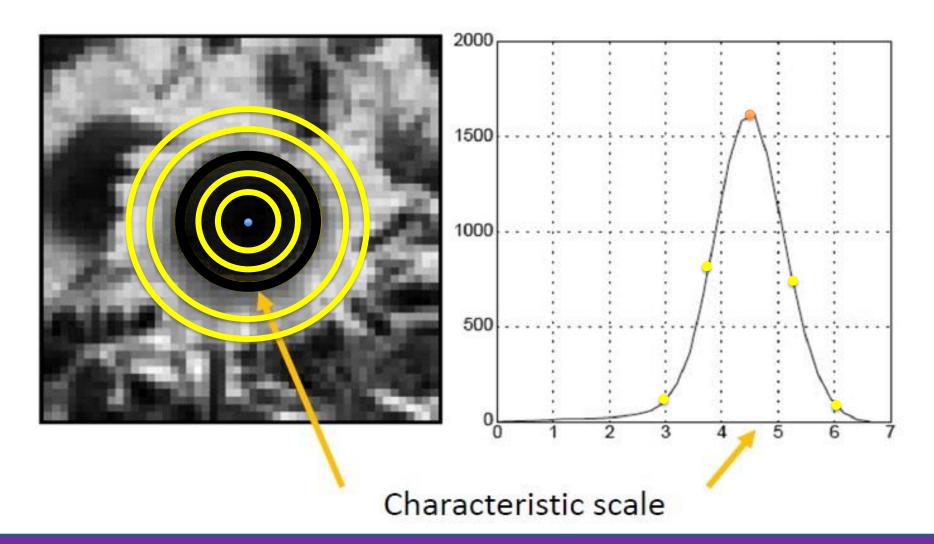
$$Laplacian \ \bigtriangledown^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

0	-1	0
-1	4	-1
0	-1	0

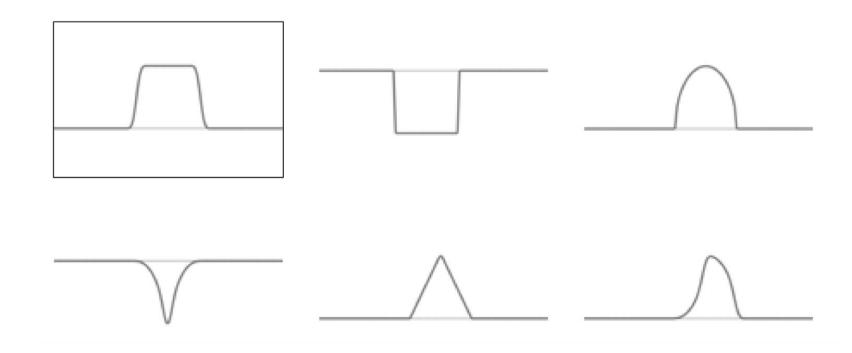
Another similar filter: The Laplacian (second derivative) of a Gaussian



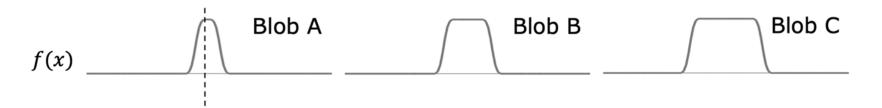
Laplacian of a Gaussian



LoG is very good to detecting not just edges or corners but any "blob" and SIFT keypoints

