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Keypoints and Corners

Lecture 6

1Linda Shapiro  Oct 14, 2025



Raymond Yu April 15, 2025Lecture 6 -

Administrative
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A1 due date extension ******

- You can use up to 2 late days
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Administrative
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- Recitation this Friday

- Geometric transformations

Linda Shapiro  Oct 9, 2025Linda Shapiro  Oct 14, 2025



Raymond Yu April 15, 2025Lecture 6 -

So far: Sobel 

Filter

Step 1: Calculate the 

gradient magnitude at 

every pixel location.

Step 2: Threshold the 

values to generate a 

binary image
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So far: challenges multiple disconnected edges

Y-Derivative of Gaussian Gradient Magnitude
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So far: Canny edge detector
Use Sobel filters to find line estimates

x-direction y-direction
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So far: Non-maximum suppression

7

[n2, m2] [n, m]

[n1, m1]
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So far: Hysteresis thresholding

Strong and weak edges

Source: S. Seitz

strong edge pixel weak but connected 
edge pixels

strong edge pixel
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So far: The Hough transform

● So: one point (xi,yi) gives a line in (d,) space.

● Or, we can use multiple s to generate several possible lines through that 

point

● Iterate over s to vote for buckets in (d,)-space 

9

d


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● RANSAC

● Local Invariant Features

● Harris Corner Detector

Today’s agenda
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● RANSAC

● Local Invariant Features

● Harris Corner Detector

Today’s agenda
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Is Hough transform inefficient?

● The version taught in the previous course checked ALL pairs of edge 

points. It’s not feasible to check all pairs of points to calculate possible 

lines. That Hough Transform algorithm runs in O(N2).

● Our Hough Transform runs in O(N*number of thetas)

● Voting is a general technique where we let the each point vote for all 

models that are compatible with it.

○ Iterate through features, cast votes for parameters.

○ Filter parameters that receive a lot of votes.

● Problem: Noisy points will cast votes too, but typically their votes should 

be inconsistent with the majority of “good” edge points.

13Linda Shapiro  Oct 14, 2025
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Difficulty of voting for lines

● Noisy edge pixels cast inconsistent 

votes:

○ Can we identify false edge pixels  

without iterating?

● Canny can predict false positive 

edge points:

○ Can we eliminate them?

14Linda Shapiro  Oct 14, 2025
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Intuition
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Intuition
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RANSAC [Fischler & Bolles 1981]

● RANdom SAmple Consensus

● Approach: we want to avoid the impact of noisy outliers, so let’s look for 

“inliers”, and use only those.

● Intuition: if an outlier is chosen to compute the parameters (a,b) of a line, 

then the resulting line won’t have much support from rest of the points.

17Linda Shapiro  Oct 14, 2025

Bob Bolles at SRI

RANSAC has 37,314 citations
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RANSAC Line Fitting Example

● Task: Estimate the best line

○ Let’s randomly select a subset of points and calculate a line

18Linda Shapiro  Oct 14, 2025
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RANSAC Line Fitting Example

● Task: Estimate the best line

○ Let’s select only 2 points as an example

Sample two points

19Linda Shapiro  Oct 14, 2025
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RANSAC Line Fitting Example

● Task: Estimate the best line

○ Calculate the line parameters

Fit a line to them

20Linda Shapiro  Oct 14, 2025
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RANSAC Line Fitting Example

● Task: Estimate the best line

○ Edges can be noisy. To account for this, let’s say that the line is 

somewhere between the dashed lines

21Linda Shapiro  Oct 14, 2025
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RANSAC Line Fitting Example

● Task: Estimate the best line

○ Calculate the number of points that lie within the dashed lines

“7 inlier points”

22Linda Shapiro  Oct 14, 2025
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How do we calculate the inliers? 

We use the distance from the point to the line

“7 inlier points”

23

(x0, y0)

y = ax + b

d

Linda Shapiro  Oct 14, 2025
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RANSAC Line Fitting Example

● Task: Estimate the best line

○ Repeat with two other randomly selected points

24Linda Shapiro  Oct 14, 2025
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This is a better fit!!!

