Lecture 4 Derivatives and edges

Administrative

A1 is out

- It will be graded
- Due Oct 14

Administrative

Recitations

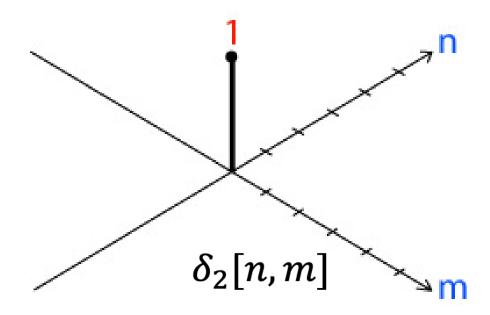
Friday afternoons 12:30-1:20pm @ SIG 134

This week:

We will go over Python & Numpy basics

So far: 2D impulse function

- A special function
- 1 at the origin [0,0].
- 0 everywhere else



So far: We get the impulse response when we

pass an impulse function through a LSI system • The moving average filter equation again: $g[n,m]=\frac{1}{9}\sum_{i=1}^{n}\sum_{j=1}^{n}f[n-k,m-l]$

$$\begin{array}{c} \delta_2[n,m] \xrightarrow{S} h[n,m] \\ \text{Pass in an impulse function} \end{array}$$
 Record its response

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

So far: write down f as a sum of impulses

Let's say our input f is a 3x3 image:

f[0,0]	f[0,1]	f[1,1]		f[0,0]	0		0		0	f[0,1]	0	_	0	0		0
f[1,0]	f[1,1]	f[1,2]	=	0	0		0	+	0	0		0	+ +	0	0		0
		_	0	0		0		0	0		0		0	0	f	[2,2]	
f[2,0] f[2,1] f[2,2]				1	+		<u>-</u>	_				 -					
			_		1	0	0				1	0			0	0	0
			= f[0,0)]×	0	0	0	+ f[0,1]	×	0	0	0	+ + f	[2,2]×	0	0	0
					0	0	0	_		0	0	0	_		0	0	1

$$= f[0,0] \cdot \delta_2[n,m] + f[0,1] \cdot \delta_2[n,m-1] + \ldots + f[2,2] \cdot \delta_2[n-2,m-2]$$

So far: We derived convolutions

- An LSI system is completely specified by its impulse response.
 - \circ For any input f, we can compute the output g in terms of the impulse response h.

Discrete Convolution

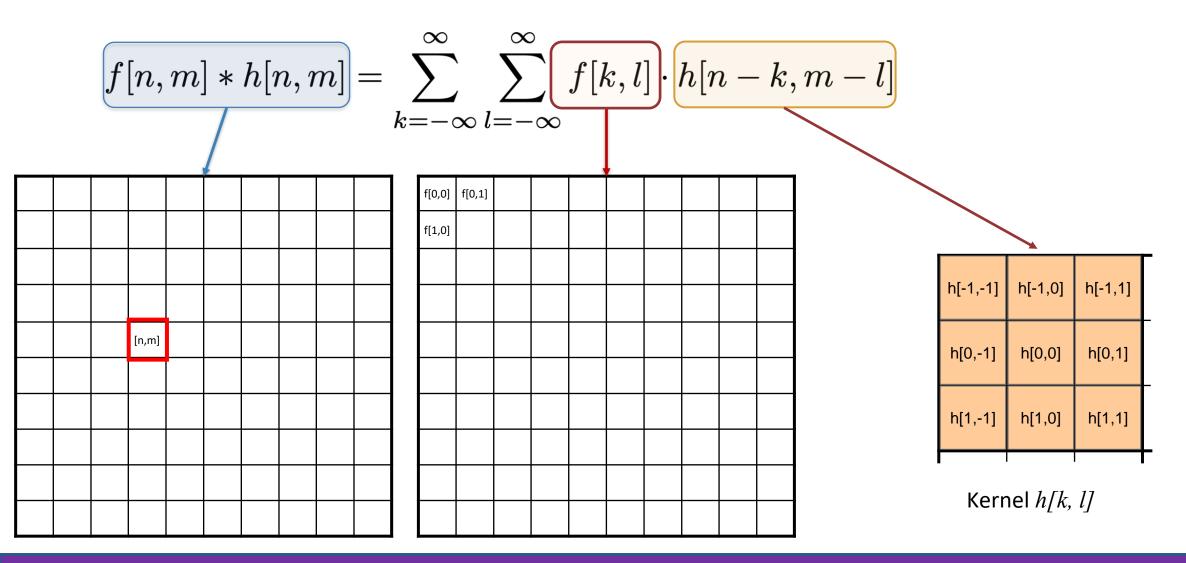
$$f[n,m]*h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

Today's agenda

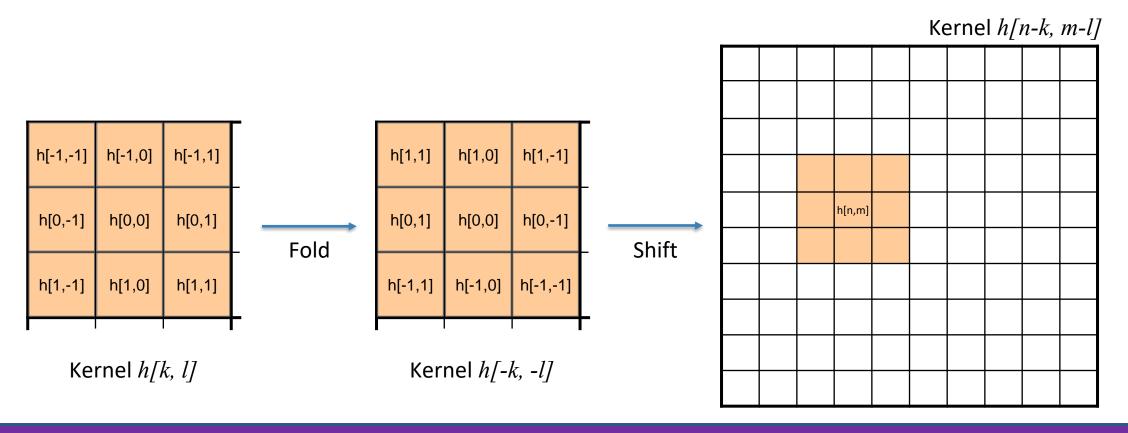
- Convolutions and Cross-Correlation
- Edge detection
- Image Gradients
- A simple edge detector

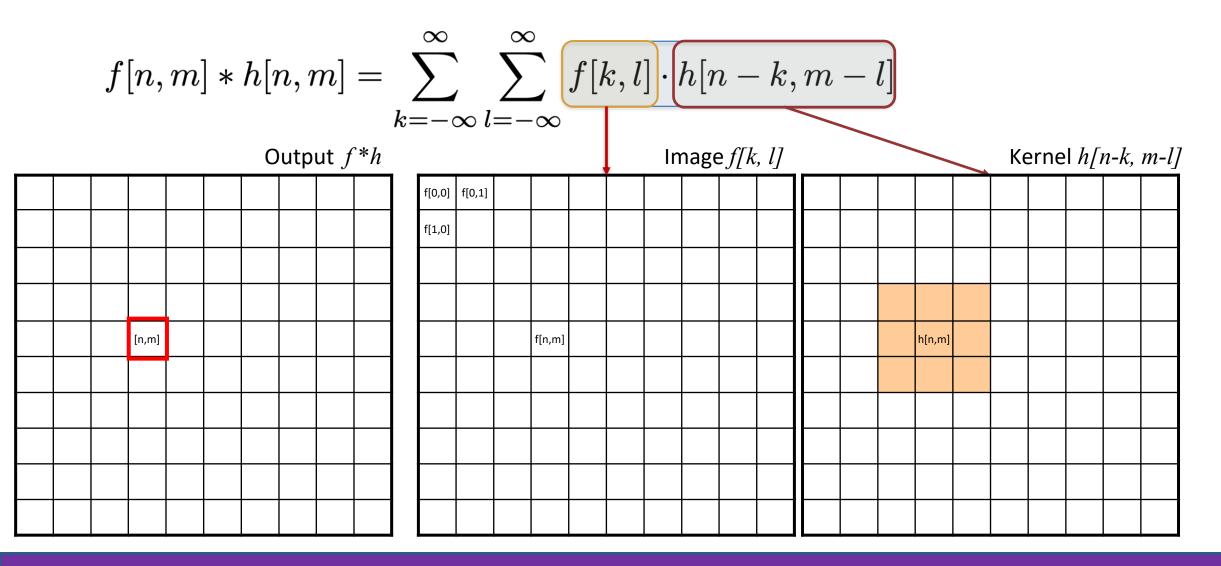
Today's agenda

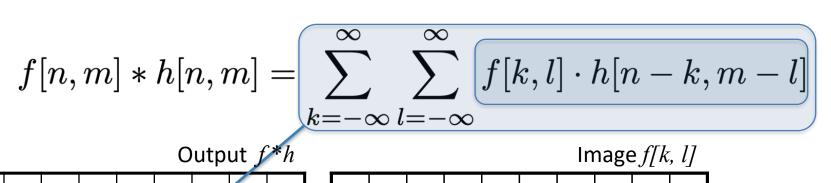
- Convolutions and Cross-Correlation
- Edge detection
- Image Gradients
- A simple edge detector