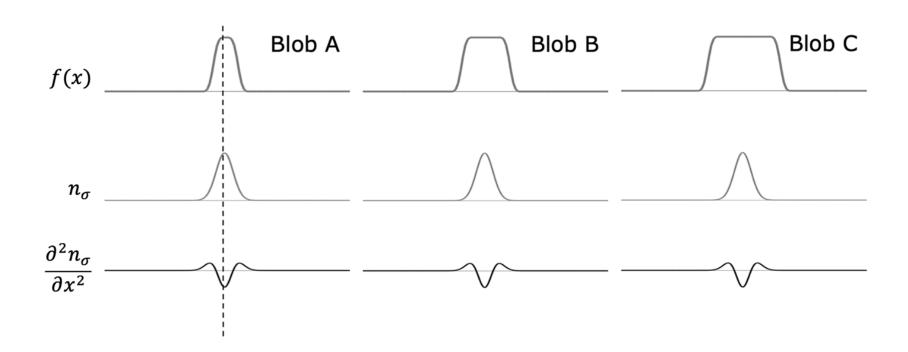


1D example of how blobs are detected with LoG

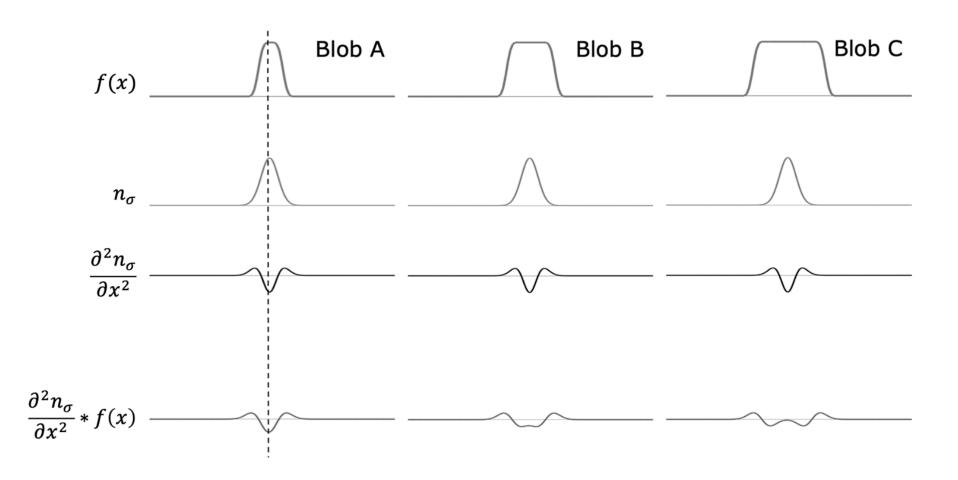


Blob B is 2x as wide as blob A Blob C is 3x as wide as blob B

1D example of how blobs are detected with LoG

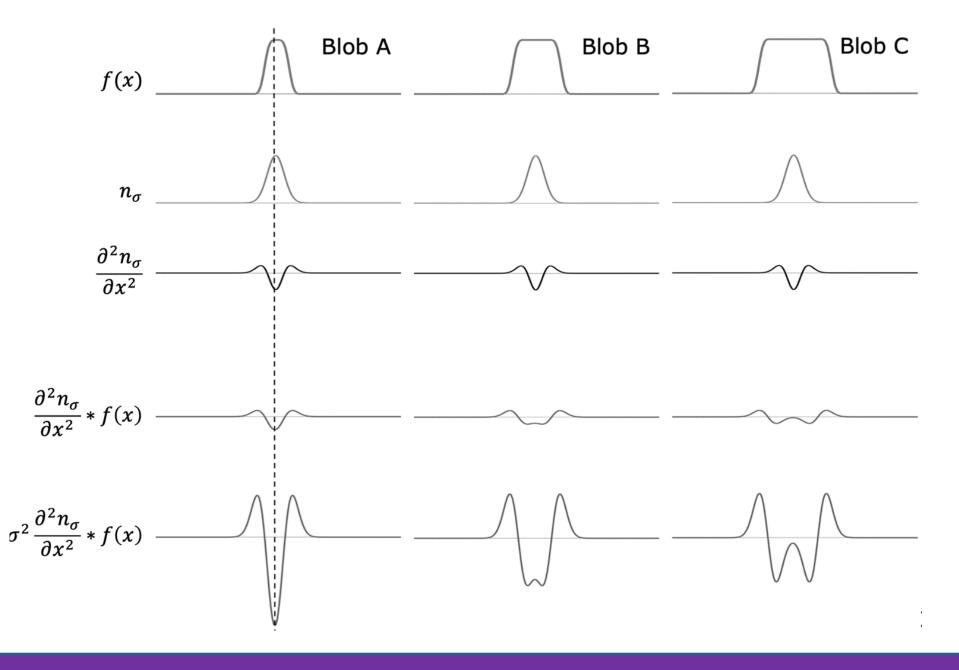


1D example of how blobs are detected with LoG

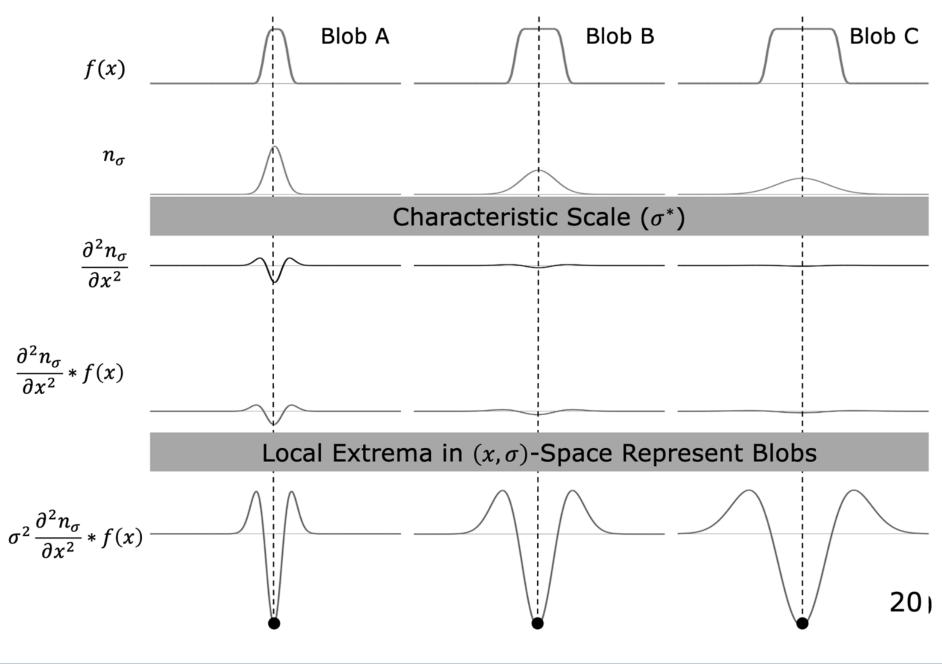


Where $n\sigma$ means a Gaussian with standard deviation σ .

1D example of how blobs are detected with LoG



increasin g sigma, we can detect blobs of different sizes



Given: 1D signal f(x)

Compute: $\sigma^2 \frac{\partial^2 n_{\sigma}}{\partial x^2} * f(x)$ at many scales $(\sigma_0, \sigma_1, \sigma_2, ..., \sigma_k)$.

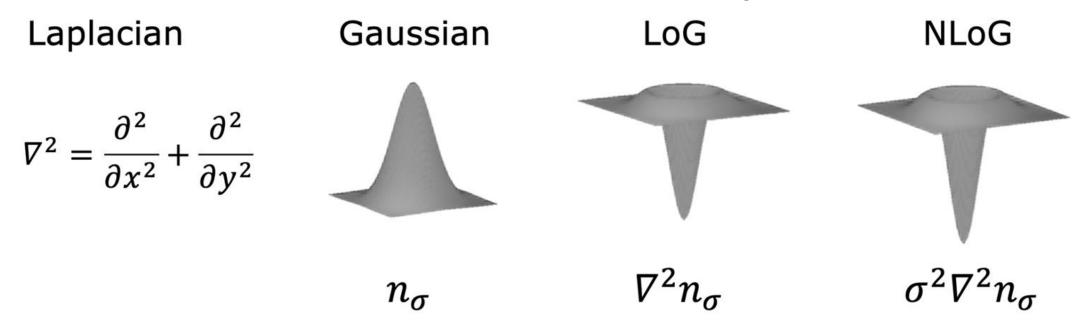
Find:
$$(x^*, \sigma^*) = \underset{(x,\sigma)}{\operatorname{arg max}} \left| \sigma^2 \frac{\partial^2 n_{\sigma}}{\partial x^2} * f(x) \right|$$

x*: Blob Position

 σ^* : Characteristic Scale (Blob Size)

Example in 2D

Normalized LoG (NLoG) is used to find blobs in images



Location of Blobs identified by Local maxima after applying NLoG at many scales.

What do laplacian filters look like?

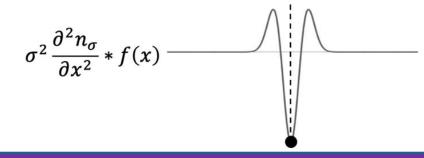
The size of the filter increases with increasing sigma.

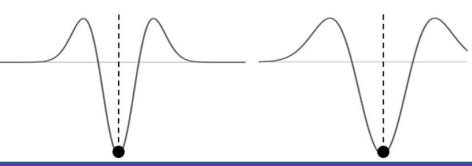
Meaning that larger blobs require a larger filter.

