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Lecture 4

Derivatives and edges
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Administrative

A1 is out

- It will be graded

- Due Oct 14
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Administrative

3

Recitations 

● Friday afternoons 12:30-1:20pm @ SIG 134

This week:

We will go over Python & Numpy basics

Linda Shapiro  Oct 7, 2025
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So far: 2D impulse function

● A special function

● 1 at the origin [0,0].

● 0 everywhere else

44Linda Shapiro  Oct 7, 2025
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● The moving average filter equation again:

So far: We get the impulse response when we 

pass an impulse function through a LSI system

Pass in an impulse function Record its response

5Linda Shapiro  Oct 7, 2025
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So far: write down f as a sum of impulses

f[2,2]f[2,1]f[2,0]

f[1,2]f[1,1]f[1,0]

f[1,1]f[0,1]f[0,0]

Let’s say our input f is a 3x3 image:

000

000

00f[0,0]

000

000

0f[0,1]0

f[2,2]00

000

000

= + + … +

000

000

001

000

000

010

100

000

000
=    
f[0,0]✕

+     
f[0,1]✕

+   …     + f[2,2]✕
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So far: We derived convolutions

● An LSI system is completely specified by its impulse response.

○ For any input f, we can compute the output g in terms of the impulse response h.

Discrete Convolution

7Linda Shapiro  Oct 7, 2025
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Today’s agenda

● Convolutions and Cross-Correlation

● Edge detection

● Image Gradients

● A simple edge detector

10Linda Shapiro  Oct 7, 2025
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Today’s agenda

● Convolutions and Cross-Correlation

● Edge detection

● Image Gradients

● A simple edge detector

11Linda Shapiro  Oct 7, 2025



Ranjay Krishna, Jieyu Zhang Jan 16, 2025Lecture 4 -

[n,m]

2D Discrete Convolution

Kernel h[k, l]

f[0,0] f[0,1]

f[1,0]

Image f[k, l]Output  f *h

h[-1,0] h[-1,1]h[-1,-1]

h[0,0] h[0,1]h[0,-1]

h[1,0] h[1,1]h[1,-1]

12Linda Shapiro  Oct 7, 2025
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2D Discrete Convolution

Kernel h[k, l] Kernel h[-k, -l]

Fold Shift

Kernel h[n-k, m-l]

h[n,m]

h[-1,0] h[-1,1]h[-1,-1]

h[0,0] h[0,1]h[0,-1]

h[1,0] h[1,1]h[1,-1]

h[1,0] h[1,-1]h[1,1]

h[0,0] h[0,-1]h[0,1]

h[-1,0] h[-1,-1]h[-1,1]

13Linda Shapiro  Oct 7, 2025
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2D Discrete Convolution

f[0,0] f[0,1]

f[1,0]

f[n,m]

Kernel h[n-k, m-l]Image f[k, l]Output  f *h

[n,m] h[n,m]

14Linda Shapiro  Oct 7, 2025
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2D Discrete Convolution

Element-wise multiplication
Image f[k, l] • Kernel h[n-k, m-l]

f[0,0] f[0,1]

f[1,0]

[n,m]

15

Output  f *h Image f[k, l]

Linda Shapiro  Oct 7, 2025
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f[0,0] f[0,1]

f[1,0]

2D Discrete Convolution

Element-wise multiplication
Image f[k, l] • Kernel h[n-k, m-l]

16

Output  f *h Image f[k, l]

Linda Shapiro  Oct 7, 2025
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f[0,0] f[0,1]

f[1,0]

2D Discrete Convolution

Element-wise multiplication
Image f[k, l] • Kernel h[n-k, m-l]

17

Output  f *h Image f[k, l]
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f[0,0] f[0,1]

f[1,0]

2D Discrete Convolution

18

Element-wise multiplication
Image f[k, l] • Kernel h[n-k, m-l]

Output  f *h Image f[k, l]

Linda Shapiro  Oct 7, 2025
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2D Discrete Convolution

●

19Linda Shapiro  Oct 7, 2025
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2D convolution example

Slide credit: Song Ho Ahn

20Linda Shapiro  Oct 7, 2025

Flip it:  1   2   1

0   0   0

-1 -2  -1
Why did I not have to flip it the other way?
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2D convolution example

Slide credit: Song Ho Ahn
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2D convolution example

Slide credit: Song Ho Ahn
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2D convolution example