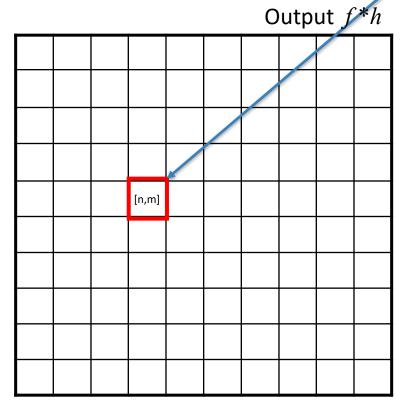


$$f[n,m]*h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \boxed{h[n-k,m-l]}$$









f[0,0]	f[0,1]				
f[1,0]					

Element-wise multiplication Image f[k, l] • Kernel h[n-k, m-l]

$$f[n,m]*h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

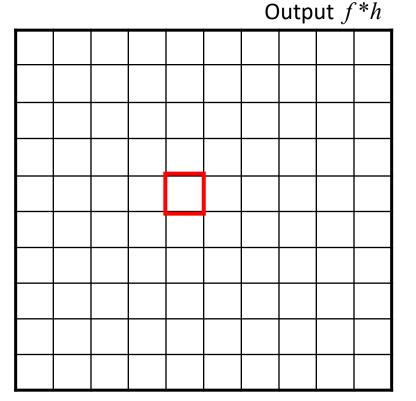


Image *f[k, l]*

f[0,0]	f[0,1]				
f[1,0]					

Element-wise multiplication Image f[k, l] • Kernel h[n-k, m-l]

$$f[n,m]*h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

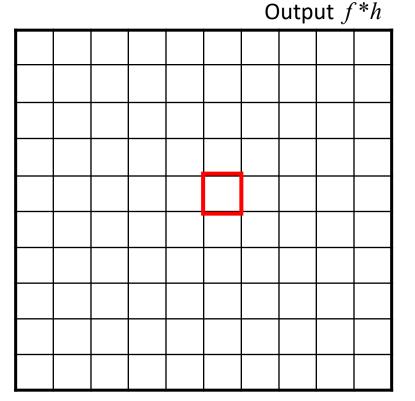


Image *f[k, l]*

Element-wise multiplication Image f/k, l] • Kernel h/n-k, m-l]

$$f[n,m]*h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

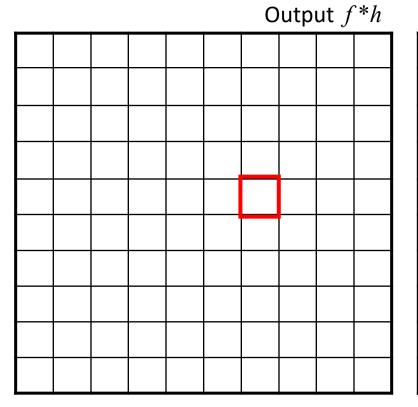


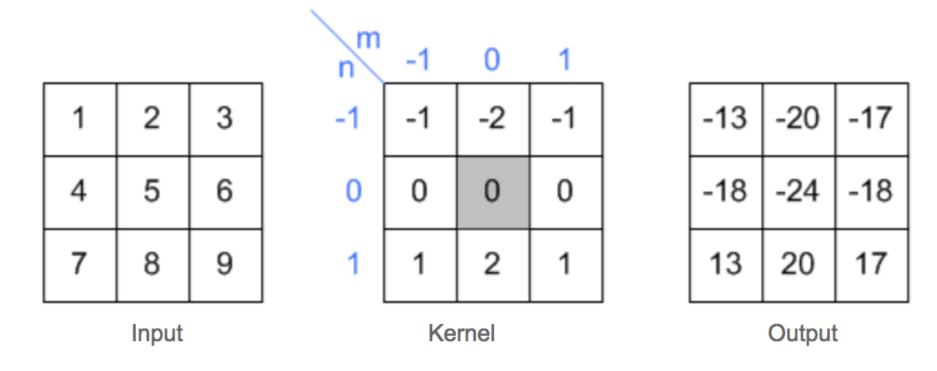
Image *f[k, l]* f[0,0] f[0,1] f[1,0]

Element-wise multiplication Image f/k, l] • Kernel h/n-k, m-l]

•
$$f[n,m]*h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

Algorithm:

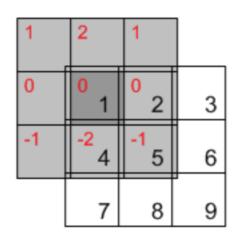
- Fold h[k, l] about origin to form h[-k, -l]
- Shift the folded results by n, m to form h[n-k, m-l]
- Multiply h[n-k, m-l] by f[k, l]
- Sum over all k, l, store result in output position [n, m]
- Repeat for every n, m



Flip it: 1 2 1 0 0 0 -1 -2 -1

Why did I not have to flip it the other way?

Slide credit: Song Ho Ahn

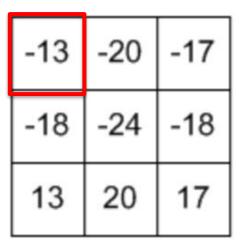


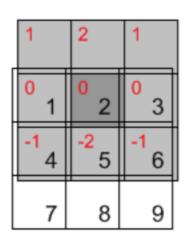
$$= x[-1,-1] \cdot h[1,1] + x[0,-1] \cdot h[0,1] + x[1,-1] \cdot h[-1,1]$$

$$+ x[-1,0] \cdot h[1,0] + x[0,0] \cdot h[0,0] + x[1,0] \cdot h[-1,0]$$

$$+ x[-1,1] \cdot h[1,-1] + x[0,1] \cdot h[0,-1] + x[1,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 + 2 \cdot 0 + 0 \cdot (-1) + 4 \cdot (-2) + 5 \cdot (-1) = -13$$



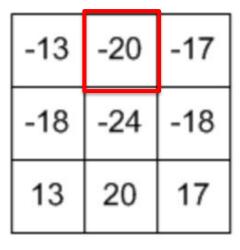


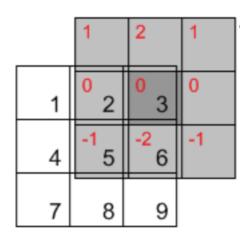
$$= x[0,-1] \cdot h[1,1] + x[1,-1] \cdot h[0,1] + x[2,-1] \cdot h[-1,1]$$

$$+ x[0,0] \cdot h[1,0] + x[1,0] \cdot h[0,0] + x[2,0] \cdot h[-1,0]$$

$$+ x[0,1] \cdot h[1,-1] + x[1,1] \cdot h[0,-1] + x[2,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 0 + 4 \cdot (-1) + 5 \cdot (-2) + 6 \cdot (-1) = -20$$



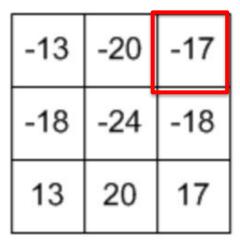


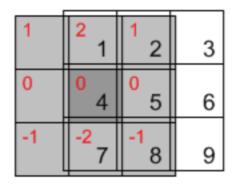
$$= x[1,-1] \cdot h[1,1] + x[2,-1] \cdot h[0,1] + x[3,-1] \cdot h[-1,1]$$

$$+ x[1,0] \cdot h[1,0] + x[2,0] \cdot h[0,0] + x[3,0] \cdot h[-1,0]$$

$$+ x[1,1] \cdot h[1,-1] + x[2,1] \cdot h[0,-1] + x[3,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 + 0 \cdot 0 + 5 \cdot (-1) + 6 \cdot (-2) + 0 \cdot (-1) = -17$$





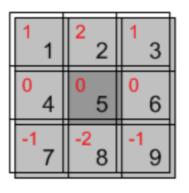
$$= x[-1,0] \cdot h[1,1] + x[0,0] \cdot h[0,1] + x[1,0] \cdot h[-1,1]$$

$$+ x[-1,1] \cdot h[1,0] + x[0,1] \cdot h[0,0] + x[1,1] \cdot h[-1,0]$$

$$+ x[-1,2] \cdot h[1,-1] + x[0,2] \cdot h[0,-1] + x[1,2] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 1 \cdot 2 + 2 \cdot 1 + 0 \cdot 0 + 4 \cdot 0 + 5 \cdot 0 + 0 \cdot (-1) + 7 \cdot (-2) + 8 \cdot (-1) = -18$$