Q. Why is this a problem?

0	-1	0
-1	4	-1
0	-1	0

$$\begin{bmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & -2 & -1 & 0 \\ -1 & -2 & 16 & -2 & -1 \\ 0 & -1 & -2 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{bmatrix}$$





This is a very expensive algorithm!

Given an image I(x,y)

Convolve the image using NLoG at many scales σ

Find:

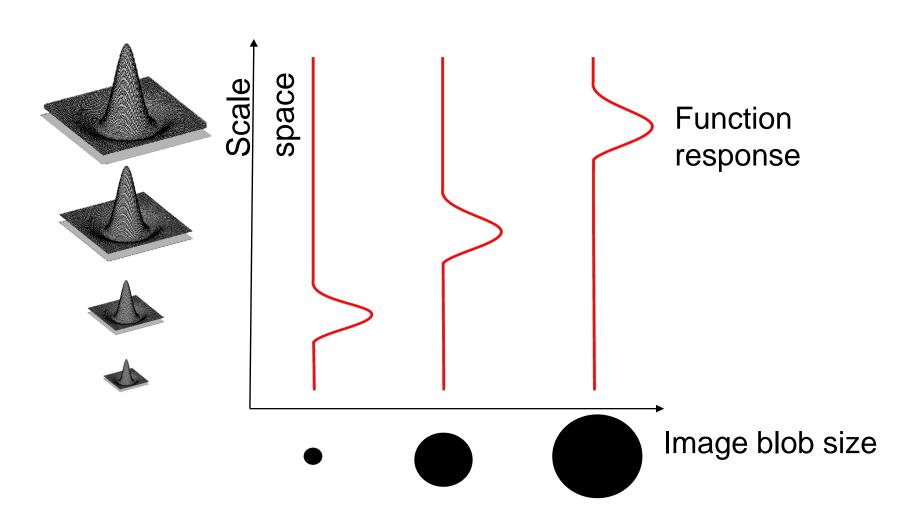
$$(x^*, y^*, \sigma^*) = \underset{(x,y,\sigma)}{\operatorname{arg max}} |\sigma^2 \nabla^2 n_{\sigma} * I(x,y)|$$

 (x^*, y^*) : Position of the blob

 σ^* : Size of the blob

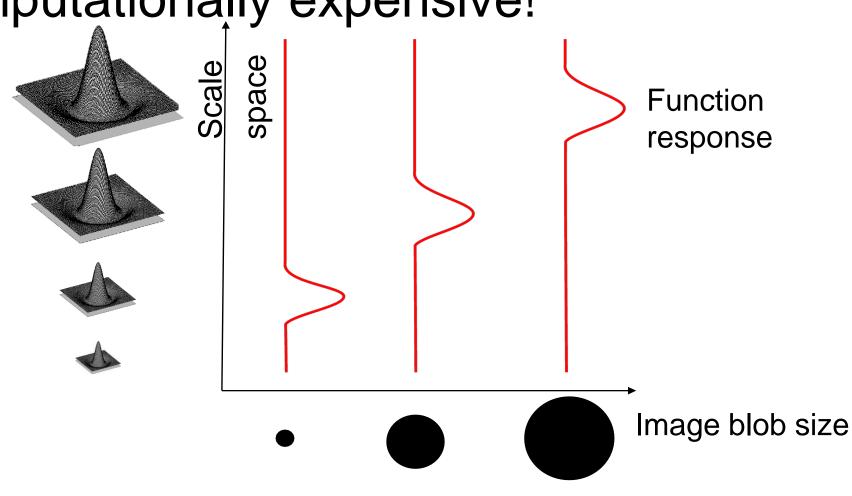
Laplacian of a Gaussian

Laplacian (2nd derivative) of Gaussian (LoG)



Problem: We have to convolve multiple filters of different sized laplacians to find all blobs. This is computationally expensive!

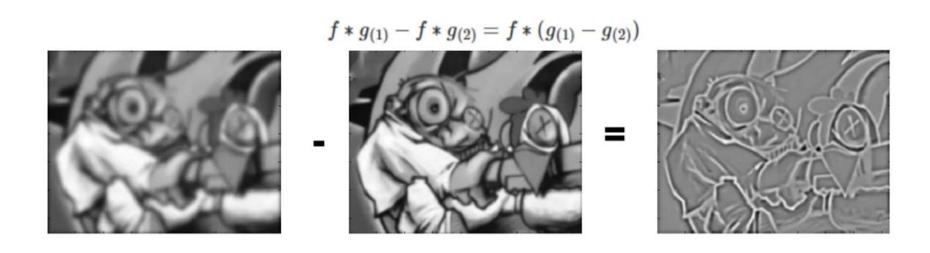
Laplacian (2nd derivative) of Gaussian (LoG)



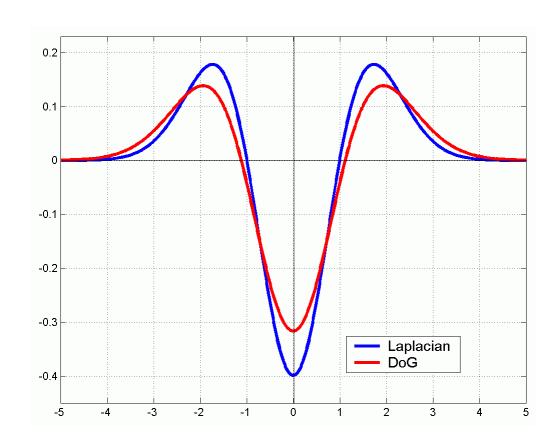
Today's agenda

- Scale invariant keypoint detection
- Local detectors (SIFT)
- Local descriptors (SIFT)
- Global descriptors (HoG)

The LoG is very similar to the difference of Gaussians (DoG)



LoG and DoG are very similar



Note: both filters are invariant to scale and rotation

Why does this approximation matter?

