Lecture 5
Detecting Lines




Administrative

Al is out
- It is a graded assignment
- Due Oct 14
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So far: discrete derivatives in 3 ways

% — f[;[;] — f[:I,' — 1] Backward
— f[;(; 1 1] — f[,:(:] Forward
1

— _(f[g; + 1] — f[g; — 1]) Central but we
2 can drop the 1/2
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So far: Designing filters that perform
differentiation

eUsing Backward differentiation: o | 1| ]

g[n,m] :f[nvm] _f[nam_l]

eUsing Forward differentiation:

gnam] :fnam_l_l] _f[nvm]

eUsing Central differentiation: Lol
gln,m| = fln,m+1] — fln,m — 1|
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So far: Calculating gradient magnitude and direction

Given function f[n,m]

- af o
Gradient filter Vfn,m| = | 47 | = J]:n
Ldm LJ T ]
Gradient magnitude |V f[n,m]| = /f2 + 2
Gradient direction 8 = tan™*( J;m
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Today's agenda

Edge detector with noisy images
Sobel Edge detector

Canny edge detector

Hough Transform

Optional reading:
Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition
Sections 7.1, 8.1.4
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Today's agenda

e Edge detector with noisy images

Optional reading:
Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition
Sections 7.1, 8.1.4
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Characterizing edges

An edge is a place of rapid change in the image intensity function

intensity function first
image (along horizontal scanline) derivative

waf

edges correspond to
extrema of derivative
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Q. What will happen if we use this edge detector
on a noisy pixels?
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Effects of noise

e Consider a single row or column of the image
o Plotting intensity as a function of position gives a signal

Intensity

0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Effects of noise

e Consider a single row or column of the image
o Plotting intensity as a function of position gives a signal

Intensity

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?

Gradient

|
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Effects of noise

* Differentiation filters respond strongly to noise

— Image noise results in pixels that look very different from
their neighbors

— Generally, the larger the noise the larger the gradient

Q. What is a potential quick fix for noisy images?
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Effects of noise

* Differentiation filters respond strongly to noise

— Image noise results in pixels that look very different from
their neighbors

— Generally, the larger the noise the stronger the response
Q. What is a potential quick fix for noisy images?

* Smoothing the image should help, by forcing pixels different
to their neighbors (=noise pixels?) to look more like
neighbors
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Smoothing with different filters

1
1
1

e Mean smoothing [1 1 1]

W[ =

1
3

e Gaussian (smoothing * derivative)

/\ i% 1 2 1]
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Sigma =50
Solution: Input function B

Signal

'
'
................................................................................................
'

Let's look at a single image row:

0 200 400 600 800

'
B ococooooaoa oo oooo oo o D oooooooo g Folo Qo oodoo Dooe oo oo o

I I I l
1000 1200 1400 1600 1800 2000

Linda Shapiro Oct 9, 2025



Solution: smooth first

f*h

Kernel Signal

Convolution

Sigma =50

200 400 600 800 1000

...................................................................................................

] ] ] | | | | |
200 400 600 800 1000 1200 1400 1600 1800 2000
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Sigma =50

Solution: smooth first

Signal

To find edges, look for

. h £
peaks in g
d
— h

—(f*xh) :
f*h 3
8

d :

FeCAON A "
O I |

I 1 I
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| |
1400 1600 1800 2000
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Derivative theorem of convolution

e This theorem gives us a very useful property:

Sigma = 50
|

Dipemy=pe(Lny

dx dx

| | | | | | | | |
0 200 400 600 8OO 1000 1200 1400 1600 1800 2000
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Derivative of a gaussian (DoG)

e This theorem gives us a very useful property:

Sigma = 50

.................................................

Signal

. . . . o o o T
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Derivative of a gaussian (DoG)

e This theorem gives us a very useful property:

y i = e
@Uﬂ*h)—f*(@h) f '

Signa

! I ! L I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

e This saves us one operation:

d h
We can precompute: dx

................................................................................................