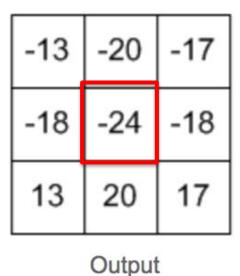


$$= x[0,0] \cdot h[1,1] + x[1,0] \cdot h[0,1] + x[2,0] \cdot h[-1,1]$$

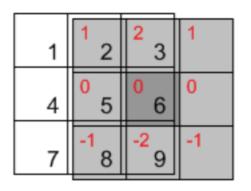
$$+ x[0,1] \cdot h[1,0] + x[1,1] \cdot h[0,0] + x[2,1] \cdot h[-1,0]$$

$$+ x[0,2] \cdot h[1,-1] + x[1,2] \cdot h[0,-1] + x[2,2] \cdot h[-1,-1]$$

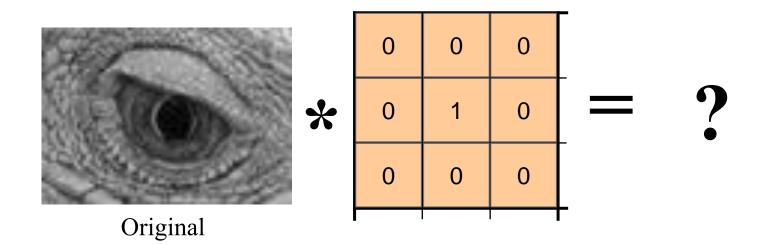
$$= 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 1 + 4 \cdot 0 + 5 \cdot 0 + 6 \cdot 0 + 7 \cdot (-1) + 8 \cdot (-2) + 9 \cdot (-1) = -24$$

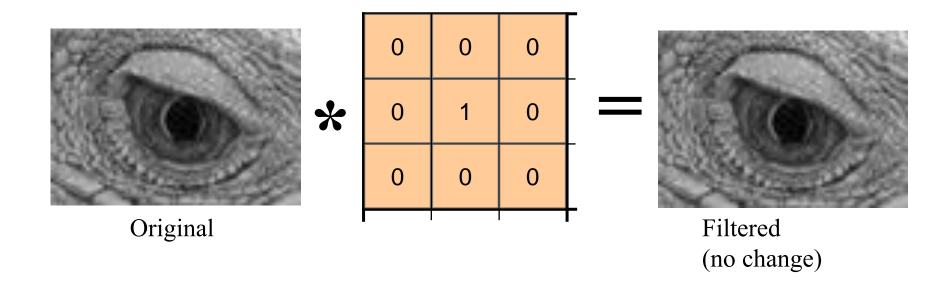


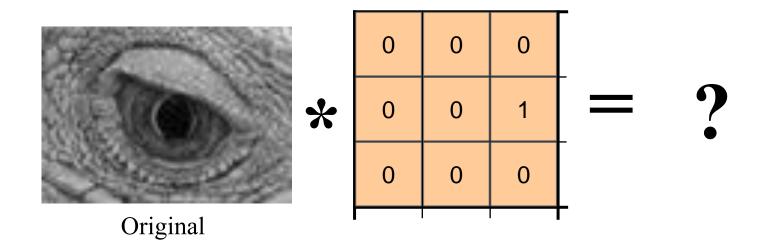
Slide credit: Song Ho Ahn

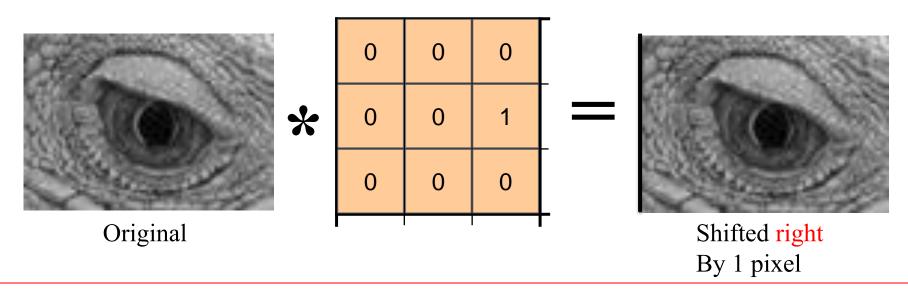


$$= x[1,0] \cdot h[1,1] + x[2,0] \cdot h[0,1] + x[3,0] \cdot h[-1,1] + x[1,1] \cdot h[1,0] + x[2,1] \cdot h[0,0] + x[3,1] \cdot h[-1,0] + x[1,2] \cdot h[1,-1] + x[2,2] \cdot h[0,-1] + x[3,2] \cdot h[-1,-1] = 2 \cdot 1 + 3 \cdot 2 + 0 \cdot 1 + 5 \cdot 0 + 6 \cdot 0 + 0 \cdot 0 + 8 \cdot (-1) + 9 \cdot (-2) + 0 \cdot (-1) = -18$$

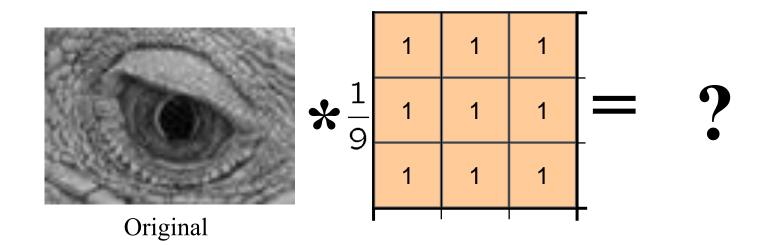


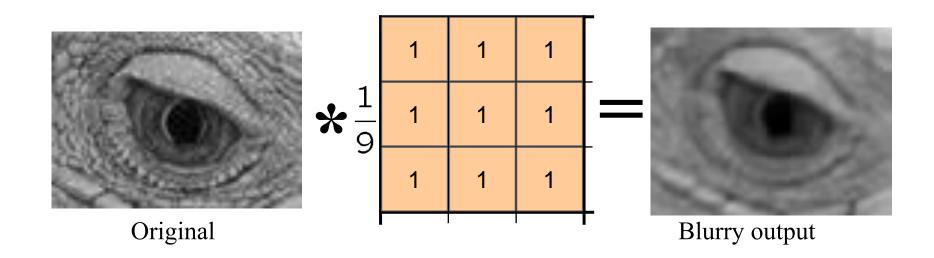




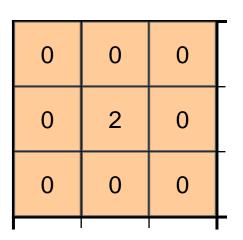


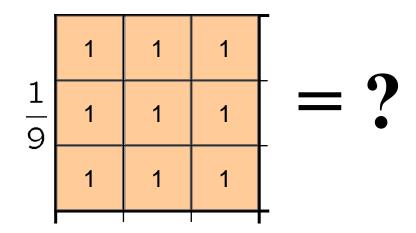
Why? 0 0 1 becomes 1 0 0 when shifted, so that 1 is multiplied by the pixel to the LEFT of center, creating a right shift.





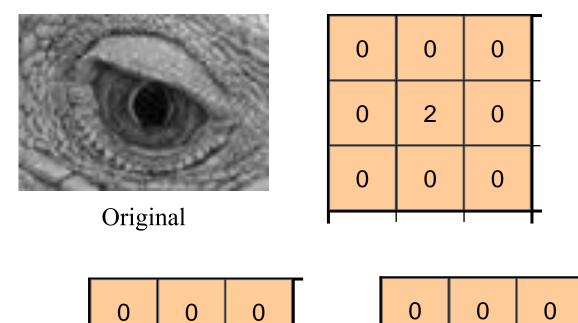
What happens if a system contains multiple filters?



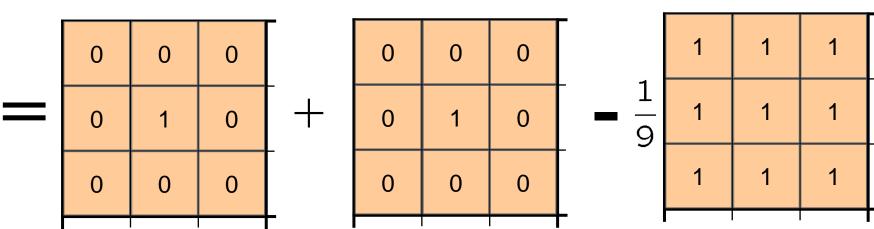


(Note that filter sums to 1)

What happens if a system contains multiple filters?



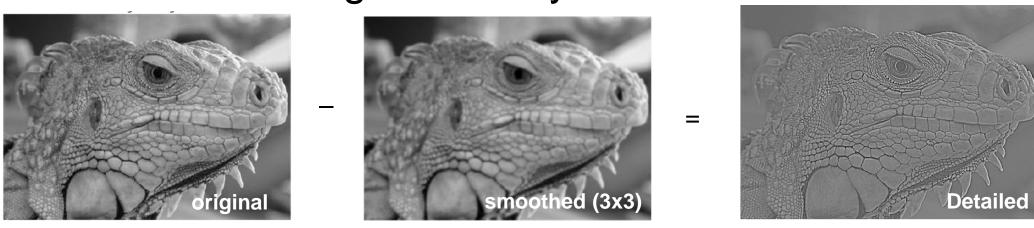
	1	1	1	
1 9	1	1	1	
	1	1	1	



What does blurring take away?

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0		0	0	0		1	1	1	
0 0 0 0 1 1 1	=	0	1	0	+	0	1	0	- 1/9	1	1	1	
		0	0	0	-	0	0	0	_	1	1	1	

What does blurring take away?