Slide credit: Song Ho Ahn
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2D convolution example

Slide credit: Song Ho Ahn
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2D convolution example

Slide credit: Song Ho Ahn
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2D convolution example

Slide credit: Song Ho Ahn
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Original

?=*

Practice with convolution

0 00

1 00

0 00

27Linda Shapiro  Oct 7, 2025
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Filtered 

(no change)

*
Original

=
0 00

1 00

0 00

Practice with convolution

28Linda Shapiro  Oct 7, 2025
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*

Practice with convolution

Original

?=
0 00

0 10

0 00

29Linda Shapiro  Oct 7, 2025
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Shifted right

By 1 pixel

*

Practice with convolution

Original

=
0 00

0 10

0 00

30Linda Shapiro  Oct 7, 2025

Why?  0 0 1 becomes 1 0 0 when shifted, so that 1 is multiplied by the pixel to the LEFT of center, creating a right shift.
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*

Practice with convolution

Original

?=
1 11

1 11

1 11

31Linda Shapiro  Oct 7, 2025
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Blurry output

*

Practice with convolution

Original

=
1 11

1 11

1 11

32Linda Shapiro  Oct 7, 2025
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- = ?

(Note that filter sums to 1)

Original

What happens if a system contains multiple filters?

1 11

1 11

1 11

0 00

2 00

0 00

33Linda Shapiro  Oct 7, 2025
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-

= +

Original

What happens if a system contains multiple filters?

1 11

1 11

1 11

0 00

2 00

0 00

-
1 11

1 11

1 11

0 00

1 00

0 00

0 00

1 00

0 00

34Linda Shapiro  Oct 7, 2025
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original smoothed (3x3)

–
=

Detailed

Detailedoriginal Sharpened

= + -
1 11

1 11

1 11

0 00

1 00

0 00

0 00

1 00

0 00

What does blurring take away?

35Linda Shapiro  Oct 7, 2025
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original smoothed (3x3)

–
=

=

Let’s add it back to get a sharpening system:

+

Detailed

Detailedoriginal Sharpened

36

What does blurring take away?

Linda Shapiro  Oct 7, 2025
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Convolution in 2D – Sharpening filter

Sharpening system: Accentuates differences with local average

Original

Sharpening system

37Linda Shapiro  Oct 7, 2025
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Implementation detail: Image support and 

edge effect
• A computer will only convolve finite support signals. 

• That is: images that are zero for n,m outside some 
rectangular region

• numpy’s convolution performs 2D convolution of finite-support 
signals.

N1 ×M1

N2 ×M2 

(N1 + N2 − 1) × (M1 +M2 − 1)* =

38Linda Shapiro  Oct 7, 2025
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Image support and edge effect

• A computer will only convolve finite support signals. 
• What happens at the edge?

f

h

• zero “padding”
• edge value replication
• mirror extension
• more (beyond the scope of this class)

39Linda Shapiro  Oct 7, 2025
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Today’s agenda

● Convolutions and Cross-Correlation

● Edge detection

● Image Gradients

● A simple edge detector

40Linda Shapiro  Oct 7, 2025
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• Equivalent to a convolution without the flip
• Use it to measure ‘similarity’ between f and h.

41Linda Shapiro  Oct 7, 2025
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C
o

u
rtesy o

f J. 
Fessler

(Cross) correlation – example
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(Cross) correlation – example
C

o
u

rtesy o
f J. 

Fessler
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numpy’s 
correlate

C
o

u
rtesy o

f J. 
Fessler

C
o

u
rtesy o

f J. 
Fessler

(Cross) correlation – example
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(Cross) correlation – example
Lef
t

Righ
t

scanline

N
o

rm
. c

ro
ss
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o

rr
. s

co
re
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Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer Graphics and Applications, 1998 copyright 1998, IEEE

Cross Correlation Application: Vision 

system for TV remote control

- uses template matching

46Linda Shapiro  Oct 7, 2025
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Properties of cross correlation

• Associative property:

• Distributive property:

The order doesn’t matter!

47Linda Shapiro  Oct 7, 2025
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Convolution vs. (Cross) Correlation

● When is correlation equivalent to convolution?

● In other words, Q. when is f**g = f*g? 

49Linda Shapiro  Oct 7, 2025
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Convolution vs. (Cross) Correlation

● A convolution is an integral that expresses the amount of overlap of one 

function as it is shifted over another function. 