Original video

Blurred with a Gaussian kernel

Blurred with a different Gaussian kernel

Q. What happens if you subtract one blurred image from another?

Difference of Gaussians (DoG) example

Original video

DoG: $k_1 - k_2$

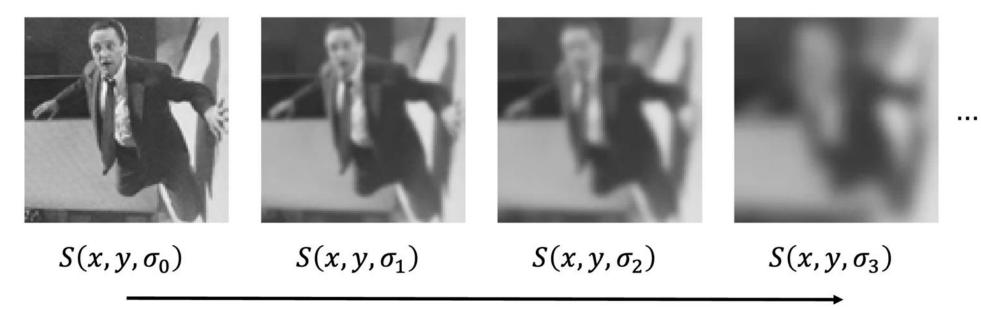
Blurred with a Gaussian kernel: k₁

DoG: $k_1 - k_3$

Blurred with a different Gaussian kernel: k₂

DoG: $k_1 - k_4$

Example in 2D

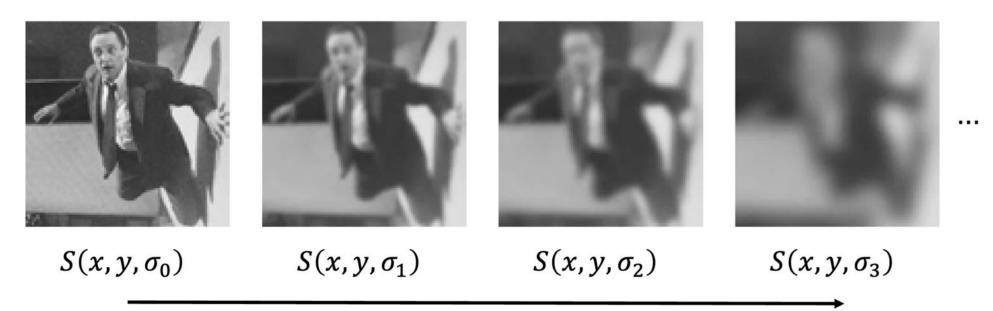


Increasing σ , Higher Scale, Lower Resolution

Scale Space: Stack of images created by filtering an image with Gaussians of different sigma values

$$S(x, y, \sigma) = n(x, y, \sigma) * I(x, y)$$

Example in 2D



Increasing σ , Higher Scale, Lower Resolution

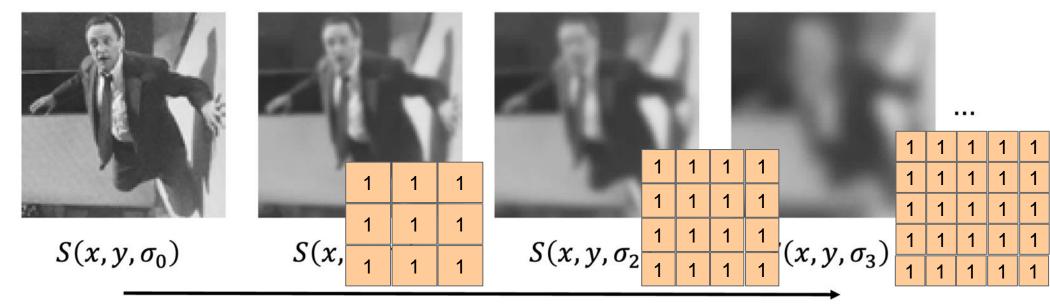
Selecting sigmas to generate the scale-space:

$$\sigma_k = \sigma_0 s^k \qquad k = 0,1,2,3,...$$

s: Constant multiplier

 σ_0 : Initial Scale

sigma represents size of a filter



Increasing σ , Higher Scale, Lower Resolution

Selecting sigmas to generate the scale-space:

$$\sigma_k = \sigma_0 s^k \qquad k = 0,1,2,3,...$$

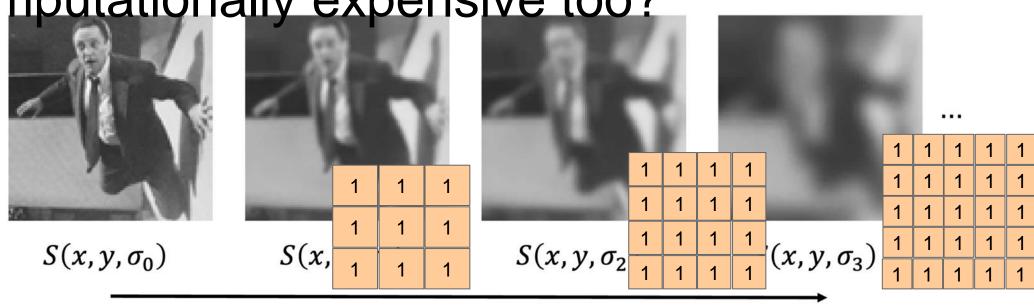
s: Constant multiplier

 σ_0 : Initial Scale

But wait, aren't we again using larger filter?

Doesn't this mean that using Gaussian filters is

computationally expensive too?



Increasing σ , Higher Scale, Lower Resolution

Selecting sigmas to generate the scale-space:

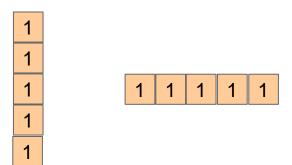
$$\sigma_k = \sigma_0 s^k \qquad k = 0,1,2,3,...$$

s: Constant multiplier

 σ_0 : Initial Scale

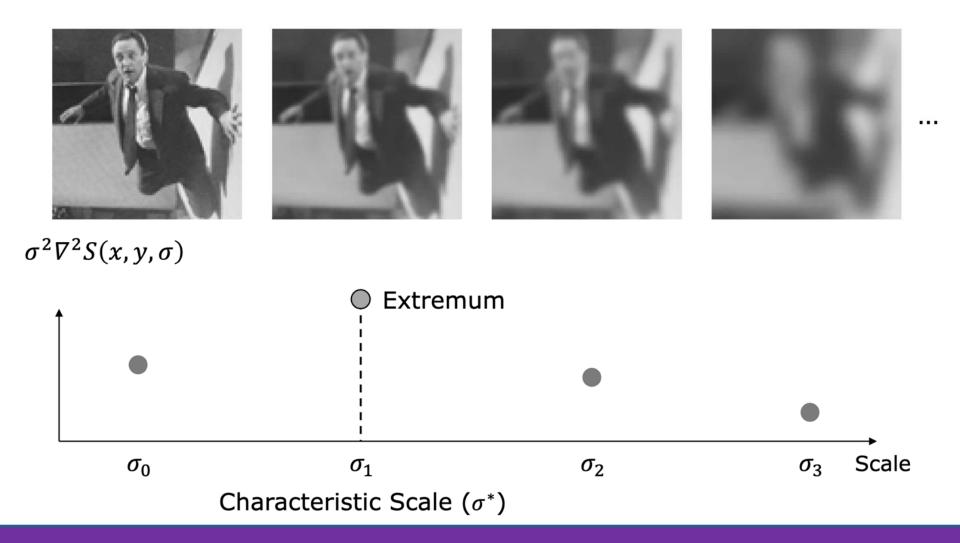
Remember from A1: Gaussian kernels are separable

