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Administrative

A1 is out

- It is a graded assignment

- Due Oct 14
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Central but we 
can drop the 1/2

So far: discrete derivatives in 3 ways

Backward

Forward
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●Using Backward differentiation:

●Using Forward differentiation:

●Using Central differentiation: 

So far: Designing filters that perform 

differentiation 
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So far: Calculating gradient magnitude and direction
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Today’s agenda

Optional reading:
Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition
Sections 7.1, 8.1.4

6

● Edge detector with noisy images

● Sobel Edge detector

● Canny edge detector

● Hough Transform
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Characterizing edges

An edge is a place of rapid change in the image intensity function

image
intensity function

(along horizontal scanline)
first 

derivative

edges correspond to

extrema of derivative
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Intensity profile
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Q. What will happen if we use this edge detector 

on a noisy pixels?

10Linda Shapiro  Oct 9, 2025



Ranjay Krishna January 21, 2025Lecture 5 -

Effects of noise
● Consider a single row or column of the image

○ Plotting intensity as a function of position gives a signal

Source: S. Seitz
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Effects of noise
● Consider a single row or column of the image

○ Plotting intensity as a function of position gives a signal

Where is the edge?

Source: S. Seitz
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• Differentiation filters respond strongly to noise

– Image noise results in pixels that look very different from 
their neighbors

– Generally, the larger the noise the larger the gradient

• Q. What is a potential quick fix for noisy images?

Effects of noise

Source: D. Forsyth13Linda Shapiro  Oct 9, 2025
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• Differentiation filters respond strongly to noise

– Image noise results in pixels that look very different from 
their neighbors

– Generally, the larger the noise the stronger the response

• Q. What is a potential quick fix for noisy images?

• Smoothing the image should help, by forcing pixels different 
to their neighbors (=noise pixels?) to look more like 
neighbors

Effects of noise

Source: D. Forsyth14Linda Shapiro  Oct 9, 2025
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Smoothing with different filters

● Mean smoothing

● Gaussian  (smoothing * derivative)

Slide credit: Steve Seitz
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Smoothing with 

different filters
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Solution: input function
f

Source: S. Seitz

Let’s look at a single image row:
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Solution: smooth first
f

h

f * h
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Solution: smooth first

To find edges, look for 
peaks in

f

h

f * h
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Derivative theorem of convolution
• This theorem gives us a very useful property:

f
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Derivative of a gaussian (DoG)
• This theorem gives us a very useful property:

Source: S. Seitz

f
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Derivative of a gaussian (DoG)
• This theorem gives us a very useful property:

• This saves us one operation:

We can precompute:

Source: S. Seitz

f
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Derivative of Gaussian filter (central derivative)

2D-gaussian

*       [1    0   -1] = 

x - derivative
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Derivative of Gaussian filter along x and y directions

x-direction y-direction
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Derivative of Gaussian filter
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Smoothed derivative removes noise, but blurs edge. 
Also finds edges at different “scales”.

Tradeoff between smoothing at different scales

1 pixel 3 pixels 7 pixels

Source: D. Forsyth26Linda Shapiro  Oct 9, 2025
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Designing an edge detector
• Criteria for an “optimal” edge detector:

○ Good detection: the optimal detector must minimize the probability 

of false positives (detecting spurious edges caused by noise), as 

well as that of false negatives (missing real edges)
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○ Good localization: the edges detected must be as close as 

possible to the true edges
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Designing an edge detector
• Criteria for an “optimal” edge detector:

○ Good detection: the optimal detector must minimize the probability 

of false positives (detecting spurious edges caused by noise), as 

well as that of false negatives (missing real edges)

○ Good localization: the edges detected must be as close as 

possible to the true edges

○ Single response: the detector must return one point only for each 

true edge point; that is, minimize the number of local maxima around 

the true edge
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● Edge detector with noisy images

● Sobel Edge detector

● Canny edge detector

● Hough Transform

Today’s agenda

Optional reading:
Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition
Sections 7.1, 8.1.4
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Sobel Operator

● uses two 3×3 kernels which are convolved with the original image 

to calculate approximations of the derivatives

● one for horizontal changes, and one for vertical
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Sobel Operation

● Smoothing + differentiation

Gaussian smoothing differentiation
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Sobel Operation

● Magnitude:

● Angle or direction of the gradient:

33Linda Shapiro  Oct 9, 2025
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Sobel Filter 

example

Step 1: Calculate the 

gradient magnitude at 

every pixel location.

