Lecture 6

Keypoints and Corners




Administrative

Al due date extension ******
- You can use up to 2 late days
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Administrative

- Recitation this Friday
-  Geometric transformations
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So far: Sobel
Filter

Step 1. Calculate the
gradient magnitude at
every pixel location.

Step 2: Threshold the
values to generate a
binary image
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So far: challenges multiple disconnected edges

Gradient Magnitude
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So far: Canny edge detector

Use Sobel filters to find line estimates
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So far: Non-maximum suppression
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So far: Hysteresis thresholding
Strong and weak edges

strong edge pixel weak but connected

/ edge pixels
/ strong edge pixel
Source: S. Seitz
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So far: The Hough transform

e S0: one point (x,Yy;) gives a line in (d,0) space.

e Or, we can use multiple 0s to generate several possible lines through that
point

e Iterate over Os to vote for buckets in (d,0)-space
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Today's agenda

e RANSAC
e Local Invariant Features
e Harris Corner Detector
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Today's agenda

e RANSAC
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Is Hough transform inefficient?

e The version taught in the previous course checked ALL pairs of edge
points. It's not feasible to check all pairs of points to calculate possible
lines. That Hough Transform algorithm runs in O(N?).

e Our Hough Transform runs in O(N*number of thetas)

e \/oting Is a general technique where we let the each point vote for all
models that are compatible with it.

o Iterate through features, cast votes for parameters.
o Filter parameters that receive a lot of votes.

e Problem: Noisy points will cast votes too, but typically their votes should
be inconsistent with the majority of “good” edge points.
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Difficulty of voting for lines

e Noisy edge pixels cast inconsistent -
votes: 3

o Can we identify false edge pixels
without iterating?

e Canny can predict false positive
edge points:
o Can we eliminate them?
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Intuition
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Intuition
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RAN SAC [Fischler & Bolles 1981]

Bob Bolles at SRI
RANSAC has 37,314 citations

e RANdom SAmple Consensus

e Approach: we want to avoid the impact of noisy outliers, so let’s look for
“inliers”, and use only those.

e Intuition: if an outlier is chosen to compute the parameters (a,b) of a line,
then the resulting line won’t have much support from rest of the points.
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RANSAC Line Fitting Example

e Task: Estimate the best line
o Let’s randomly select a subset of points and calculate a line
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RANSAC Line Fitting Example

e Task: Estimate the best line
o Let’'s select only 2 points as an example
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RANSAC Line Fitting Example

e Task: Estimate the best line
o Calculate the line parameters

Fit a line to them
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RANSAC Line Fitting Example

e Task: Estimate the best line
o Edges can be noisy. To account for this, let’s say that the line is

-

somewhere between the dashed lines o .
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RANSAC Line Fitting Example

e Task: Estimate the best line
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How do we calculate the inliers?
We use the distance from the point to the line

y=ax+b
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RANSAC Line Fitting Example

e Task: Estimate the best line
o Repeat with two other randomly selected points’
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RANSAC Line Fitting Example

e Task: Estimate the best line
o This time we have 11 inliers

~"“11 inlier points”

This is a better fit!!!
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The RANSAC algOrlthm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model
estimate (e.g., a group of edge points)
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The RANSAC algOrlthm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group
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The RANSAC algOrlthm [Fischler & Bolles 1981]

RANSAC loop:

Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group
3. Find inliers for these parameters
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The RANSAC algOrlthm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group
Find inliers for these parameters

4. If the number of inliers is larger than the best so far, save these
parameters and the inliers
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The RANSAC a|g0rlthm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group
Find inliers for these parameters

4. If the number of inliers is larger than the best so far, save these
parameters and the inliers

If number of inliers in the best line is < m, return no line
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The RANSAC algOrlthm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group
Find inliers for these parameters

4. If the number of inliers is larger than the best so far, save these
parameters and the inliers

If number of inliers in the best line is < m, return no line
Else re-calculate the final parameters with all the inliers

Linda Shapiro Oct 14, 2025




Final step: Refining the parameters

e The best parameters were computed using a seed set of »
points.
e \We use these points to find the inliers.

e \We can improve the parameters by estimating over all inliers
(e.g. with standard least-squares minimization).

e But this may change the inliers, so repeat this last step until
there is no change In inliers.

o

o o
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How do you calculate the line from many
points?