Let's add it back to get a sharpening system:

Convolution in 2D – Sharpening filter

Sharpening system

Original

Sharpening system: Accentuates differences with local average

Implementation detail: Image support and edge effect

- A computer will only convolve finite support signals.
 - That is: images that are zero for n,m outside some rectangular region
- numpy's convolution performs 2D convolution of finite-support signals.

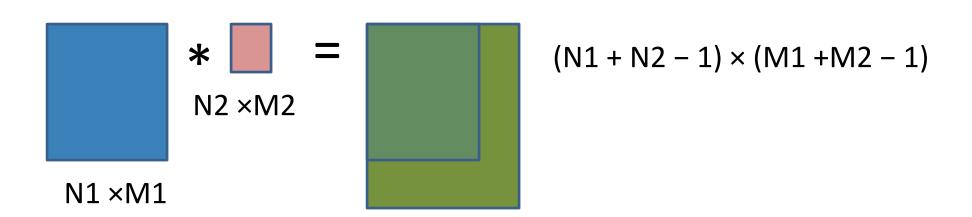
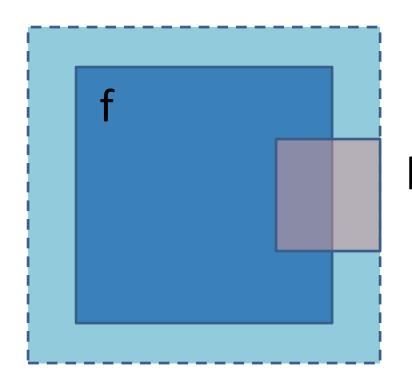


Image support and edge effect

- A computer will only convolve finite support signals.
- What happens at the edge?



- zero "padding"
- edge value replication
- mirror extension
- MOTE (beyond the scope of this class)

Today's agenda

- Convolutions and Cross-Correlation
- Edge detection
- Image Gradients
- A simple edge detector

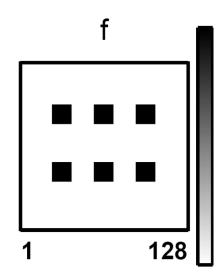
(Cross) correlation – symbol: **

Cross correlation of two 2D signals f[n,m] and h[n,m]

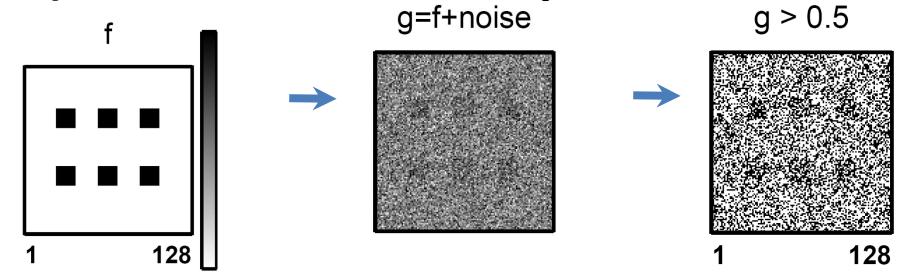
$$f[n,m] ** h[n,m] = \sum_{k} \sum_{l} f[k,l]h[n+k,m+l]$$

- Equivalent to a convolution without the flip
- Use it to measure 'similarity' between f and h.

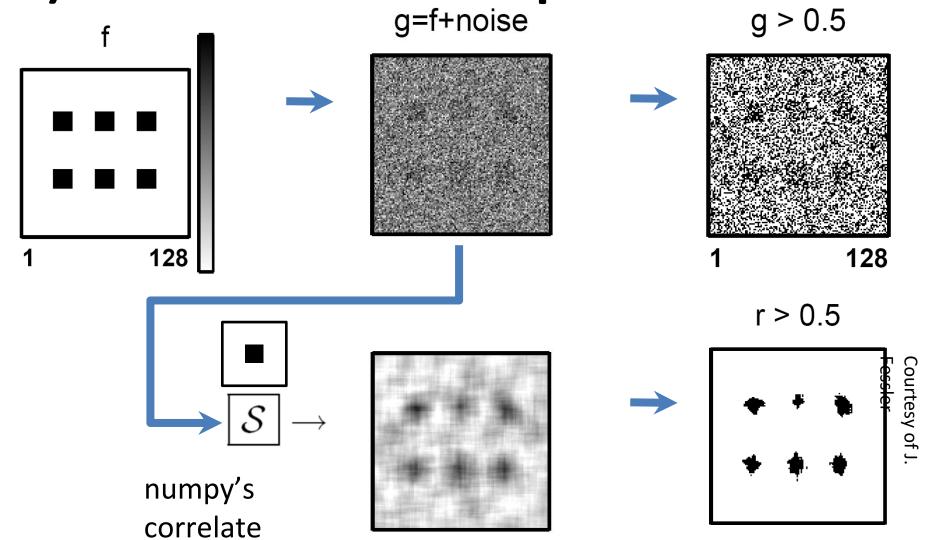
(Cross) correlation – example



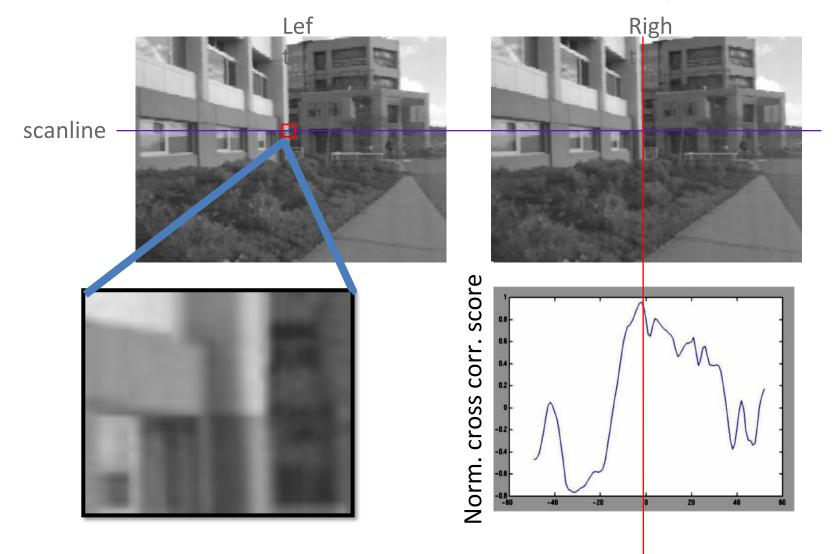
(Cross) correlation – example g=f+noise



(Cross) correlation – example



(Cross) correlation – example



Cross Correlation Application: Vision system for TV remote control

- uses template matching

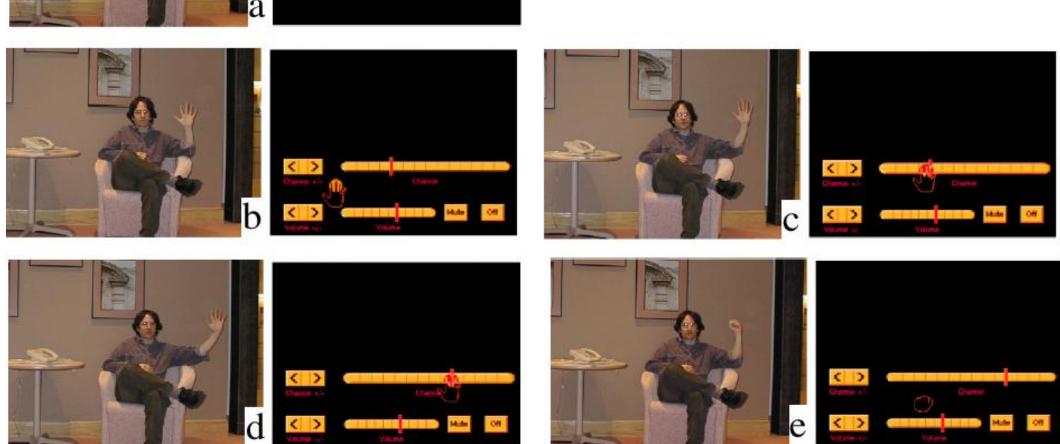


Figure from "Computer Vision for Interactive Computer Graphics," W.Freeman et al, IEEE Computer Graphics and Applications, 1998 copyright 1998, IEEE

Properties of cross correlation

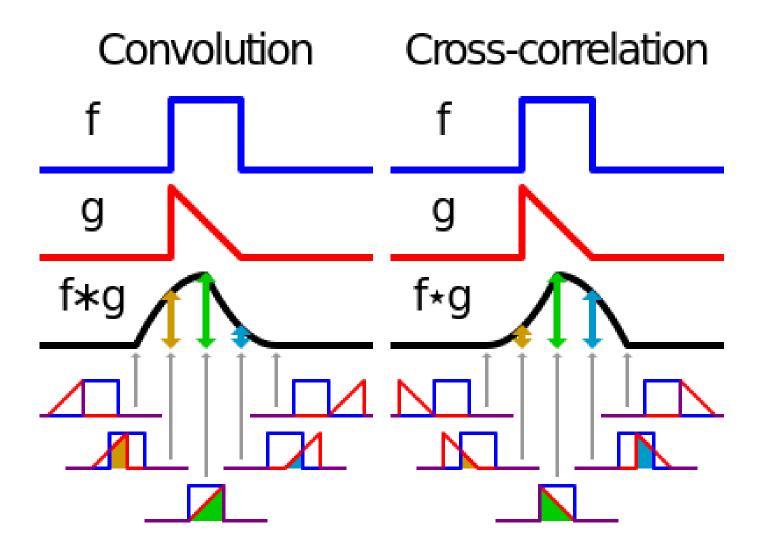
Associative property:

$$(f ** h_1) ** h_2 = f ** (h_1 ** h_2)$$

• Distributive property:

$$f ** (h_1 + h_2) = (f ** h_1) + (f ** h_2)$$

The order doesn't matter! $h_1 ** h_2 = h_2 ** h_1$



Convolution vs. (Cross) Correlation

- When is correlation equivalent to convolution?
- In other words, Q. when is f**g = f*g?