Step 2: Threshold the 

values to generate a 

binary image
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●Irwin Sobel
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Sobel Filter Problems

● Poor Localization (Detects multiple adjacent edges)

● Thresholding value favors certain directions over others

○Can miss diagonal edges more than horizontal or vertical edges

○False negatives
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● Edge detector with noisy images

● Sobel Edge detector

● Canny edge detector

● Hough Transform

What we will learn today
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So far: A simple edge detector
• This theorem gives us a very useful property:

• This saves us one operation:

We can precompute:

Source: S. Seitz

f
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Canny edge detector
• This is probably the most widely used edge detector in 

computer vision

• Theoretical model: optimal edge detection when pixels 

are corrupted by additive Gaussian noise

• Theory shows that first derivative of the Gaussian

closely approximates the operator that optimizes the 

product of signal-to-noise ratio

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern 
Analysis and Machine Intelligence, 8:679-714, 1986. 
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1.Suppress Noise

2.Compute gradient magnitude and direction 

3.Apply Non-Maximum Suppression

○ Assures minimal response

4.Use hysteresis and connectivity analysis to detect edges

Canny edge detector

40Linda Shapiro  Oct 9, 2025
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Example

● original image
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1.Suppress Noise

2.Compute gradient magnitude and direction 

3.Apply Non-Maximum Suppression

○ Assures minimal response

4.Use hysteresis and connectivity analysis to detect edges

Canny edge detector
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Derivative of Gaussian filter

x-direction y-direction
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Compute gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude
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Get orientation at each pixel

45

= math.atan2(Gy, Gx)
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Compute gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude
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Canny edge detector

47

1.Suppress Noise

2.Compute gradient magnitude and direction 

3. Apply Non-Maximum Suppression

○ Assures minimal response

4. Use hysteresis and connectivity analysis to detect edges
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Non-maximum suppression

● Assumption we make: An edge occurs where gradient is maximum

○ Even if their magnitude is above the threshold

● Suppress non-maxima neighboring edges

○ Only suppress edges that are in the same direction nearby

○ Don’t suppress other edges

48Linda Shapiro  Oct 9, 2025



Ranjay Krishna January 21, 2025Lecture 5 -

Intuition behind non-maximum suppression

Let’s assume that out of the 

points:

p, 

q,

r

q has the largest gradient.

Then p and r are not real edges 

and should be suppressed

49

q
p

r
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What the output looks like after Non-
max Suppression

Before                         After
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What if p = [n1, m1] or r = [n2, m2], is not a pixel location

51

q is a maximum if the value is larger 
than those at both p and at r. 

How should we calculate magnitude 
at p and r? 

Linda Shapiro  Oct 9, 2025



Ranjay Krishna January 21, 2025Lecture 5 -

What if p = [n1, m1] or r = [n2, m2], is not a pixel location

52

q is a maximum if the value is larger 
than those at both p and at r. 

How should we calculate magnitude 
at p and r? 
Calculate p and r as averaged values 
of top k=8 closest pixel locations*

Linda Shapiro  Oct 9, 2025

Some people use

Bilinear interpolation.
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In code, you will calculate gradient magnitudes at every q and 

set it to zero if it is not the local max

53

[nr, mr]

[nq, mq]

[np, mp]
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What the output looks like after Non-
max Suppression

Before                         After
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Canny edge detector

1.Suppress Noise

2.Compute gradient magnitude and direction 

3.Apply Non-Maximum Suppression

○ Assures minimal response

4.Use hysteresis and connectivity analysis to detect edges
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Problem: Also, you have too many disconnected 

edges

Problem: if your threshold is too high (left) or too 

low (right), you have too many or too few edges
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What the output of hysteresis looks like:

57

Before                         After
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Hysteresis thresholding connects edges to 

create long edges

● How does it work?

● Define two thresholds: Low and High

○ If less than Low => not an edge

○ If greater than High => strong edge

○ If between Low and High => weak edge 
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Hysteresis thresholding

If the gradient at a pixel is between Low and High thresholds,

○ Consider its neighbors iteratively then declare it an “edge pixel” if it is 

connected to a ‘strong edge pixel’ directly or via pixels between Low and 

High
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strong edge pixel

strong edge pixel

All the white pixels are not edges (below the low threshold)

The black pixels below are strong edges (above the high threshold)
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weak but connected 
edge pixels

61

Now, let’s assume all the red pixels are weak edges 

(between low and high thresholds)
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Keep these because they are 
connected to strong edges

62

Now, let’s assume all the red pixels are weak edges 

(between low and high thresholds)

Remove these edges
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Final Canny Edges
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Canny edge detector

1. Filter image with x, y derivatives of Gaussian 

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
○ Reduce multi-pixel wide edges down to single pixel edge

4. Thresholding and linking (hysteresis):
○ Define two thresholds: low and high

○ Connect edges together and remove everything else 
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Effect of σ (Gaussian kernel spread/size)

Canny with Canny with original 

The choice of σ depends on desired behavior
• large σ detects large scale edges

• small σ detects fine features
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Gradients

(e.g. Canny)

Human
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45 years of edge 
detection

Source: Arbelaez, Maire, Fowlkes, and Malik. TPAMI 2011 (pdf)

67

Recall is how many of the actual edges did it find.

Precision is how good were the ones it called edges

(were they edges?).
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What we will learn today

68

● Edge detector with noisy images

● Sobel Edge detector

● Canny edge detector

● Hough Transform
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Hough transform

How to transform edge detections into lines
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Hough transform

● It was introduced in 1962 (Hough 1962) and first used to find lines in 

images a decade later (Duda 1972). 