Convolving with two 1D convolution filters = convolving with a large 2D filter

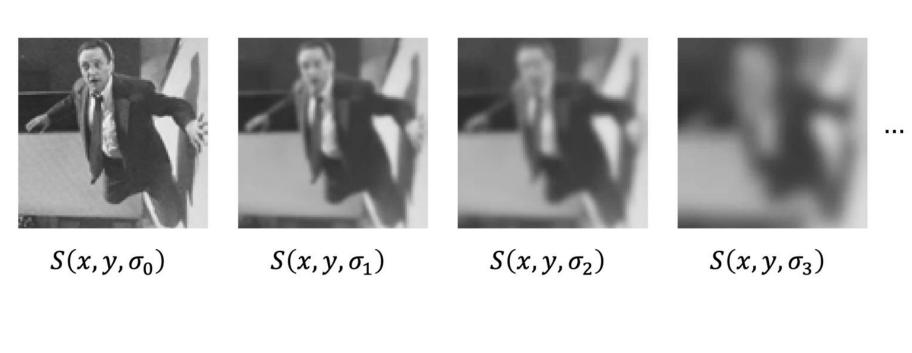


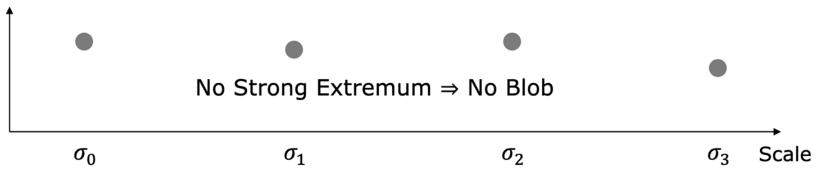
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

Example in 2D

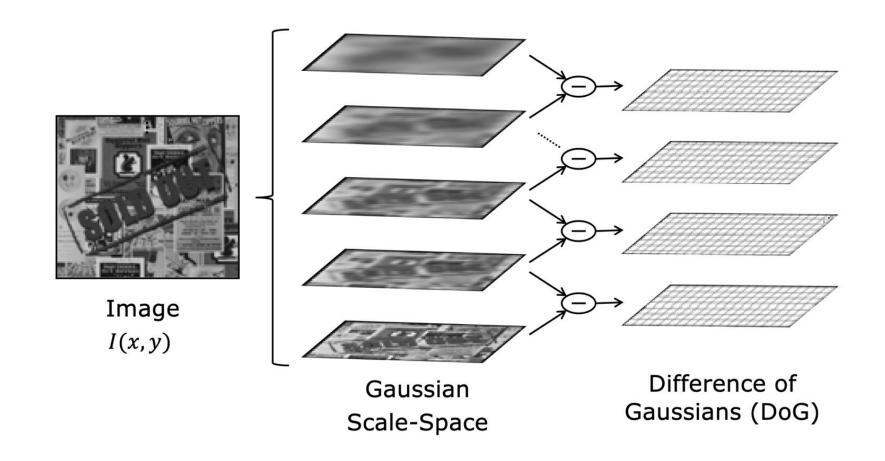


Example in 2D



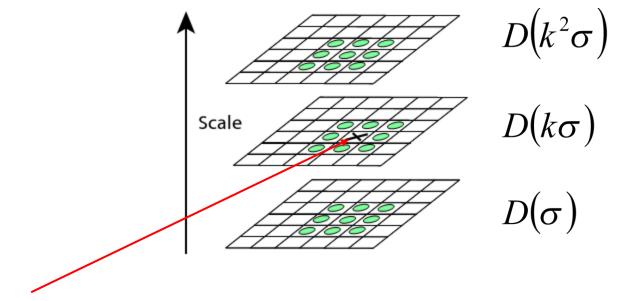


Overall SIFT detector algorithm



Extracting SIFT keypoints and scales

Choose the maxima within 3x3x3 neighborhood.

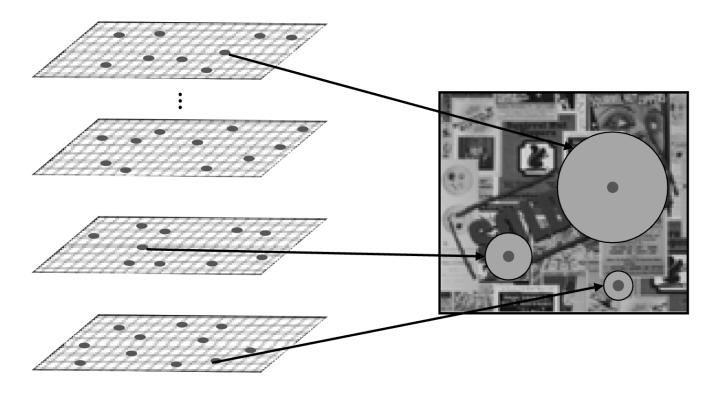


X is selected if it is larger or smaller than all 26 neighbors

Extracting SIFT keypoints and scales

 Sigma value tells you how big the blob is or how large an area around a keypoint is

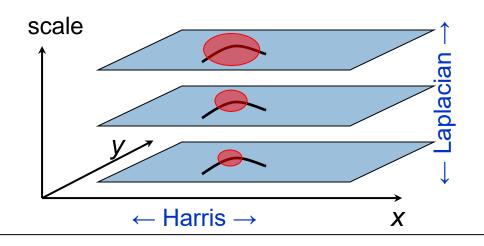
important.