Convolution vs. (Cross) Correlation

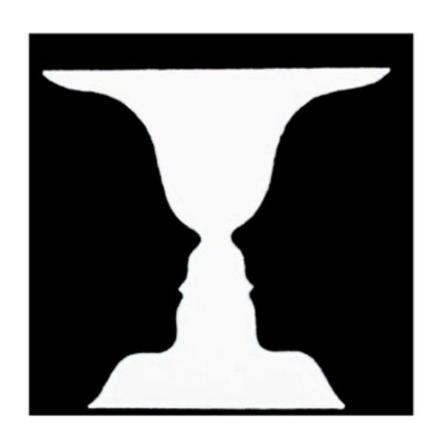
- A <u>convolution</u> is an integral that expresses the amount of overlap of one function as it is shifted over another function.
 - oconvolution is a **filtering** operation
- <u>Correlation</u> compares the *similarity* of *two* sets of *data*. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best.
 - o correlation is a measure of **relatedness** of two signals

What we will learn today

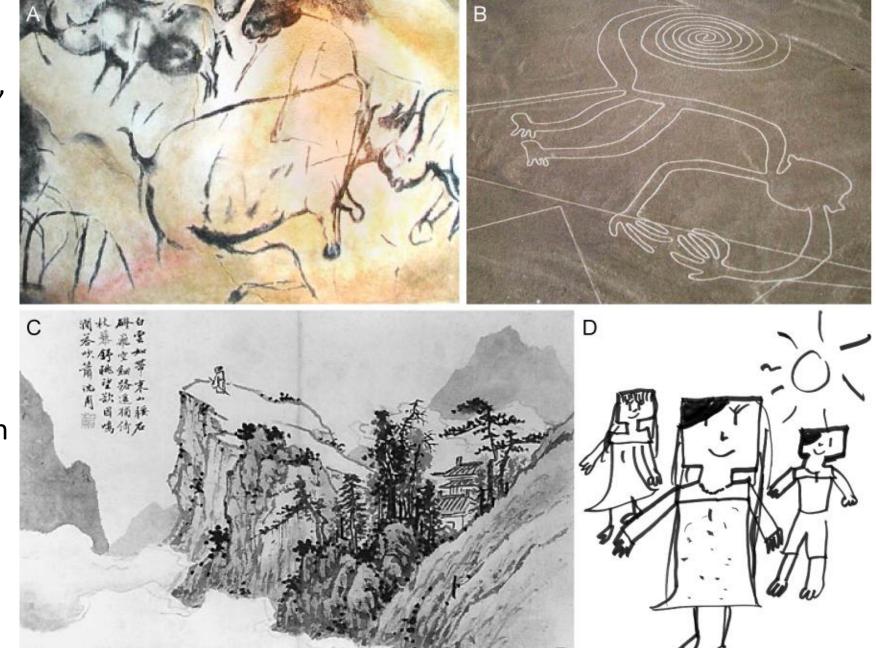
- Convolutions and Cross-Correlation
- Edge detection
- Image Gradients
- A simple edge detector

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 8

Q. What do you see?

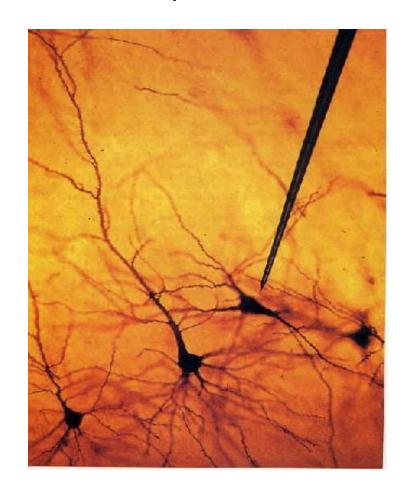


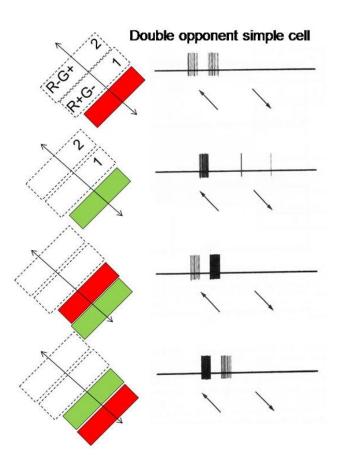
- (A)Cave painting at Chauvet, France, about 30,000 B.C.;
- (B)Aerial photograph of the picture of a monkey as part of the Nazca Lines geoglyphs, Peru, about 700 200 B.C.;
- (C)Shen Zhou (1427-1509A.D.): Poet on a mountain top, ink on paper, China;(D)Line drawing by 7-year old I. Lleras (2010 A.D.).



Ibel & Wiesel, 1960s

We know edges are special from human (mammalian) vision studies





We know edges are special from human (mammalian) vision studies

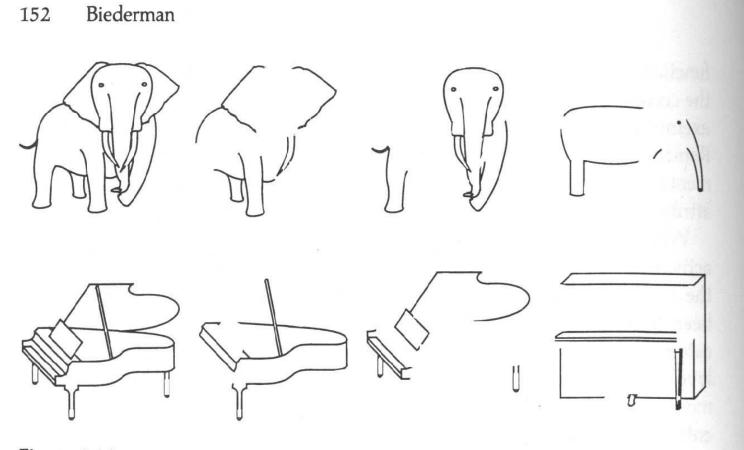
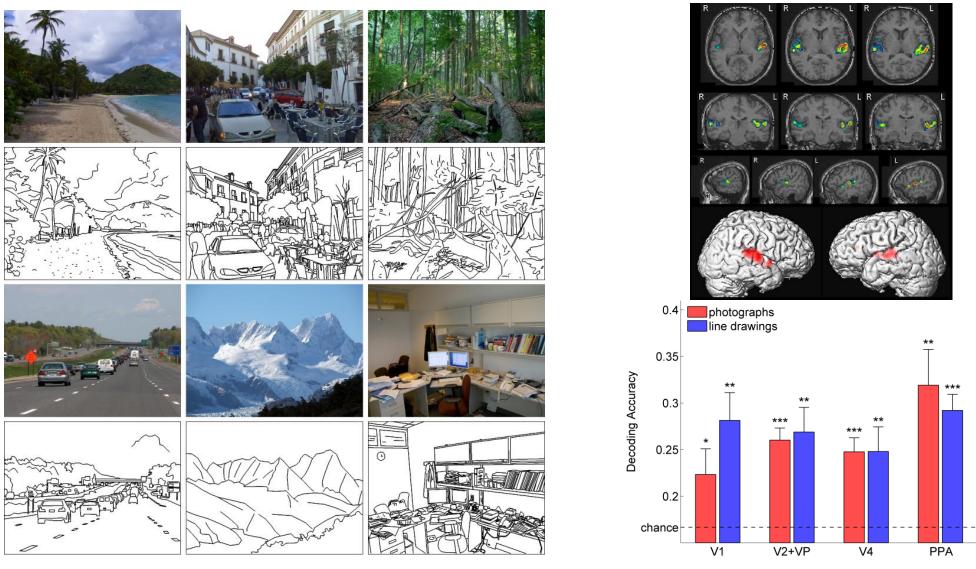


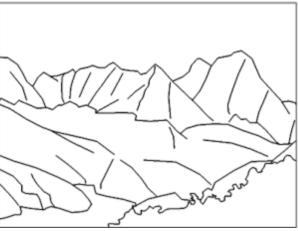
Figure 4.14
Complementary-part images. From an original intact image (left column), two complemen-