Kernel

! ! ! ! ! ! ! ! !
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Convolution

d |
= ¢
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Derivative of Gaussian filter (central derivative)

Pragiey
AN
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2D-gaussian X - derivative
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Derivative of Gaussian filter alona x and y directions

2

X-direction y-direction
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Derivative of Gaussian filter
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Tradeoff between smoothing at different scales

1 pixel 3 pixels 7 pixels

Smoothed derivative removes noise, but blurs edge.
Also finds edges at different “scales”.
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Designing an edge detector

e Criteria for an “optimal” edge detector:

o Good detection: the optimal detector must minimize the probability
of false positives (detecting spurious edges caused by noise), as
well as that of false negatives (missing real edges)

True Poor robustness
edge to noise
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Designing an edge detector

e Criteria for an “optimal” edge detector:

o Good detection: the optimal detector must minimize the probability
of false positives (detecting spurious edges caused by noise), as
well as that of false negatives (missing real edges)

o Good localization: the edges detected must be as close as
possible to the true edges

True Poor robustness Poor
edge to noise localization
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Designing an edge detector

e Criteria for an “optimal” edge detector:

o Good detection: the optimal detector must minimize the probability
of false positives (detecting spurious edges caused by noise), as
well as that of false negatives (missing real edges)

o Good localization: the edges detected must be as close as
possible to the true edges

o Single response: the detector must return one point only for each
true edge point; that is, minimize the number of local maxima around
the true edge

True Poor robustness Poor Too many
edge to noise localization responses
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Today's agenda

e Sobel Edge detector

Optional reading:
Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition
Sections 7.1, 8.1.4
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Sobel Operator

e uses two 3x3 kernels which are convolved with the original image
to calculate approximations of the derivatives

e one for horizontal changes, and one for vertical

+1 0 -1 +1 42 417
G,=|[+2 0 -2 G,=]0 0 0
+1 0 —1_ -1 -2 -1
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Sobel Operation

e Smoothing + differentiation

+1 0 -1 1
G,=|+2 0 —-2|(=12|[+1 0 -1]
+1 0 -1 | 1] \
Gaussian smoothing differentiation

Linda Shapiro Oct 9, 2025



Sobel Operation

e Magnitude:

G=/G. > +G,’

e Angle or direction of the gradient:

( y)
® = atan
G,

Use atan2 to avoid ambiguity
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Sobel Filter
example

Step 1. Calculate the
gradient magnitude at
every pixel location.

Step 2: Threshold the
values to generate a
binary image

T T (R D S

] ”I»i T T ... O
_ '75@ m_‘“ m%@;«

1‘%@_ RO MR T ?’h\ //
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elrwin Sobel

Irwin Sobel @ - 2nd
IS_Consulting: Visualization, Vision & Graphics

Menlo Park, California, United States - Contact info

-
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Sobel Filter Problems
B B e

step edge ramp edge roof edge

e Poor Localization (Detects multiple adjacent edges)

e Thresholding value favors certain directions over others
o Can miss diagonal edges more than horizontal or vertical edges
o False negatives
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What we will learn today

e Canny edge detector
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So far: A simple edge detector

e This theorem gives us a very useful property:

Sigma = 50

d - e
OB '

d
g(f*h)Zf*(

Signal

i I i I i i i i i
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e This saves us one operation:

dy /N
We can precompute: dx

! ! ! ! ! ! !
600 800 1000 1200 1400 1600 1800 2000
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Canny edge detector

e This is probably the most widely used edge detector in
computer vision

e Theoretical model: optimal edge detection when pixels
are corrupted by additive Gaussian noise

e Theory shows that first derivative of the Gaussian
closely approximates the operator that optimizes the
product of signal-to-noise ratio

i i i i i i i i i
0 200 400 600 800 1000 1200 1400 1600 1800 2000

J. Canny, A Computational Approach To Edge Detection, |IEEE Trans. Pattern
Analysis and Machine Intelligence, 8:679-714, 1986.
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http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

Canny edge detector

1.Suppress Noise
2.Compute gradient magnitude and direction
3.Apply Non-Maximum Suppression
o Assures minimal response
4.Use hysteresis and connectivity analysis to detect edges
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e original image
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Canny edge detector

1.Suppress Noise
2.Compute gradient magnitude and direction

Linda Shapiro Oct 9, 2025



Derivative of Gaussian filter
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Compute gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Linda Shapiro Oct 9, 2025



Get orientation at each pixel

( )
:E

= math.atan2(G,, G,)
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Compute gradients (DoG)

Y-Derivative of Gaussian Gradient Magnitude
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Canny edge detector

3. Apply Non-Maximum Suppression
o Assures minimal response
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Non-maximum suppression

e Assumption we make: An edge occurs where gradient is maximum
o Even if their magnitude is above the threshold

e Suppress non-maxima neighboring edges
o Only suppress edges that are in the same direction nearby
o Don’t suppress other edges
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Intuition behind non-maximum suppression

Let’'s assume that out of the
points:
P,

d,
I

g has the largest gradient.