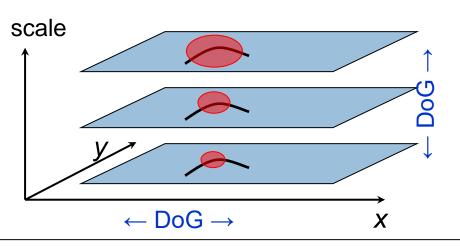


Scale Invariant Detectors

- Harris-Laplacian¹
 Find local maximum of:
 - Harris corner detector in space (image coordinates)
 - Laplacian in scale

Difference of Gaussians in space and scale





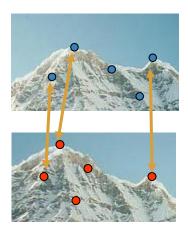
Scale Invariant Detectors

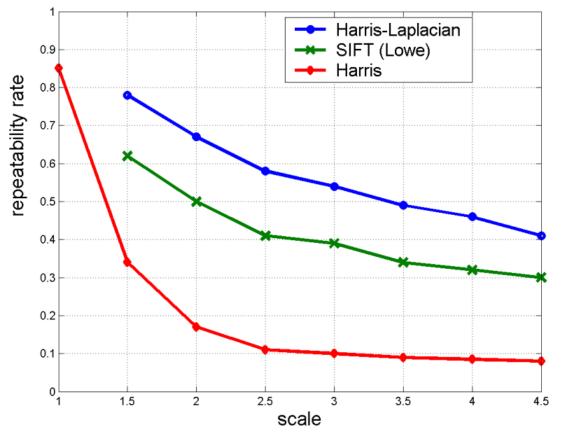
Experimental evaluation of detectors

w.r.t. scale change

Repeatability rate:

correspondences# possible correspondences





Scale Invariant Detection: Summary

- Given: two images of the same scene with a large scale difference between them
- Goal: find the same interest points independently in each image
- Solution: search for maxima of suitable functions in scale (DoG with different size) and in space (convolution over the image)

Methods:

- 1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over scale, Harris' measure of corner response over the image
- 2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space

Today's agenda

- Scale invariant keypoint detection
- Local detectors (SIFT)
- Local descriptors (SIFT)
- Global descriptors (HoG)

What's next?

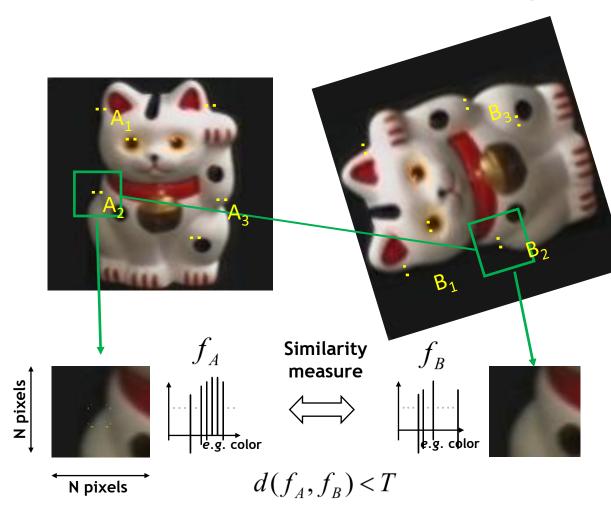
We now can detect keypoints at varying scales. But what can we do with those keypoints?

Things we would like to do:

- Search:
 - We would need to find similar key points in other images
- Panorama stitching
 - Match keypoints from one image to another.
- Etc...

For all such applications, we need a way of `describing` the keypoints.

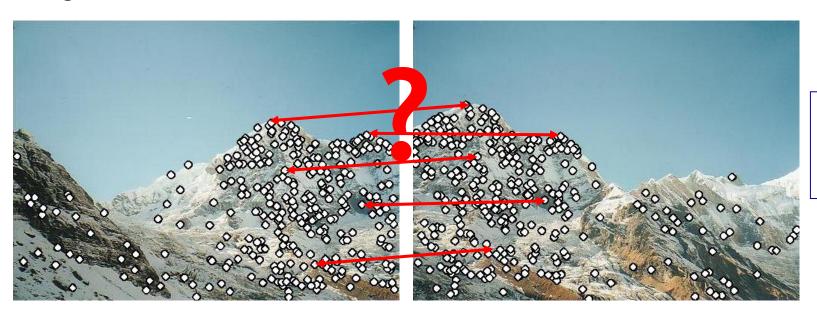
Why we care about knowing the keypoint patch size??



- 1. Find a set of distinctive key-points
- 2. Define a region/patch around each keypoint
- 3. Normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Local Descriptors are vectors

- We know how to detect points
- Next question: How to describe them for matching?
- Descriptor: Vector that summarizes the content of the keypoint neighborhood.

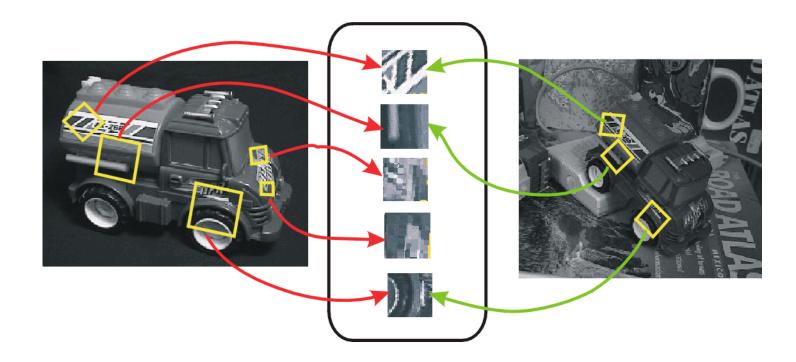


Point descriptor should be:

- 1. Invariant
- 2. Distinctive

Invariant Local Descriptors

Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

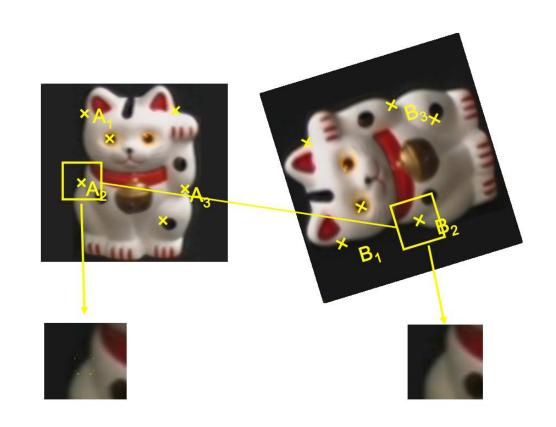


Rotation invariant descriptors

So far, we have figured out the scale of the keypoints.