Walther, Chai, Caddigan, Beck & Fei-Fei, PNAS, 2011

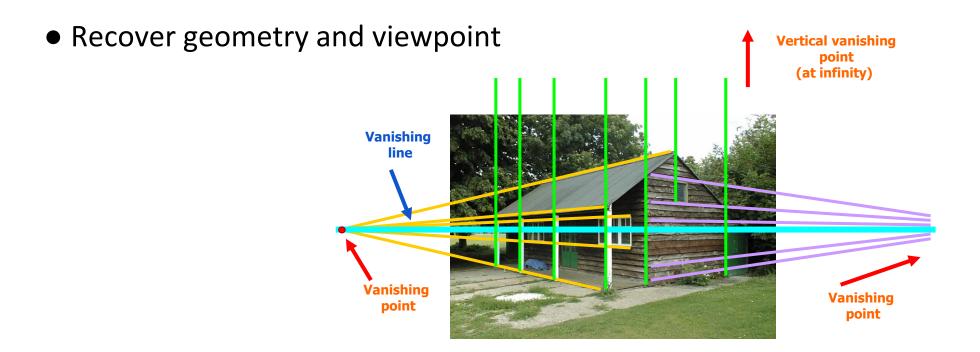
Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

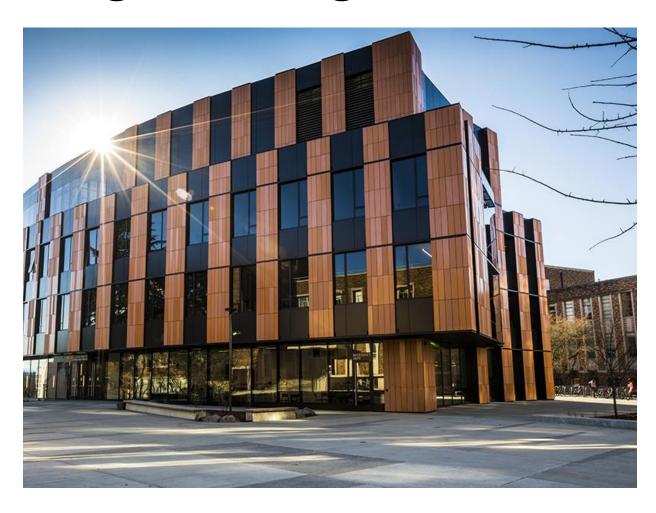


Why do we care about edges?

• Extract information, recognize objects



Origins of edges



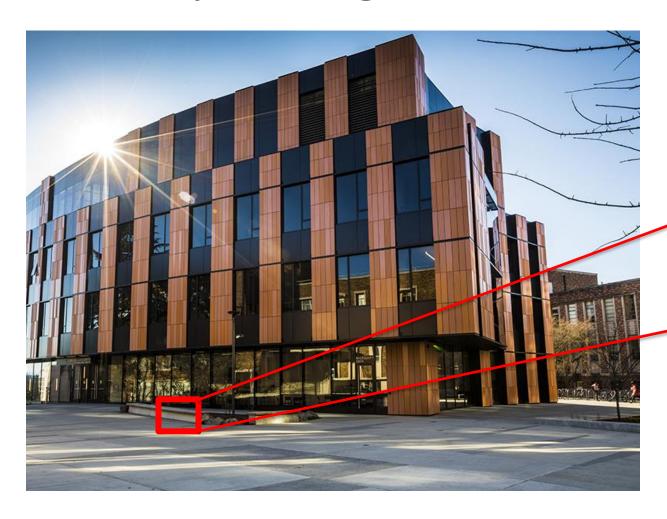
surface normal discontinuity

depth discontinuity

surface color discontinuity

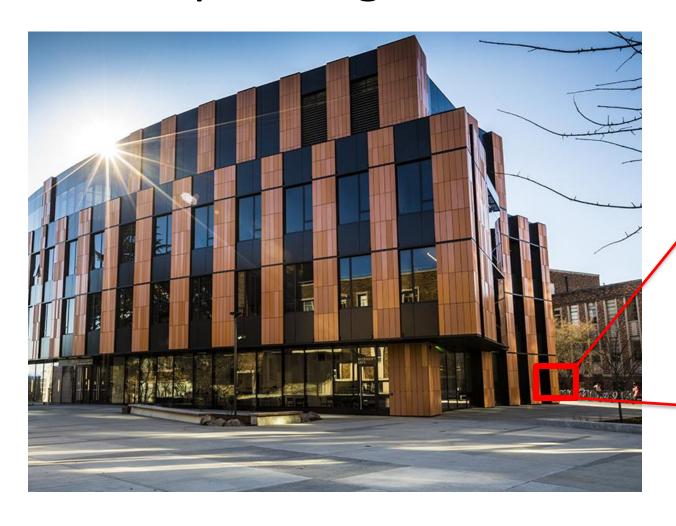
illumination discontinuity

Closeup of edges



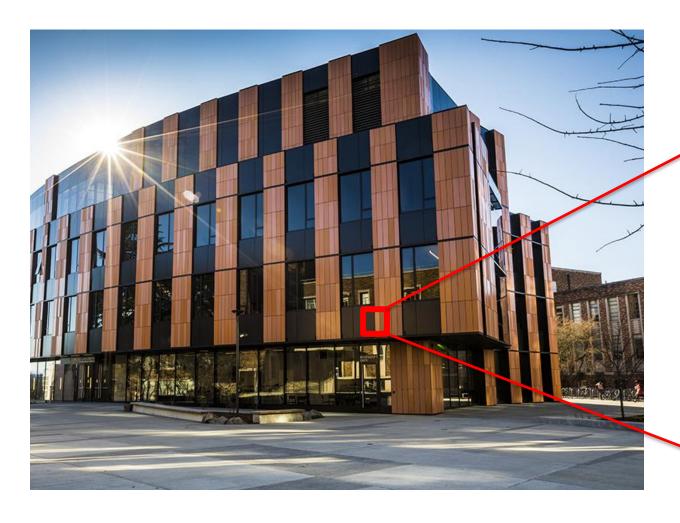
Surface normal discontinuity

Closeup of edges

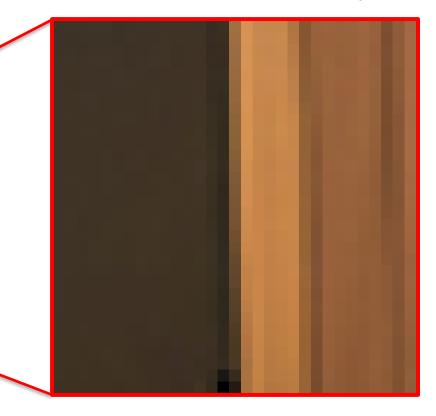


Depth discontinuity

Closeup of edges



Surface color discontinuity



What we will learn today

- Convolutions and Cross-Correlation
- Edge detection
- Image Gradients
- A simple edge detector

Review: Derivatives in 1D - example

$$y = x^2 + x^4$$

Q. What is the dy/dx?

Review: Derivatives in 1D - example

$$y = x^2 + x^4$$

$$\frac{dy}{dx} = 2x + 4x^3$$

Derivatives in 1D - example

$$y = x^{2} + x^{4}$$

$$y = \sin x + e^{-x}$$

$$\frac{dy}{dx} = 2x + 4x^{3}$$
Q. What is the dy/dx?

Derivatives in 1D - example

$$y = x^{2} + x^{4}$$

$$y = \sin x + e^{-x}$$

$$\frac{dy}{dx} = 2x + 4x^{3}$$

$$\frac{dy}{dx} = \cos x + (-1)e^{-x}$$

Approximating derivatives using numerical differentiation

$$\frac{df}{dx} = \lim_{\triangle x=0} \frac{f[x + \triangle x] - f[x]}{\triangle x} = f'(x) = f_x$$

Approximating derivatives using numerical differentiation

Change in
$$f$$
 at x
$$\frac{df}{dx} = \lim_{\triangle x=0} \frac{f[x + \triangle x] - f[x]}{\triangle x} = f'(x) = f_x$$
 Change in x

In discrete derivatives with images, smallest value of x is 1 pixel

$$\frac{df}{dx} = \lim_{\triangle x=0} \frac{f[x + \triangle x] - f[x]}{\triangle x} = f'(x) = f_x$$

$$= \frac{f[x+1] - f[x]}{1}$$

$$= f[x+1] - f[x]$$

This is called a forward derivative

But change at x can be measured in many different ways

$$rac{df}{dx} = f[x] - f[x-1]$$
 Backward

But change at x can be measured in many different ways

$$\frac{df}{dx} = f[x] - f[x-1] \qquad \qquad \text{Backward}$$

$$= f[x+1] - f[x] \qquad \qquad \text{Forward}$$

But change at x can be measured in many different ways

$$rac{df}{dx} = f[x] - f[x-1]$$
 Backward
$$= f[x+1] - f[x]$$
 Forward
$$= rac{1}{2}(f[x+1] - f[x-1])$$
 Central