RANSAC Line Fitting Example

● Task: Estimate the best line

○ This time we have 11 inliers

“11 inlier points”

25Linda Shapiro  Oct 14, 2025
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:

Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters from seed group

3. Find inliers for these parameters

4. If the number of inliers is larger than the best so far, save these 
parameters and the inliers

If number of inliers in the best line is < m, return no line

Else re-calculate the final parameters with all the inliers

26Linda Shapiro  Oct 14, 2025
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:

Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group

3. Find inliers for these parameters

4. If the number of inliers is larger than the best so far, save these 
parameters and the inliers

If number of inliers in the best line is < m, return no line

Else re-calculate the final parameters with all the inliers

27Linda Shapiro  Oct 14, 2025
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:

Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group

3. Find inliers for these parameters

4. If the number of inliers is larger than the best so far, save these 
parameters and the inliers

If number of inliers in the best line is < m, return no line

Else re-calculate the final parameters with all the inliers
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:

Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group

3. Find inliers for these parameters

4. If the number of inliers is larger than the best so far, save these 
parameters and the inliers

If number of inliers in the best line is < m, return no line

Else re-calculate the final parameters with all the inliers

29Linda Shapiro  Oct 14, 2025



Raymond Yu April 15, 2025Lecture 6 -

The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:

Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group

3. Find inliers for these parameters

4. If the number of inliers is larger than the best so far, save these 
parameters and the inliers

If number of inliers in the best line is < m, return no line

Else re-calculate the final parameters with all the inliers

30Linda Shapiro  Oct 14, 2025
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:

Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group

3. Find inliers for these parameters

4. If the number of inliers is larger than the best so far, save these 
parameters and the inliers

If number of inliers in the best line is < m, return no line

Else re-calculate the final parameters with all the inliers
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Final step: Refining the parameters
●The best parameters were computed using a seed set of n

points. 
●We use these points to find the inliers.

●We can improve the parameters by estimating over all inliers 
(e.g. with standard least-squares minimization).

●But this may change the inliers, so repeat this last step until 
there is no change in inliers.

32Linda Shapiro  Oct 14, 2025
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How do you calculate the line from many 

points?

(xi, yi) is a set of points we are going to use to estimate (a, b)

Least squares method:

33Linda Shapiro  Oct 14, 2025
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:

Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group

3. Find inliers for these parameters

4. If the number of inliers is larger than the best so far, save these 
parameters and the inliers

If number of inliers in the best line is < m, return no line

Else re-calculate the final parameters with all the inliers
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1. How many points to sample in the seed set?

a. We used 2 in the example above

The hyperparameters

35Linda Shapiro  Oct 14, 2025
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1. How many points to sample in the seed set?

a. We used 2 in the example above

2. How many times should we repeat?

a. More repetitions increase computation but increase chances of finding 

best line

The hyperparameters

36Linda Shapiro  Oct 14, 2025
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1. How many points to sample in the seed set?

a. We used 2 in the example above

2. How many times should we repeat?

a. More repetitions increase computation but increase chances of finding 

best line

3. The threshold for the dashed lines

a. Larger the gap between dashed lines, the more false positive inliers

b. Smaller the gap, the more false negatives outliers

The hyperparameters
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1. How many points to sample in the seed set?

a. We used 2 in the example above

2. How many times should we repeat?

a. More repetitions increase computation but increase chances of finding 

best line

3. The threshold for the dashed lines

a. Larger the gap between dashed lines, the more false positive inliers

b. Smaller the gap, the more false negatives outliers

4. The minimum number of inliers to confidently claim there is a line

a. Smaller the number, the more false negative lines

b. Larger the number, the fewer lines we will find

The hyperparameters
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RANSAC: Pros and Cons

● Pros:

○ General method suited for a wide range of parameter fitting problems

○ Easy to implement and easy to calculate its failure rate

● Cons:

○ Only handles a moderate percentage of outliers without cost blowing up

○ Many real problems have high rate of outliers (but sometimes selective 

choice of random subsets can help)

● A voting strategy, The Hough transform, can handle high percentage of 

outliers

41Linda Shapiro  Oct 14, 2025
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Today’s agenda

42

● RANSAC

● Local Invariant Features

● Harris Corner Detector
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Image matching: a challenging problem

Template

43

Q1. Will cross-correlation 
work?