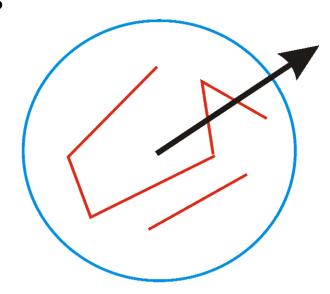
- So we can normalize them to be the same size.

Q. How do we re-orient the patches so that they are rotation invariant?



Constructing a rotation invariant descriptor

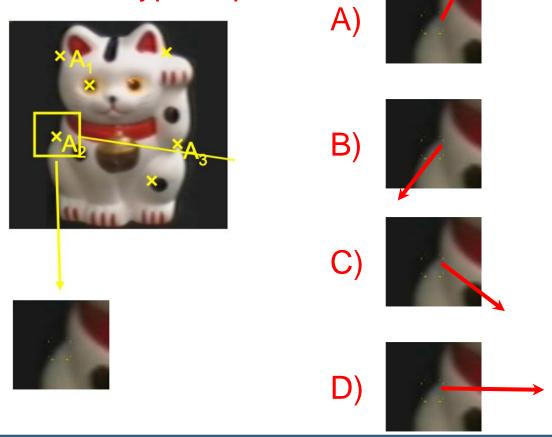
- We are given a keypoint and its scale from DoG
- We will select the direction of maximum gradient as the orientation for the keypoint
- We will describe all features relative to this orientation

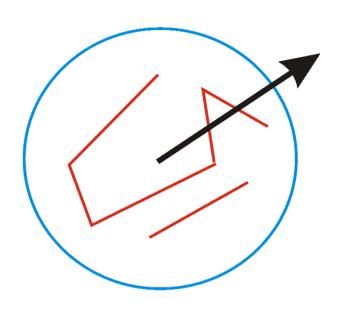


Visualizing what that looks like

Q. Which one is the direction of the maximum gradient

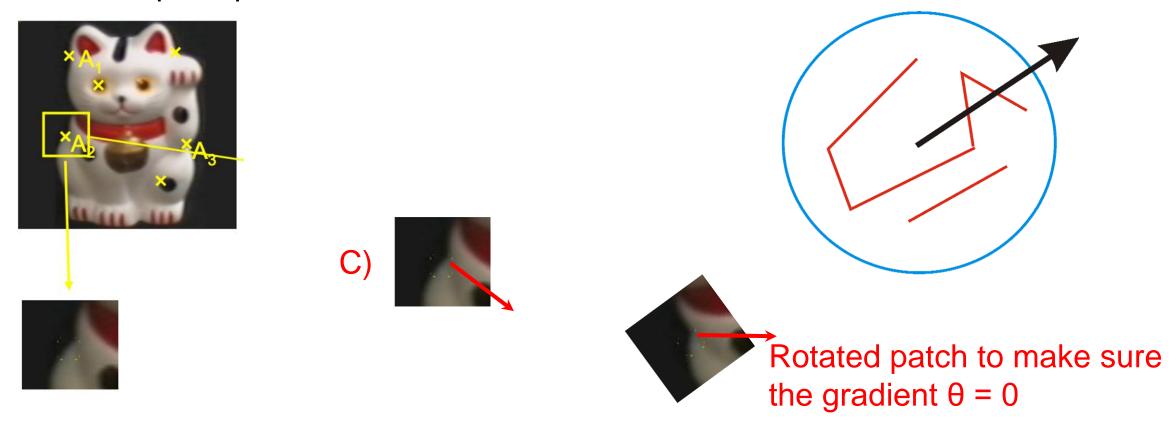
for this keypoint patch?





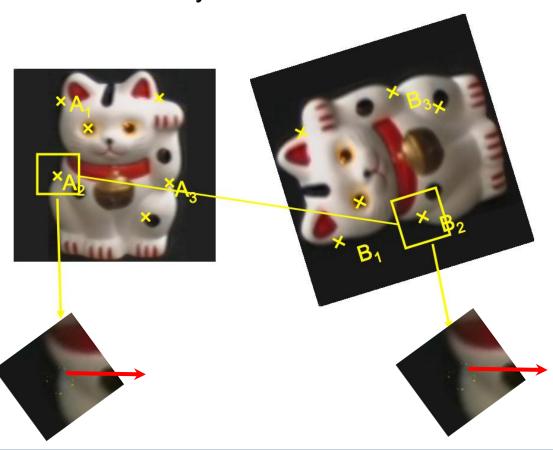
Visualizing what that looks like

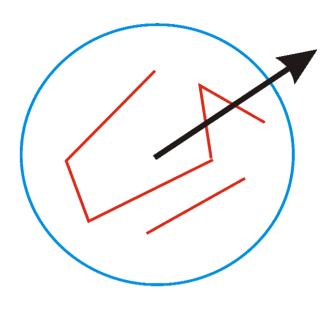
Q. Which one is the direction of the maximum gradient for this ketpoint patch?



Feature descriptors become rotation invariant

• If the keypoint appears rotated in another image, the features will be the same, because they're **relative** to the characteristic orientation

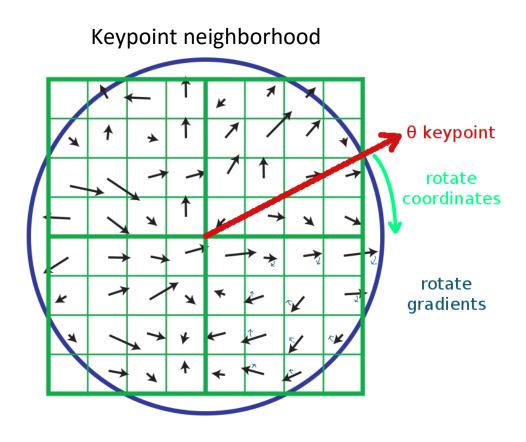




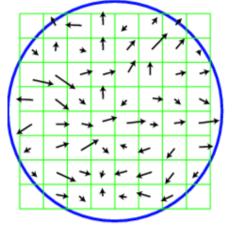
SIFT descriptor (Scale-Invariant Feature Transform)

Gradient-based descriptor to capture texture in the keypoint neighborhood

- 1.Blur the keypoint's image patch to remove noise
- 2.Calculate image **gradients** over the neighborhood patch.
- 3.To become rotation invariant, rotate the gradients by $-\theta$ (- maximum direction)
 - Now we've cancelled out rotation and have gradients expressed at locations relative to maximum direction θ
- 4. Generate a descriptor

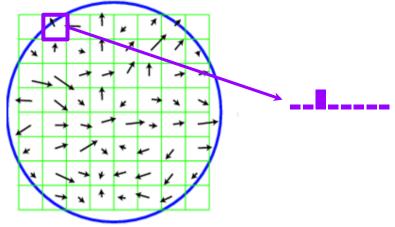


Keypoint neighborhood



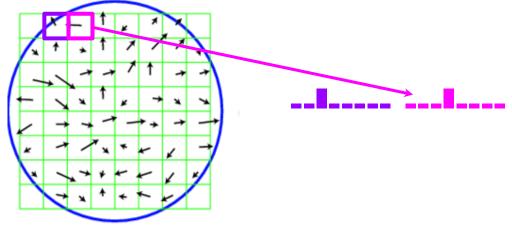
Q. How do we turn this into a vector?