(xi, ¥;) IS a set of points we are going to use to estimate (a, b)

Least squares method.:

(Qoi®i—Z)(Q_; % —9)
(222 — Z)°

b=y, —ax;

o
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The RANSAC algOrlthm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group
Find inliers for these parameters

4. If the number of inliers is larger than the best so far, save these
parameters and the inliers

If number of inliers in the best line is < m, return no line
Else re-calculate the final parameters with all the inliers
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The hyperparameters

1. How many points to sample in the seed set?
a. We used 2 in the example above
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The hyperparameters

1. How many points to sample in the seed set?
a. We used 2 in the example above
2. How many times should we repeat?
a. More repetitions increase computation but increase chances of finding
best line
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The hyperparameters

1. How many points to sample in the seed set?
a. We used 2 in the example above
2. How many times should we repeat?
a. More repetitions increase computation but increase chances of finding
best line
3. The threshold for the dashed lines
a. Larger the gap between dashed lines, the more false positive inliers
b. Smaller the gap, the more false negatives outliers

Linda Shapiro Oct 14, 2025



The hyperparameters

1. How many points to sample in the seed set?
a. We used 2 in the example above
2. How many times should we repeat?
a. More repetitions increase computation but increase chances of finding
best line
3. The threshold for the dashed lines
a. Larger the gap between dashed lines, the more false positive inliers
b. Smaller the gap, the more false negatives outliers
4. The minimum number of inliers to confidently claim there is a line
a. Smaller the number, the more false negative lines
b. Larger the number, the fewer lines we will find
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RANSAC: Pros and Cons

e Pros:
o General method suited for a wide range of parameter fitting problems

o Easy to implement and easy to calculate its failure rate
e Cons:
o Only handles a moderate percentage of outliers without cost blowing up

o Many real problems have high rate of outliers (but sometimes selective
choice of random subsets can help)

e A voting strategy, The Hough transform, can handle high percentage of
outliers
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Today's agenda

L ocal Invariant Features
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Image matchlng a challenging problem

N 4 Templat
- emplate
\\\.* ! P

L ARy T R S G

Q1. Will cross-correlation
work?

Q2. Can we use match
the lines?
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Q. How would you build a system that can
detect this movie In the pile?
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Challenge: Perspective / viewpoint changes

by Diva Sian

by swashford
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http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/swashford/428567562/

Challenge: partial observabillity

by Diva Sian
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http://www.flickr.com/photos/scpgt/328570837/
http://www.flickr.com/photos/diaphanus/136915456/

Challenge even for us

NASA Mars Rover images
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Answer Below (Look for tiny colored squares)

NASA Mars Rover images with SIFT feature matches
(Figure by Noah Snavely)
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Intuition behind how to match images

- Find matching patches
- Check to make sure enough patches
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Intuition behind how to match images

- Find matching patches
- Check to make sure enough patches

What do we need?

- We need to identify patches
- We need to learn to a way to describe each patch
- We need an algorithm to match the description between two patches
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Motivation for using local features

e Matching large patches have major
challenges (mentioned in previous
slides)

e Instead, let's describe and match only
local image patches

e Smaller, local patches are more likely to
find an object even if it is partially
occluded (covered)

o Articulation
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General approach for search
1. Find a set of distinctive

keypoints

2. Define a region/patch
around each keypoint

3. Normalize the region
content

Similarity fB

measure
‘ ‘e g. color p.g. color

“Npixels d(f4/5)<T 5. Match local descriptors
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4. Compute a local descriptor
from the normalized region

N pixels




Common Requirements

e Problem 1: How should we choose the keypoints?
oWe want to detect the same points independently in both images

No chance to match if the keypoints
aren’t the same

We need a repeatable detector!
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Common Requirements

e Problem 1: How should we choose the keypoints?
o Detect the same point independently in both images

e Problem 2: How should we describe each patch?
o For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor!
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Descriptions should be invariant to rotation and
translation