Q2. Can we use match 
the lines?

Linda Shapiro  Oct 14, 2025
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Q. How would you build a system that can 

detect this movie in the pile?

44Linda Shapiro  Oct 14, 2025
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by Diva Sian

by swashford

Challenge: Perspective / viewpoint changes

45Linda Shapiro  Oct 14, 2025

http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/swashford/428567562/
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Challenge: partial observability

by scgbtby Diva Sian

46Linda Shapiro  Oct 14, 2025

http://www.flickr.com/photos/scpgt/328570837/
http://www.flickr.com/photos/diaphanus/136915456/
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Challenge even for us

NASA Mars Rover images

47Linda Shapiro  Oct 14, 2025
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Answer Below (Look for tiny colored squares)

NASA Mars Rover images with SIFT feature matches
(Figure by Noah Snavely)

48Linda Shapiro  Oct 14, 2025
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- Find matching patches

- Check to make sure enough patches

Intuition behind how to match images

49Linda Shapiro  Oct 14, 2025
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Intuition behind how to match images

- Find matching patches

- Check to make sure enough patches

What do we need?

- We need to identify patches

- We need to learn to a way to describe each patch

- We need an algorithm to match the description between two patches

50Linda Shapiro  Oct 14, 2025
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Motivation for using local features

● Matching large patches have major 

challenges (mentioned in previous 

slides)

● Instead, let’s describe and match only 

local image patches

● Smaller, local patches are more likely to 

find an object even if it is partially 

occluded (covered)

○ Articulation

○ Intra-category variations 

51Linda Shapiro  Oct 14, 2025
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General approach for search
N

 p
ix

e
ls

N pixels

Similarity 

measure

e.g. color e.g. color

1. Find a set of distinctive 

keypoints

3. Normalize the region 

content  

2. Define a region/patch

around each keypoint   

4. Compute a local descriptor

from the normalized region

5. Match local descriptors

A1

A2 A3

52Linda Shapiro  Oct 14, 2025
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Common Requirements

●Problem 1: How should we choose the keypoints?

○We want to detect the same points independently in both images

No chance to match if the keypoints

aren’t the same 

We need a repeatable detector!

53Linda Shapiro  Oct 14, 2025
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Common Requirements

●Problem 1: How should we choose the keypoints?

○Detect the same point independently in both images

●Problem 2: How should we describe each patch?

○For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor!

?

54Linda Shapiro  Oct 14, 2025



Raymond Yu April 15, 2025Lecture 6 -

Descriptions should be invariant to rotation and 

translation

55Linda Shapiro  Oct 14, 2025



Raymond Yu April 15, 2025Lecture 6 -

Descriptions should be invariant to photometric 

transformations

● Often modeled as a linear transformation:

○ Scaling + Offset
Slide credit: Tinne

Tuytelaars

56Linda Shapiro  Oct 14, 2025
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Levels of geometric transformations

57Linda Shapiro  Oct 14, 2025
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Requirements for Local Features

● Patch selection needs to be repeatable and accurate

○ Invariant to translation, rotation, scale changes

○ Robust to out-of-plane (≈affine) transformations

○ Robust to lighting variations, noise, blur, quantization

● Locality: Features are local, therefore robust to occlusion and clutter.

● Quantity: We need a sufficient number of regions to cover the object.

● Distinctiveness: The regions should contain “unique” structure.

● Efficiency: Close to real-time performance.

58Linda Shapiro  Oct 14, 2025
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What are good patches?

Q. Is this a good patch for 

image matching?

59Linda Shapiro  Oct 14, 2025
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What are good patches?

Q. What about this one?

60Linda Shapiro  Oct 14, 2025
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What are good patches?

Q. Let’s try another one?

61Linda Shapiro  Oct 14, 2025
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Many existing feature detectors available

● Hessian & Harris [Beaudet ‘78], [Harris ‘88]

● Laplacian, DoG [Lindeberg ‘98], [Lowe ‘99]

● Harris-/Hessian-Laplace [Mikolajczyk & Schmid ‘01]

● Harris-/Hessian-Affine [Mikolajczyk & Schmid ‘04]

● EBR and IBR [Tuytelaars & Van Gool ‘04]

● MSER [Matas ‘02]

● Salient Regions [Kadir & Brady ‘01] 

● Neural networks [Krichevsky ‘12]

● Those detectors have become a basic building block for many applications 
in Computer Vision.