Keypoint neighborhood



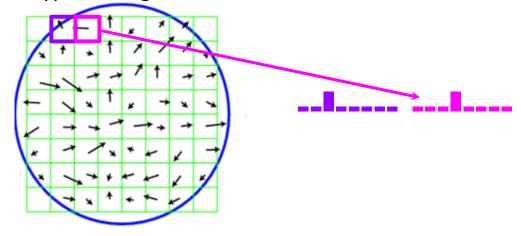
- We can turn every pixel into a histogram
- Histogram contains 8 buckets, all of them zero except for one.
- Make the bucket of the direction of the gradient equal to 1

Keypoint neighborhood



- Do this for every single pixel
- Q. What would the size of the keypoint vector be?

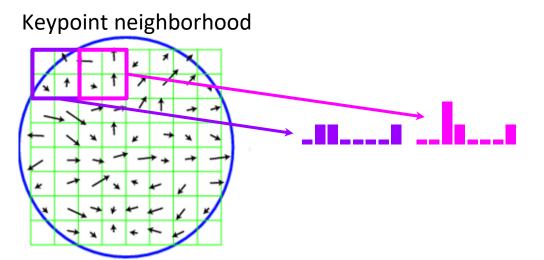
Keypoint neighborhood



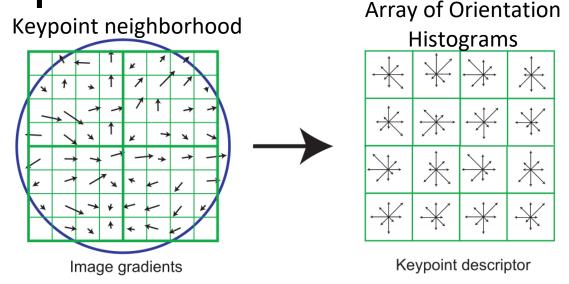
Do this for every single pixel

Q. Why might this be a bad strategy? What could go wrong?

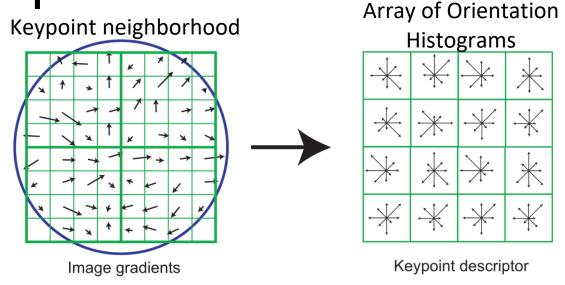
Hint: think about how matching might fail



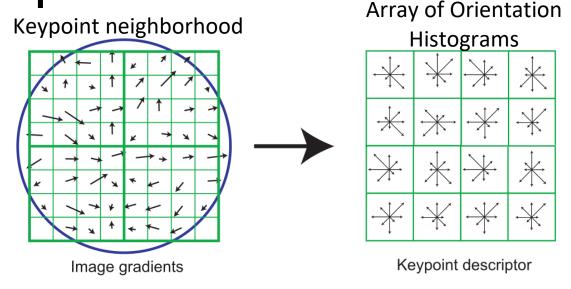
- Solution: divide keypoint up into 4x4 "cells"
- Calculate a histogram per cell and sum them together



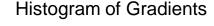
- Each cell gives us a histogram vector. We have a total of 4x4 vectors
- Calculate the overall gradients in each patch into their local orientated histograms
 - Also, scale down gradient contributions for gradients far from the center
 - Each histogram is quantized into 8 directions (each 45 degrees)

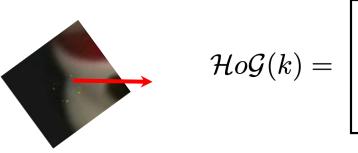


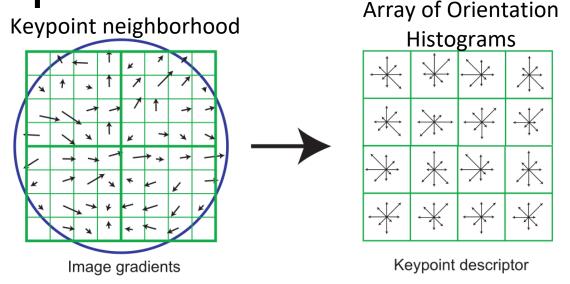
• Q. What is the size of the descriptor?



- 8 orientation bins per histogram,
- 4x4 histogram vectors,
- total is $8 \times 4 \times 4 = 128$ numbers.
- So a SIFT descriptor is a length 128 vector







- SIFT descriptor is invariant to rotation (because we rotated the patch) and scale (because we worked with the scaled image from DoG)
- We can compare each vector from image A to each vector from image B to find matching keypoints!
 - O How do we match distances?

SIFT descriptor distances

Given keypoints k₁ and k₂, we can calculate their HoG features:

 $HoG(k_1)$

 $HoG(k_2)$

We can calculate their matching score as:

$$d_{\mathcal{H}o\mathcal{G}}(k_1, k_2) = \sqrt{\sum_{i} (\mathcal{H}o\mathcal{G}(k_1)_i - \mathcal{H}o\mathcal{G}(k_2)_i)^2}$$

Find nearest neighbor for each keypoint in image A in image B

Given keypoints k₁ and k₂, we can calculate their HoG features:

 $HoG(k_1)$

 $HoG(k_2)$

We can calculate their matching score as:

$$d_{\mathcal{H}o\mathcal{G}}(k_1, k_2) = \sqrt{\sum_{i} (\mathcal{H}o\mathcal{G}(k_1)_i - \mathcal{H}o\mathcal{G}(k_2)_i)^2}$$

Next time

Local and Global descriptors