○convolution is a filtering operation

● Correlation compares the similarity of two sets of data. Correlation 

computes a measure of similarity of two input signals as they are shifted 

by one another. The correlation result reaches a maximum at the time 

when the two signals match best .

○correlation is a measure of relatedness of two signals

50Linda Shapiro  Oct 7, 2025
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What we will learn today

● Convolutions and Cross-Correlation

● Edge detection

● Image Gradients

● A simple edge detector

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 8

51Linda Shapiro  Oct 7, 2025
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Q. What do you see?

52Linda Shapiro  Oct 7, 2025
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(A)Cave painting at Chauvet, 
France, about 30,000 
B.C.;

(B)Aerial photograph of the 
picture of a monkey as 
part of the Nazca Lines 
geoglyphs, Peru, about 
700 – 200 B.C.; 

(C)Shen Zhou (1427-1509 
A.D.): Poet on a mountain 
top, ink on paper, China; 

(D)Line drawing by 7-year 
old I. Lleras (2010 A.D.). 

Linda Shapiro  Oct 7, 2025
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We know edges are special from human 

(mammalian) vision studies

Hubel & Wiesel, 1960s
Linda Shapiro  Oct 7, 2025
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We know edges are special from human 

(mammalian) vision studies
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Walther, Chai, Caddigan, Beck & Fei-Fei, PNAS, 2011

57Linda Shapiro  Oct 7, 2025
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Edge detection
• Goal:  Identify sudden changes (discontinuities) in an image

○ Intuitively, most semantic and shape information from the image can be 

encoded in the edges

○ More compact than pixels

• Ideal: artist’s line drawing (but artist is also using object-level knowledge)

58Linda Shapiro  Oct 7, 2025
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Why do we care about edges?

● Extract information, recognize objects

● Recover geometry and viewpoint

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)

Source: J. Hayes59Linda Shapiro  Oct 7, 2025
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Origins of edges

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

60Linda Shapiro  Oct 7, 2025
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Surface normal discontinuity

Closeup of edges

61Linda Shapiro  Oct 7, 2025
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Depth discontinuity

Closeup of edges

62Linda Shapiro  Oct 7, 2025
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Closeup of edges

Surface color discontinuity

63Linda Shapiro  Oct 7, 2025
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What we will learn today

● Convolutions and Cross-Correlation

● Edge detection

● Image Gradients

● A simple edge detector

64Linda Shapiro  Oct 7, 2025
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Review: Derivatives in 1D - example

Q. What is the dy/dx?

65Linda Shapiro  Oct 7, 2025
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Review: Derivatives in 1D - example
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Derivatives in 1D - example

Q. What is the dy/dx?
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Derivatives in 1D - example
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Approximating derivatives using numerical 

differentiation

69Linda Shapiro  Oct 7, 2025
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Approximating derivatives using numerical 

differentiation
Change in f at x

Change in x

70Linda Shapiro  Oct 7, 2025
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In discrete derivatives with images, smallest value of x is 

1 pixel

71

This is called a forward derivative

Linda Shapiro  Oct 7, 2025
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But change at x can be measured in many 

different ways

Backward

72Linda Shapiro  Oct 7, 2025
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But change at x can be measured in many 

different ways

Backward

Forward
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But change at x can be measured in many 

different ways

Backward

Forward

Central

74Linda Shapiro  Oct 7, 2025
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●Using Backward differentiation

Q. What is the equation in width (2nd) dimension?

Designing filters that perform differentiation 

75Linda Shapiro  Oct 7, 2025
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●Using Backward differentiation

Designing filters that perform differentiation 

76Linda Shapiro  Oct 7, 2025
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 

moving average 

filter:

77Linda Shapiro  Oct 7, 2025
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 

moving average 

filter:

? ??

? ??

? ??
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 

moving average 

filter:

? ??

1 ??

? ??
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 

moving average 

filter:

? ??

1 ??

? ??
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 

moving average 

filter:

? ?0

1 ??

? ??
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 

moving average 

filter:

? ?0

1 ??

? ??
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 

moving average 

filter:

0 00

1 ??

? ??
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 

moving average 

filter:

0 00

1 ??

? ??

84Linda Shapiro  Oct 7, 2025
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 

moving average 

filter:

0 00

1 ??

0 00
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●Using Backward differentiation

Q. Last ones: What are these two?

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 

moving average 

filter:

0 00

1 ??