Then p and r are not real edges
and should be suppressed
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What the output looks like after Non-
max Suppression

Before After



What if p = [n,, m,] or r = [n,, m,], IS not a pixel location

g is a maximum if the value is larger
o e @ o @ than those at both p and atr.

How should we calculate magnitude

¢ ¢ q ¢ atpandr?
Cradient

® ® O ® ®
I
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What if p = [n,, m,] or r = [n,, m,], IS not a pixel location

® ® o @
P
] @
_ |
Gradient /
e © » ®
I
L & @

g is a maximum if the value is larger
than those at both p and atr.

How should we calculate magnitude
atpandr?

Calculate p and r as averaged values
of top k=8 closest pixel locations*

Some people use
Bilinear interpolation.
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In code, you will calculate gradient magnitudes at every g and
set it to zero if it Is not the local max

[N, m]

Ng: M) G = \/ze + Gyz

G[nqa mq] —

Glng,mq| if G[ng,mq| > G|nyp, my| and Gng, mq| > G[nyp, my|
0 otherwise
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What the output looks like after Non-
max Suppression

Before After



Canny edge detector

4.Use hysteresis and connectivity analysis to detect edges
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Problem: if your threshold is too high (left) or too
low (right), you have too many or too few edges

Problem: Also, you have too many disconnected
edges
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Hysteresis thresholding connects edges to
create long edges

e How does it work?

e Define two thresholds: Low and High
o If less than Low => not an edge
o If greater than High => strong edge

o If between Low and High => weak edge
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Hysteresis thresholding

If the gradient at a pixel is between Low and High thresholds,

o Consider its neighbors iteratively then declare it an “edge pixel” if it is
connected to a ‘strong edge pixel’ directly or via pixels between Low and
High
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All the white pixels are not edges (below the low threshold)
The black pixels below are strong edges (above the high threshold)

strong edge pixel

A

strong edge pixel

&
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Now, let's assume all the red pixels are weak edges
(between low and high thresholds)

weak but connected
edge pixels

AN

—
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Now, let’'s assume all the red pixels are weak edges
(between low and high thresholds)

Keep these because they are
connected to strong edges

|
RS

/ —

Remove these edges __
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Final Canny Edges
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Canny edge detector

1. Filter image with x, y derivatives of Gaussian
Find magnitude and orientation of gradient

3. Non-maximum suppression:
o Reduce multi-pixel wide edges down to single pixel edge

4. Thresholding and linking (hysteresis):
o Define two thresholds: low and high
o Connect edges together and remove everything else
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Effect of 0 (Gaussian kernel spread/size)

i

|
1
a

¥

Ty

b _

original Canny with 0 = 1 Canny with o = 2

The choice of o depends on desired behavior

e large o detects large scale edges
e small o detects fine features
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Gradients
(e.g. Canny)

Human
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What we will learn today

e Hough Transform
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Hough transform

How to transform edge detections into lines

Original image Edge image
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Hough transform

e It was introduced in 1962 (Hough 1962) and first used to find lines in
Images a decade later (Duda 1972).

e Caveat: Hough transform can detect lines, circles and other shapes
o but only for shapes that can be expressed as a math equation.

e It gives us good detections even when the image is noisy and even if the
shape is partially hidden.
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Input to Hough transform algorithm

e \We have performed some edge detection (Sobel filter, Canny Edge
detector, etc.), including a thresholding of the edge magnitude image.

e Thus, we have some pixels that may partially describe the boundary of
some objects.

Edge image
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Detecting lines using Hough transform

e We wish to find sets of pixels that make up straight lines.
e Instead of using [n, m], this might be easier to do with (X, y)

How do we transform [n, m] to (X, y)?