Multiple View
Geometry

0 Comnuler vision

TR 1 Ty o) Al v Toemarers a0
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B
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Descriptions should be invariant to photometric
transformations

e Often modeled as a linear transformation:
o Scaling + Offset

Slide credit: Tinne
Tuytelaars
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Levels of geometric transformations
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Reqguirements for Local Features

e Patch selection needs to be repeatable and accurate
o Invariant to translation, rotation, scale changes
o Robust to out-of-plane (=affine) transformations
o Robust to lighting variations, noise, blur, quantization

e Locality: Features are local, therefore robust to occlusion and clutter.
e Quantity: We need a sufficient number of regions to cover the object.
e Distinctiveness: The regions should contain “unique” structure.

e Efficiency: Close to real-time performance.
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What are good patches?

Q. Is this a good patch for
Image matching?

Linda Shapiro Oct 14, 2025



What are good patches?

Q. What about this one?
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What are good patches?

Q. Let’s try another one?
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Many existing feature detectors available

e Hessian & Harris Beaudet ‘78], [Harris ‘88]
e Laplacian, DoG Lindeberg ‘98], [Lowe ‘99]
e Harris-/Hessian-Laplace Mikolajczyk & Schmid ‘01]
e Harris-/Hessian-Affine Mikolajczyk & Schmid ‘04]
e EBR and IBR Tuytelaars & Van Gool ‘04]
o MSER Matas ‘02]

e Salient Regions 'Kadir & Brady ‘01]

e Neural networks [Krichevsky ‘12]

e Those detectors have become a basic building block for many applications
In Computer Vision.

Linda Shapiro Oct 14, 2025



Today's agenda

e Harris Corner Detector
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Keypoint Localization

e Goals:
o Repeatable detection
o Precise localization
o Interesting content
Intuition= Look for 2D signal changes (LSI systems strike again)
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Finding Corners

How do we find corners using LSI systems?

o The image gradient around a corner has two or more dominant
directions

Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference, 1988.
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http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf

Corners are distinctive key-points

oWe should easily recognize the corner point by looking through a small
Image patch (locality)

o Shifting the window In any direction should give a large change in
Intensity (good localization)

“flat” region: “edge”: “corner”:
no changein no change along significant change
all directions the edge direction in all directions

Slide credit: Alyosha Efros
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Flat patches have small image gradients

ZIE —— Small
Flat

2
—— Small
E [y ma
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Edges have high gradient in one direction

Z[j —> Small
E
Z[}% —— large dge
le —— Small
, Flat
Z[y —— Small
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Corners versus edges
]2 —— Large
h ! F i % ’ e Corner
[J% — Llarge
ZIE — Small
- s
Flat
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Generalizing to corners in any direction

N 4 S —
A 20—

Corner
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Harris Detector Formulation

e Find patches that result in large change of pixel values when shifted in any
direction.

e When we shift by [«, v], the intensity change at the center pixel is:

[u, v]

I(xtu,y+v)

* Measure change as intensity
difference:

(Ix+uy+v)—I(xy))

e That’s for a single point, but we have
to accumulate over the patch or

“corner”: ) , ” :
significant change small window” around that point...

in all directions
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Harris Detector Formulation

® When we shift by [«, v], the change in intensity for the “small window” is:

(T )\
E(u,v) = G+ w,y + v) {1(x,y)]?
Shifted
intensity y
Sum over function f\
window Intensity
change
w(x,y) = P
— ,f’/\/’,/‘—
1 in window, 0 Gaussian
outside
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Change In intensity function
E(U, 'U) — Z w(xﬂ y) [I(ZU _I_ u? y + U) T I(xﬂ y)]z

We can rewrite the shifted intensity using Taylor's expansion (truncated):

Ix+u,y+v)=I(z,y) + Lyu+ Lo

Substituting it back into E(u, v):

E(u,v) = Z w(z,y)[Izu + I,v]?
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E(u,v) = Z w(z,y)[lzu + I,v]?

T,y

Re-writing E:
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E(u,v) = Z w(z,y)[lzu + I,v]?