Using Backward differentiation

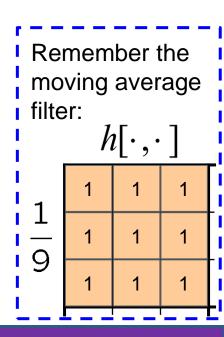
$$g[n, m] = ??$$

Q. What is the equation in width (2nd) dimension?

$$g[n,m] = f[n,m] - f[n,m-1]$$

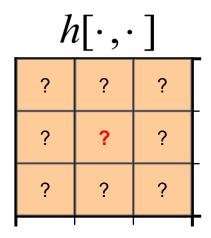
Using Backward differentiation

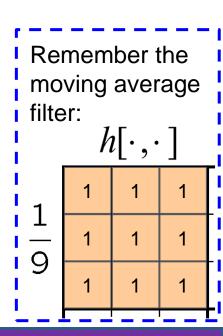
$$g[n,m] = f[n,m] - f[n,m-1]$$



Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

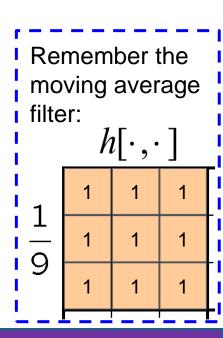




Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

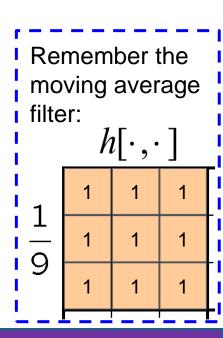
$h[\cdot,\cdot]$			
?	?	?	
?	1	?	
?	?	?	
			Г



Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

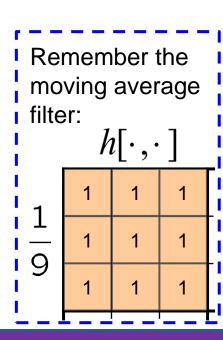
$h[\cdot,\cdot]$			
?	?	?	
?	1	?	
?	?	?	
			Г



Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

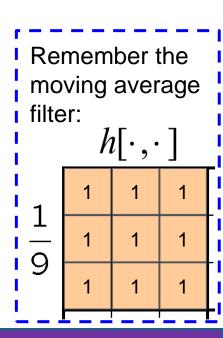
$h[\cdot,\cdot]$			
0	?	?	
?	1	?	
?	?	?	
			Г



Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

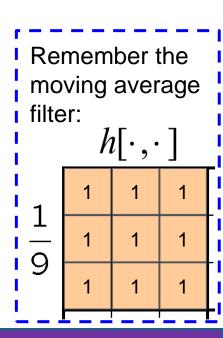
$h[\cdot,\cdot]$			
0	?	?	
?	1	?	
?	?	?	



Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

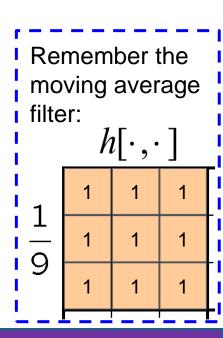
$h[\cdot,\cdot]$			
0	0		
1	?		
?	?		
	1	0 0	



Using Backward differentiation

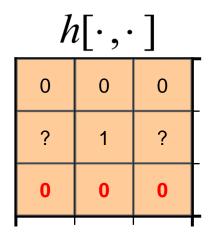
$$g[n,m] = f[n,m] - f[n,m-1]$$

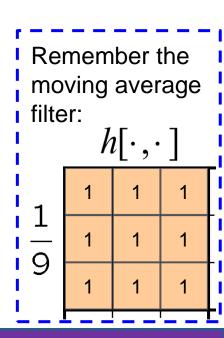
$h[\cdot,\cdot]$			
0	0	0	
?	1	?	
?	?	?	
			Г



Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

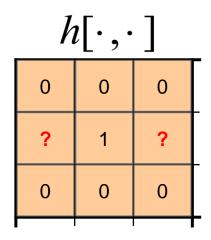


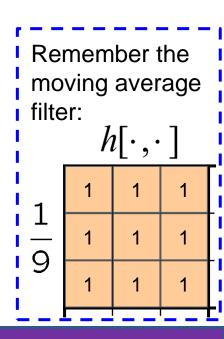


Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

Q. Last ones: What are these two?





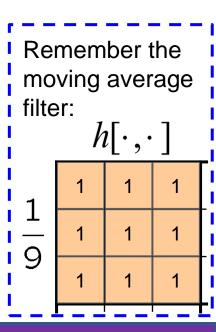
Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

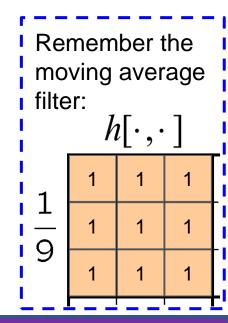
Q. Last ones: What are these two?

Remember that convolution flips

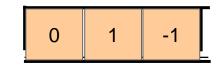
$h[\cdot,\cdot]$		
0	0	0
0	1	-1
0	0	0



$$g[n,m] = f[n,m] - f[n,m-1]$$



Using Backward differentiation:



$$g[n,m] = f[n,m] - f[n,m-1]$$

Using Forward differentiation:

Q. What is the formula?

Using Backward differentiation:

$$g[n,m] = f[n,m] - f[n,m-1]$$

Using Forward differentiation:

$$g[n,m] = f[n,m+1] - f[n,m]$$

Q. What is the filter look like?

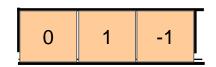
Using Backward differentiation:

$$g[n,m] = f[n,m] - f[n,m-1]$$

Using Forward differentiation:

$$g[n,m] = f[n,m+1] - f[n,m]$$

Using Backward differentiation:



$$g[n,m] = f[n,m] - f[n,m-1]$$

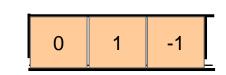
Using Forward differentiation:

$$g[n,m] = f[n,m+1] - f[n,m]$$

Using Central differentiation:

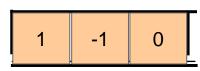
Q. What is the formula?

Using Backward differentiation:



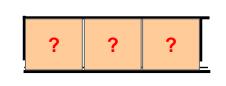
$$g[n,m] = f[n,m] - f[n,m-1]$$

Using Forward differentiation:



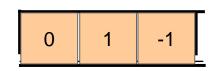
Using Central differentiation:

$$g[n,m] = f[n,m+1] - f[n,m-1]$$



Q. What is the filter?

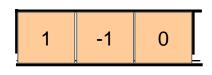
Using Backward differentiation:



$$g[n,m] = f[n,m] - f[n,m-1]$$

Using Forward differentiation:

$$g[n,m] = f[n,m+1] - f[n,m]$$



Using Central differentiation:

$$g[n,m] = f[n,m+1] - f[n,m-1]$$

$$g[n,m] = f[n,m] - f[n,m-1]$$

$$f[0,:] = [10, 15, 10, 10, 25, 20, 20, 20]$$

$$g[n,m] = f[n,m] - f[n,m-1]$$

$$f[0,:] = [10, 15, 10, 10, 25, 20, 20, 20]$$

$$\frac{df}{dm}[0,:] = [?]$$

$$g[n,m] = f[n,m] - f[n,m-1]$$

$$f[0,:] = [10, 15, 10, 10, 25, 20, 20, 20]$$

$$\frac{df}{dm}[0,:] = [10, ?]$$
= 0 x -1 + 10x 1 + 15x 0

$$g[n,m] = f[n,m] - f[n,m-1]$$

$$f[0,:] = [10, 15, 10, 10, 25, 20, 20, 20]$$

$$\frac{df}{dm}[0,:] = [10, 5, ?]$$

$$g[n,m] = f[n,m] - f[n,m-1]$$

$$f[0,:] = [10, 15, 10, 10, 25, 20, 20, 20]$$

$$\frac{df}{dm}[0,:] = [10, 5, -5, ?]$$

$$g[n,m] = f[n,m] - f[n,m-1]$$

$$f[0,:] = [10, 15, 10, 10, 25, 20, 20, 20]$$

$$\frac{df}{dm}[0,:] = [10, 5, -5, 0, ?]$$

$$g[n,m] = f[n,m] - f[n,m-1]$$

$$f[0,:] = [10, 15, 10, 10, 25, 20, 20, 20]$$

$$\frac{df}{dm}[0,:] = [10, 5, -5, 0, 15, ? ?]$$

$$= 0 x - 1 + 10x - 1 + 15x - 0$$

$$g[n,m] = f[n,m] - f[n,m-1]$$

$$f[0,:] = [10, 15, 10, 10, 25, 20, 20, 20]$$

$$\frac{df}{dm}[0,:] = [10, \quad 5, -5, \quad 0, \quad 15, \quad -5, \quad 0]$$

Discrete derivation in 2D:

Given function f[n, m]

Gradient filter
$$\nabla f[n,m] = \begin{bmatrix} \frac{df}{dn} \\ \frac{df}{dm} \end{bmatrix} = \begin{bmatrix} f_n \\ f_m \end{bmatrix}$$

Discrete derivation in 2D:

Given function f[n, m]