62Linda Shapiro  Oct 14, 2025
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Today’s agenda
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● Local Invariant Features

● Harris Corner Detector

Linda Shapiro  Oct 14, 2025
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Keypoint Localization

● Goals: 

○ Repeatable detection

○ Precise localization

○ Interesting content

intuition⇒ Look for 2D signal changes (LSI systems strike again)

64Linda Shapiro  Oct 14, 2025
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Finding Corners

How do we find corners using LSI systems? 

○ The image gradient around a corner has two or more dominant 

directions

Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“
Proceedings of the 4th Alvey Vision Conference, 1988.

65Linda Shapiro  Oct 14, 2025

http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf
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Corners are distinctive key-points

○We should easily recognize the corner point by looking through a small 
image patch (locality)

○Shifting the window in any direction should give a large change in 
intensity (good localization)

“edge”:

no change along 

the edge direction

“corner”:

significant change 

in all directions

“flat” region:

no change in 

all directions
Slide credit: Alyosha Efros
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Flat patches have small image gradients

Small

Small
Flat
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Edges have high gradient in one direction

Small

Large
Edge

Small

Small
Flat
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Corners versus edges

Large

Large
Corner

Small

Large
Edge

Small

Small
Flat
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Generalizing to corners in any direction

??

??
Corner

70Linda Shapiro  Oct 14, 2025
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Harris Detector Formulation

● Find patches that result in large change of pixel values when shifted in any
direction.

● When we shift by [u, v], the intensity change at the center pixel is:

“corner”:

significant change 

in all directions

71Linda Shapiro  Oct 14, 2025
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Harris Detector Formulation

●

or

Gaussian1 in window, 0 

outside

Slide credit: Rick Szeliski

Shifted 
intensity

Intensity

Intensity 
change

Window 
function

Sum over 
window
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Change in intensity function

We can rewrite the shifted intensity using Taylor’s expansion (truncated):

Substituting it back into E(u, v):

73Linda Shapiro  Oct 14, 2025



Raymond Yu April 15, 2025Lecture 6 -

Re-writing E:
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Re-writing E:
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Re-writing E:
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Re-writing E:
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Re-writing E:

78

where:

Linda Shapiro  Oct 14, 2025
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Simplifying M for a second:

79

where:

Linda Shapiro  Oct 14, 2025
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Change in intensity in a patch

● So, using Taylor’s expansion, the change in intensity in an image patch:

where M is a 2×2 matrix computed from image derivatives:

Sum over image region – the area we are 
checking for corner

Gradient with 

respect to x, 

times gradient 

with respect to y
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Re-writing E:

81

Does anyone know what this 

part of the equation is?

Linda Shapiro  Oct 14, 2025



Raymond Yu April 15, 2025Lecture 6 -

It’s the equation of an ellipse

83

v

u

Linda Shapiro  Oct 14, 2025
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Remember what we said about the gradients 

for these edges

If only    (opposite picture, vertical edge) , 

84

Large

Small

Large
Edge

Q. What is the matrix M going 

to look like?

Linda Shapiro  Oct 14, 2025



Raymond Yu April 15, 2025Lecture 6 -

Remember what we said about the gradients 

for these edges

If only    , 

85

Large

Small

Large
Edge

Q. What is the matrix M going 

to look like?

Large Small

SmallSmall
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Remember what we said about the gradients 

for these corners

If only    , Q. what kind of ellipse would you 

expect to see?

86

Large

Small

Large
Edge

Large Small

SmallSmall
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Remember what we said about the gradients 

for these corners

If only    , Q. what kind of ellipse would you 

expect to see?

87

Large

Small

Large
Edge

Large Small

SmallSmall
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Remember what we said about the gradients 

for these corners

If only    , Q. what kind of ellipse would you 

expect to see?

88

Large

Small

Large
Edge

Small Small

LargeSmall
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Remember what we said about the gradients 

for these corners

If only    , Q. what kind of ellipse would you 

expect to see?