T,y

= Z w(z,y)[2u® + 2L Tyuv + IJv°)

T,y

Re-writing E:
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E(u,v) = Z w(z,y)[lzu + I,v]?

T,y

— Z w(z,y)(I2u® + 21, I,uv + Ig,ﬂz)

Re-writing E:

z,y
= (Z wl?)u? + 2(2 wly I )uv + (Z *wfi)vz
xr,y £,y £LyY
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E(u,v) = Z w(z,y)[lzu + I,v]?

T,y

Re-writing E:

— Z w(z,y)(I2u® + 21, I,uv + Ii'uz)

T,y
= () wi® +20) wlI)uw+ () wIi)v’
T,y T,y £,y

= [u fu];w(fﬂ, y) [If[y Iﬁéy] [;1
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E(u,v) = Z w(z,y)[lzu + I,v]?

T,y

— Z w(z,y)(I2u® + 21, I,uv + Ii'uz)

Re-writing E:

T,y
=) wiw® +20) wlI)uw+ () wI})v’
r,y xT,uy T,y

= [u v];;w(fﬂ, y) [Iﬁy IETF] H

where
2 LI
M=Y w5 52
z,y ! y
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Simplifying M for a second.:

Assuming w(:c y) =1

> Z 1.1,
M = x,y ac 2

where
2 LI
M=Y w5 52
z,y v y
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Change In intensity in a patch

e S0, using Taylor’'s expansion, the change in intensity in an image patch:

Ewv) = [u vl M g

V

where M is a 2x2 matrix computed from image derivatives:

M = § : [j ]xly(\\ Gradient with
_ W(xa y) 2
, 117 I/ respect to X,
Y CTxTy y o . :
T times gradient

with respect to Y

Sum over image region — the area we are
checking for corner
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Re-writing E:

E(u,v) = [[u fu] M [uﬂ Does anyone know what this
v o
part of the equation is?

2
Zw,y I“?Iy Zw,y Iy
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It's the equation of an ellipse

5u® — 4uv + 5v? =1
['u, v] M u

_U_

5 -2
M = -2 5
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Remember what we said about the gradients
for these edges

Z[j — Small
m| I L
Y

If only fo — large  (popposite picture, vertical edge)

2
. What Is the matrix M goin M — [ 2ayle 2y Iwa]

to look like?
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Remember what we said about the gradients
for these edges

Z[j — Small
m| I L
Y

ifonly D)1, — Large

Q. What is the matrix M going & = [ Zw,yII% Dy I#y]
to look like? 2y lely 2yl

Large Small
M - [‘ y ’]

. Small Small
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Remember what we said about the gradients
for these corners

Z[j — Small
m| I L
Y

If only fo — large . Q. what kind of ellipse would you

expect to see?
M = [ Zm,y Ig Ew,y Ime]
Zw,y ICEI?J Zx,y IZ

[ Large Small ,]

M = |.

Small Small
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Remember what we said about the gradients
for these corners

Z[j — Small
m| I L
Y

If only fo — large . Q. what kind of ellipse would you

expect to set ,
=[S Tl
Zw,y Iny Zwy Iy

[ Large Small ,]

M = |.

. Small Small
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Remember what we said about the gradients
for these corners

Z[j — Small
m| I L
Y

2
If only Zly — large , Q. what kind of ellipse would you

expect to see? ,
M = [ Zm,y Im Ew,y Ime]
Zw,y ICEI?J Zx,y IZ

Small Small
M - [‘ y ’]

Small Large
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Remember what we said about the gradients
for these corners

Z[j — Small
m| I L
Y

2
If only Zly — large , Q. what kind of ellipse would you

expect to see? ,
M = [ Zm,y Im Ew,y Ime]

© [ Small Small ,]

M = |.

~ Small Large
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Remember what we said about the gradients
for these corners

ZIE —— Large
Corner
Z[ﬁ — large

Q. What Is the matrix M going M = [g wls oy fmfy]
to look like? ’
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Remember what we said about the gradients
for these corners

ZIE —— Large
Corner
Z[ﬁ — large

Q. What is the matrix M going & = [ Zw,yII% Dy I#y]
to look like? 2y lely 2yl

Large small
M : [‘ . ’]

small Large
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Remember what we said about the gradients
for these corners

ZIE —— Large
Corner
Z[ﬁ — large

Q. What is the ellipse going to
look like?

Ellipse Visualization

X-axis
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But what about these ones?