● Caveat: Hough transform can detect lines, circles and other shapes

○ but only for shapes that can be expressed as a math equation.

● It gives us good detections even when the image is noisy and even if the 

shape is partially hidden.
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Input to Hough transform algorithm

● We have performed some edge detection (Sobel filter, Canny Edge 

detector, etc.), including a thresholding of the edge magnitude image. 

● Thus, we have some pixels that may partially describe the boundary of 

some objects.
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Detecting lines using Hough transform

● We wish to find sets of pixels that make up straight lines. 

● Instead of using [n, m], this might be easier to do with (x, y)

How do we transform [n, m] to (x, y)?

- Simple: We assume 

- n = y, 

- m = x.

- So, f[n, m] = f[y, x]
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●Finding lines in an image

● Option 1:

○ Search for the line at every possible position/orientation

○ What is the cost of this operation?

● Option 2:

○ Use a voting scheme:  Hough transform 
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● Connection between image (x,y) and Hough (m,b) spaces

○ A line in the image corresponds to a point in Hough 

space

○ To go from image space to Hough space:

■ given a set of points (x,y), find all (m,b) such that y = 

mx + b

x

y

m

b

m0

b0

image space Hough space

●Finding lines in an image
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●Hough transform algorithm
● Typically use a different parameterization

○ d is the perpendicular distance from the line to the 

origin

○  is the angle of this perpendicular with the 

horizontal.
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●Hough transform algorithm

● Basic Hough transform algorithm

1. Initialize H[d, ]=0

2. for each edge point I[x,y] in the image
compute gradient magnitude m and angle 

H[d, ] += 1

3. Find the value(s) of (d, ) where H[d, ] is 

maximum

4. The detected line in the image is given by

Complexity?

76

d



Array H
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●How do you extract the line segments from the 

accumulators?  (this is nonstandard)

pick the bin of H with highest value V

while V > value_threshold { 

• order the corresponding pointlist from PTLIST

• merge in high gradient neighbors within 10 degrees

• create line segment from final point list

• zero out that bin of H

• pick the bin of H with highest value V }
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●Example

0      0      0    100 100

0      0      0    100 100

0      0 0    100  100

100  100  100 100  100

100  100  100  100  100

- - 0    0    -

- - 0    0    -

90  90  40  20   -

90  90  90  40   -

- - - - -

- - 3    3    -

- - 3    3    -

3    3    3    3   -

3    3    3    3   -

- - - - -

360

.

6

3

0

- - - - - - -

- - - - - - -

- - - - - - -

4 - 1   - 2   - 5

- - - - - - -

0 10  20 30 40 …90

360

.

6

3

0

- - - - - - -

- - - - - - -

- - - - - - -

* - *   - *   - *

- - - - - - -

(1,3)(1,4)(2,3)(2,4)

(3,1)

(3,2)

(4,1)

(4,2)

(4,3)

gray-tone image DQ THETAQ

Accumulator H PTLIST

distance

angle
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●Line segments from Hough Transform
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●Extensions
● Extension 1:  Use the image gradient (we just did that)

● Extension 2

○ give more votes for stronger edges

● Extension 3

○ change the sampling of (d, ) to give more/less resolution

● Extension 4

○ The same procedure can be used with circles, squares, or any 

other shape, How?

● Extension 5; the Burns procedure. Uses only angle, two 

different quantifications, and connected components with 

votes for larger one.

● Extension 6 (in your homework code). Use a small range 

of angles at each edge point in case there is more than 

one line through the point.
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Chalmers University

of Technology
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Chalmers University

of Technology
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●Hough Transform for Finding Circles

Equations: 
r = r0 +  d sin 

c = c0 - d cos 
r, c, d are parameters

Main idea:  The gradient vector at an edge pixel points

to the center of  the circle.

*(r,c)
d

83Linda Shapiro  Oct 9, 2025



Ranjay Krishna January 21, 2025Lecture 5 -

●Why it works

Filled Circle:  

Outer points of circle have gradient

direction pointing to center.

Circular Ring:

Outer points gradient towards center.

Inner points gradient away from center.

The points in the away direction don’t

accumulate in one bin!
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●Finding lung nodules (Kimme & Ballard)
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Hough transform remarks

● Advantages:

○ Conceptually simple.

○ Easy implementation 

○ Handles missing and occluded data very gracefully.

○ Can be adapted to many types of forms, not just lines

○ Runs in O(N*num_ang_per_point) where N is the number of edge pixels

● Disadvantages:

○ Computationally complex for shapes with many parameters. 

○ Looks for only one single shape of object 

○ Can be “fooled” by “apparent lines”. 

○ The length and the position of a line segment cannot be determined. 

○ Co-linear line segments cannot be separated.
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Applications
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Summary

Optional reading:
Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition
Sections 7.1, 8.1.4

89

● Edge detector with noisy images

● Sobel Edge detector

● Canny edge detector

● Hough Transform
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Next time

90

Key Points and Corners
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