0 00

86Linda Shapiro  Oct 7, 2025
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●Using Backward differentiation

Q. Last ones: What are these two?

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 

moving average 

filter:

0 00

1 -10

0 00

87Linda Shapiro  Oct 7, 2025

Remember that

convolution flips
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●Using Backward differentiation:

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 

moving average 

filter:

1 -10

88Linda Shapiro  Oct 7, 2025
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●Using Backward differentiation:

●Using Forward differentiation:

Q. What is the formula?

Designing filters that perform differentiation 

1 -10

89Linda Shapiro  Oct 7, 2025
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●Using Backward differentiation:

●Using Forward differentiation:

Q. What is the filter look like?

Designing filters that perform differentiation 

1 -10

? ??

90Linda Shapiro  Oct 7, 2025
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●Using Backward differentiation:

●Using Forward differentiation:

Designing filters that perform differentiation 

1 -10

-1 01

91
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●Using Backward differentiation:

●Using Forward differentiation:

●Using Central differentiation: 

Designing filters that perform differentiation 

1 -10

-1 01

Q. What is the formula?

92Linda Shapiro  Oct 7, 2025
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●Using Backward differentiation:

●Using Forward differentiation:

●Using Central differentiation: 

Designing filters that perform differentiation 

1 -10

-1 01

Q. What is 

the filter?
? ??

93Linda Shapiro  Oct 7, 2025
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●Using Backward differentiation:

●Using Forward differentiation:

●Using Central differentiation: 

Designing filters that perform differentiation 

1 -10

-1 01

0 -11

94Linda Shapiro  Oct 7, 2025
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Derivative in width dimension for one row

Using backward differentiation: 1 -10
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Derivative in width dimension for one row

Using backward differentiation: 1 -10

?
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= 0 x          + 10x          + 15x

Derivative in width dimension for one row

Using backward differentiation: 1 -10

?

97

1 0-1
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Derivative in width dimension for one row

Using backward differentiation: 1 -10

?

98

= 10 x          + 15x          + 10x1 0-1
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Derivative in width dimension for one row

Using backward differentiation: 1 -10

?

99

= 15 x          + 10x          + 10x1 0-1
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Derivative in width dimension for one row

Using backward differentiation: 1 -10

?

100

= 10 x          + 10x          + 25x1 0-1
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Derivative in width dimension for one row

Using backward differentiation: 1 -10

?       ?     ?

101

= 0 x          + 10x          + 15x1 0-1
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Derivative in width dimension for one row

Using backward differentiation: 1 -10
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Discrete derivation in 2D:
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Discrete derivation in 2D:
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Discrete derivation in 2D:

105Linda Shapiro  Oct 7, 2025

I usually use atan2
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2D discrete derivative - example
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2D discrete derivative - example
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2D discrete derivative - example
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2D discrete derivative - example
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2D discrete derivative - example
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2D discrete derivative - example
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2D discrete derivative - example
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2D discrete derivative - example
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2D discrete derivative - example
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2D discrete derivative - example

?           ?          ?           ?           ?
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2D discrete derivative - example
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Let’s do the other one
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Let’s do the other one
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Let’s do the other one
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Let’s do the other one
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Let’s do the other one
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Let’s do the other one
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Let’s do the other one
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Let’s do the other one
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Let’s do the other one
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Let’s do the other one
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Let’s do the other one
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2D discrete derivative filters

Q. What does this filter do?
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2D discrete derivative filters

Q. What does this filter do?
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Q. Which filter was applied?

A B
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What we will learn today

● Convolutions and Cross-Correlation

● Edge detection

● Image Gradients

● A simple edge detector
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Characterizing edges

An edge is a place of rapid change in the image intensity function

image
intensity function

(along horizontal scanline)
first 

derivative

edges correspond to

extrema of derivative
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The gradient vector points in the direction of most rapid increase in intensity

Image gradient
The gradient of an image: 

Source: Steve Seitz134Linda Shapiro  Oct 7, 2025
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The gradient vector points in the direction of most rapid increase in intensity

Image gradient
The gradient of an image: 

The edge strength is given by the gradient magnitude
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Finite differences: example

Original
Image

Gradient 
magnitude

width-direction height-direction
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Intensity profile

G
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Summary

138

● Convolutions and Cross-Correlation

● Edge detection

● Image Gradients

● A simple edge detector
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Next time: Detecting lines
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