- Simple: We assume

- n=vy,
- m=X

- So, f[n, m] = [y, ]
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e[iNding lines in an Image

e Option 1:
o Search for the line at every possible position/orientation
o What is the cost of this operation?

e Option 2:
o Use a voting scheme: Hough transform
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e[FINdiNg lines In an Image
y1 b 1
y = mox =+ bo
——
b |

e Connection between image (X,y) and Hough (m,b) spaces

o A line in the iImage corresponds to a point in Hough
space

o To go from image space to Hough space:

m given a set of points (Xx,y), find all (m,b) such thaty =
mx + b
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eHough transform algorithm

e Typically use a different parameterization
d = xcosl + ysinb
o d is the perpendicular distance from the line to the
origin
o 0 Is the angle of this perpendicular with the
horizontal.

v A

~

-
X
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eHough transform algorithmArrayH

e Basic Hough transform algorithm
1. Initialize H[d, 6]=0
2. for each edge point I[x,y] in the image

d

compute gradient magnitude m and angle 6 0
d = xcosf + ysinb
H[d, 0] +=1
3. Find the value(s) of (d, 6) where H[d, 0] is
maximum d = xcosf + ysinb

4. The detected line in the image is given by

Complexity?
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eHow do you extract the line segments from the
accumulators? (this is nonstandard)

pick the bin of H with highest value V
while V > value_threshold {

« order the corresponding pointlist from PTLIST
* merge in high gradient neighbors within 10 degrees
« create line segment from final point list

e zero out that bin of H

« pick the bin of H with highest value V }
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eExample

gray-tone image DQ THETAQ
0O 0 0100 100 - - 3 3 - - - 0 0 -
0 0 0 |100 100 - - 3 3 - - - 0 0 -
0 (100 100 3 3 3 3 - 90 90 40 20 -
100 100 3 3 3 3 - 90 90 90 40 -
100 100 100 100 100 - - - - - - - - - -
Accumulator H PTLIST
360 |- - - - - - - 360 |- - - - - - -
6 |- - - - - - - 6 |- ------
3 4 -1 -2 - 3 F- % -* -
dis(t)ance ------- 0 e
angle 010 203040 ...90 (1,3)(1,4)(2,3)(2,4)
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®Line segments from Hough Transform

Fig.7. Puppet scenes 211, 212, 214, 225 and
the edges recovered by the algorithm.
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e EXxtensions

® Extension 1: Use the image gradient (we just did that)

® Extension 2
O give more votes for stronger edges
® Extension 3
O change the sampling of (d, 6) to give more/less resolution

® Extension 4

O The same procedure can be used with circles, squares, or any
other shape, How?

e Extension 5; the Burns procedure. Uses only angle, two
different quantifications, and connected components with
votes for larger one.

e Extension 6 (in your homework code). Use a small range
of angles at each edge point in case there is more than
one line through the point.
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eHough Transform for Finding Circles

Equations: r=r0+ dsin6 r, ¢, d are parameters
c=cO- dcosO

Main idea: The gradient vector at an edge pixel points
to the center of the circle.
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eWhy it works

Filled Circle:
Outer points of circle have gradient

direction pointing to center.

Circular Ring:
Outer points gradient towards center.
Inner points gradient away from center.

The points in the away direction don’t
accumulate in one bin!
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® Finding lung nodules (Kimme & Ballard)

(c) (d)

Fig. 4.7 Using the Hough technique for circular shapes. (a) Radiograph. (b) Window. (c)
Accumulator array for r = 3. (d) Resuits of maxima detection.
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Hough transform remarks

e Advantages:
o Conceptually simple.
o Easy implementation
o Handles missing and occluded data very gracefully.
o Can be adapted to many types of forms, not just lines
o Runs in O(N*num_ang_per_point) where N is the number of edge pixels

e Disadvantages:
o Computationally complex for shapes with many parameters.
o Looks for only one single shape of object
o Can be “fooled” by “apparent lines”.
o The length and the position of a line segment cannot be determined.
o Co-linear line segments cannot be separated.
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Applications
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Summary

Edge detector with noisy images
Sobel Edge detector

Canny edge detector

Hough Transform

Optional reading:
Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition
Sections 7.1, 8.1.4

Linda Shapiro Oct 9, 2025



Next time

Key Points and Corners
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