89

Large

Small

Large
Edge

Small Small

LargeSmall
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Remember what we said about the gradients 

for these corners

90

Large

Large
Corner

??? ???

??????

Q. What is the matrix M going 

to look like?
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Remember what we said about the gradients 

for these corners

91

Large

Large
Corner

Large small

Largesmall

Q. What is the matrix M going 

to look like?
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Q. What is the ellipse going to 

look like?

Remember what we said about the gradients 

for these corners

92

Large

Large
Corner

Large small

Largesmall
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But what about these ones?

93

Q. What would the matrix and ellipses look like?

??

??
Corner

Hint:

Linda Shapiro  Oct 14, 2025
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What Does This Matrix Reveal?

●

94Linda Shapiro  Oct 14, 2025
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M defines an ellipse in the direction (u, v)

Direction of the 

slowest change

Direction of the 

fastest change

(λmax)
-1/2

(λmin)
-1/2

(Eigenvalue decomposition)

• A rotated corner would 
produce the same 
eigenvalues as its non-
rotated version.
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Interpreting the Eigenvalues
●Classification of image points using eigenvalues of M:

λ1

“Corner”
λ1 and λ2 are large,  λ1 ~ λ2;
E increases in all directions

λ1 and λ2 are small;
E is almost constant in 
all directions “Edge” 

λ1 >> λ2

“Edge” 
λ2 >> λ1

“Flat” 
region

Slide credit: Kristen Grauman

λ2
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But calculating eigenvalues is expensive. 

Solution: Corner Response Function

● Fast approximation

○ Avoid computing the
eigenvalues

○ α: constant
(0.04 to 0.06)

λ2

“Corner”
θ > 0

“Edge” 
θ < 0

“Edge” 
θ < 0

“Flat” 
region

λ1

Slide credit: Kristen Grauman97Linda Shapiro  Oct 14, 2025
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Window Function w(x,y)

● Option 1: uniform window
○ Sum over square window

○ Problem: not rotation invariant

● Option 2: Smooth with Gaussian
○ Gaussian already performs weighted sum

○ Result is rotation invariant

1 in window, 0 outside

Gaussi

an

98Linda Shapiro  Oct 14, 2025
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Summary: Harris Detector [Harris88]

● Compute second moment matrix

(autocorrelation matrix) 1. Image 

derivatives

Ix Iy

2. Square of    

derivatives

Ix
2 Iy

2 IxIy

3. Gaussian 

filter g(σI) g(Ix
2) g(Iy

2) g(IxIy)

R

4. Cornerness function – two strong eigenvalues

5. Perform non-maximum suppression

99Linda Shapiro  Oct 14, 2025
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Harris Detector: Example

● Input Image

100Linda Shapiro  Oct 14, 2025
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● Input Image

● Compute corner 

response function 

θ

Harris Detector: Example

101Linda Shapiro  Oct 14, 2025
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Harris Detector: Example

● Input Image

● Compute corner 

response function θ

● Take only the local 

maxima of θ,

where θ > threshold

102Linda Shapiro  Oct 14, 2025
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Harris Detector: Example

● Input Image

● Compute corner 

response function θ

● Take only the local 

maxima of θ,

where θ > threshold
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Harris Detector – Responses [Harris88]

Effect: A very precise 

corner detector.
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Harris Detector – Responses [Harris88]

Slide credit: Krystian Mikolajczyk105Linda Shapiro  Oct 14, 2025
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Harris Detector – Responses [Harris88]

● Results are great for finding correspondences matches between images

Slide credit: Kristen Grauman106
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Summary

107

● Local Invariant Features

● Harris Corner Detector
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Harris Detector: Properties

● Translation invariance?

108
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Harris Detector: Properties

● Translation invariance

● Rotation invariance?

Ellipse rotates but its shape (i.e. 

eigenvalues) remains the same

It is invariant to image rotation

109Linda Shapiro  Oct 14, 2025
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Harris Detector: Properties

● Translation invariance

● Rotation invariance

● Scale invariance?

Not invariant to image scale!

All points will be 

classified as edges!

Corner

Slide credit: Kristen Grauman110Linda Shapiro  Oct 14, 2025
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Next time

Detectors and Descriptors
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