Z Corner
—_— ??
A 2.1 £
Q. What would the matrix and ellipses look like?
5u? — duv + 502 =1 /,ﬂf'f_“\\
n / " )
Hint: lu o] M [v_ - (.014 - D: a.:?/gy _
T e e 1
Zx’y ley Zx,y Iy .
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What Does This Matrix Reveal?

. , . . . Pixels with I, = 0
® First, let’s consider an axis-aligned corner. and I, = 0

* In that case, the dominant gradient directions \
align with the x or the y axis \

M = I ZIny _ Y 0]
lely ZIJZ, 0 A,

* This means: if either A is close to O, then this is not a
corner, so look for image windows where both lambdas
are large.

What if we have a corner that is not aligned with the

image axes?
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M defines an ellipse in the direction (u, v)
Iz Ll

e Sj M =

] is symmetric, we can re-rewrite M = R~1 ;:)1 f]R
2

(Eigenvalue decomposition)

* We can think of M as an ellipse with its axis lengths determined by the
eigenvalues A; and A,; and its orientation determined by R

Direction of the
fastest change

Direction of the

* A rotated corner would
slowest change

y produce the same
(Ana) ™ O Y eigenvalues as its non-
/ in rotated version.

Linda Shapiro Oct 14, 2025
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Interpreting the Eigenvalues

e Classification of image points using eigenvalues of M:

Ay

Ay and 4, are small;

E is almost constant in
all directions
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But calculating eigenvalues is expensive.

Solution: Corner Response Function
0 =det(M)-atrace(M) = A A, —a(A +A,)°

e Fast approximation

o Avoid computing the
eigenvalues

o a. constant
(0.04 to 0.06)

Ay
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Window Function w(x,y)

5 -
I, I,
M = Z w(x,y) ,
i /
X, Xy y
e Option 1: uniform window
o Sum over square windo
T}j le}l
= 2 e —
) R S _/\_

o Problem: not rotation invariant A ’

e Option 2: Smooth with Gaussian
o Gaussian already performs weighted sum

M = g(c)» 7 I,
= O
SO r

o Result is rotation invariant
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Summary: Harris Detector (rarisse)

e Compute second moment matrix
(autocorrelation matrix)

1. Image
I’ 11 derivatives
M(o,,0,)=g(o,)* { 7 XI(((TD)) ;z)&(%))}
o o
SRR 2. Square of
op: for Gaussian in the derivative calculation derivatives
o;: for Gaussian in the windowing function
3. Gaussian
filter g(o))

4, Cornerness function - two strong eigenvalues
0 =det[M (o ,,0 ,)]-aftrace(M (c,,0 )]’
=g(I)e()-[gU I )T —alg(;)+g(I)T
5. Perform non-maximum suppression
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Harris Detector: Example

e [nput Image
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Harris Detector: Example

e |[nput Image @ _s, ]

-

P
B

e Compute corner
response function
0
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Harris Detector: Example

e Input Image
e Compute corner
response function 6

e Take only the local
maxima of o,
where 6 > threshold
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Harris Detector: Example

e [nput Image
e Compute corner
response function 6

e Take only the local
maxima of 9,
where 6 > threshold
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Harris Detector — Responses arissei

Effect: A very precise
corner detector.
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Harris Detector — Responses [Harris8g]
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Harrls Detector — Responses [Harris8g]

e Results are great for finding correspondences matches between images
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Summary

e Local Invariant Features
e Harris Corner Detector
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Harris Detector: Properties

e Translation invariance?
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Harris Detector: Properties

e Translation invariance
e Rotation invariance?

Ellipse rotates but its shape (i.e.
eigenvalues) remains the same

It is invariant to image rotation
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Harris Detector: Properties

e Translation invariance
e Rotation invariance
e Scale invariance?

N\

A ) £~

Corner All points will be
classified as edges!

Not invariant to image scale!
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Next time

Detectors and Descriptors
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