Gradient filter
$$\nabla f[n,m] = \begin{bmatrix} \frac{df}{dn} \\ \frac{df}{dm} \end{bmatrix} = \begin{bmatrix} f_n \\ f_m \end{bmatrix}$$

Gradient magnitude $|\nabla f[n,m]| = \sqrt{f_n^2 + f_m^2}$

Discrete derivation in 2D:

Given function f[n, m]

Gradient filter
$$\nabla f[n,m] = \begin{bmatrix} \frac{df}{dn} \\ \frac{df}{dm} \end{bmatrix} = \begin{bmatrix} f_n \\ f_m \end{bmatrix}$$

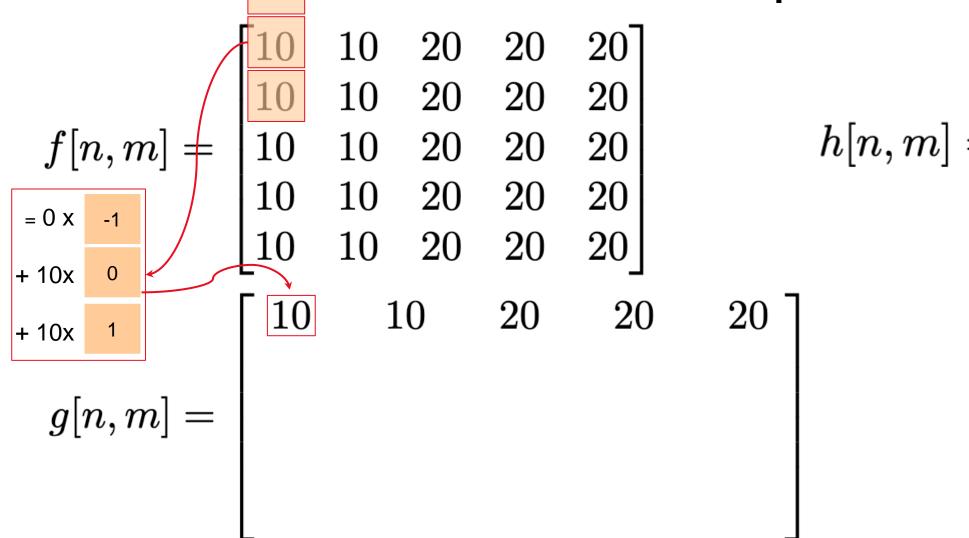
Gradient magnitude
$$|\nabla f[n,m]| = \sqrt{f_n^2 + f_m^2}$$

Gradient direction
$$heta = an^{-1}(rac{f_m}{f_n})$$
 [usually use atan2]

$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

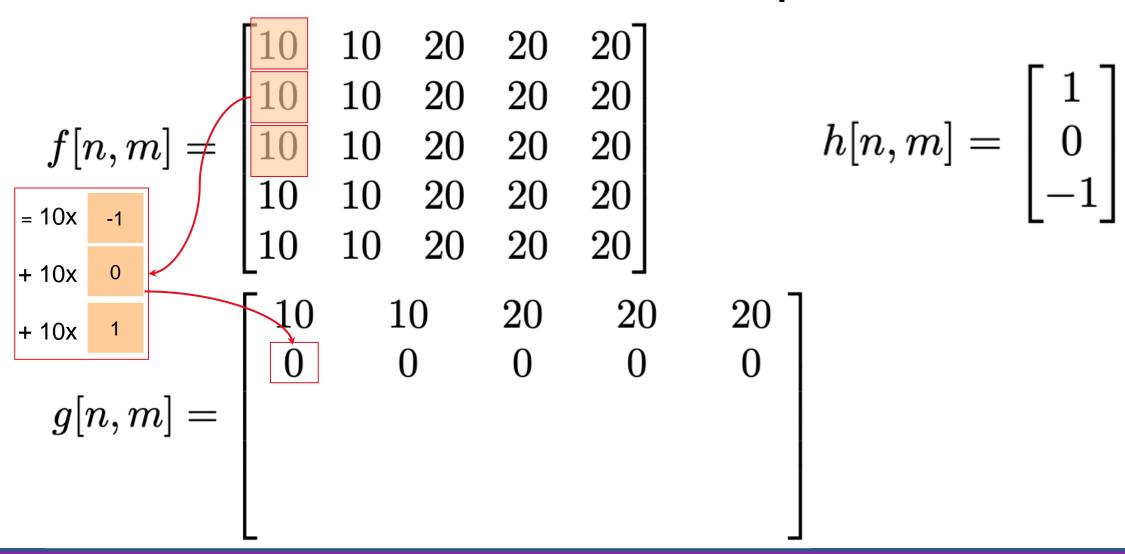
$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix} \qquad h[n,m] = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

$$h[n,m] = egin{bmatrix} 1 \ 0 \ -1 \end{bmatrix}$$



$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix} \qquad h[n,m] = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

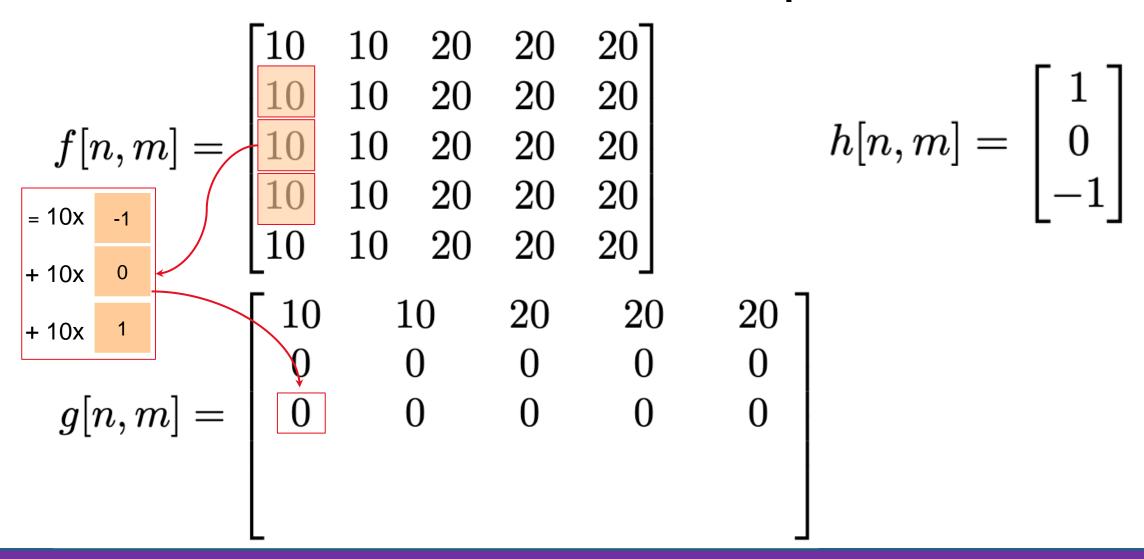
$$g[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ ? & ? & ? & ? & ? \\ \end{cases}$$



$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix} \qquad h[n,m] = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

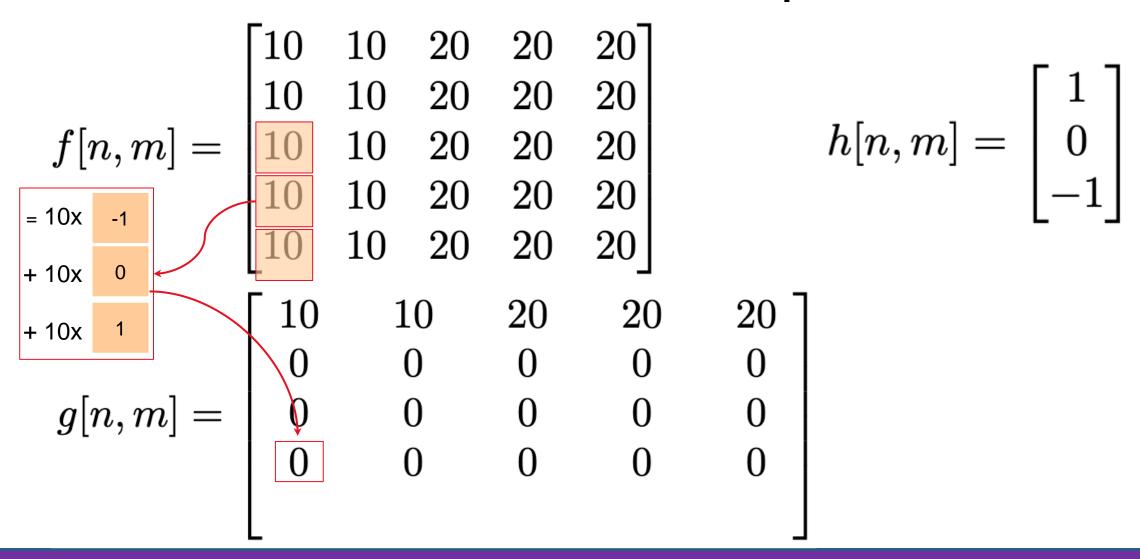
$$h[n,m] = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$$

$$g[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 0 & 0 & 0 & 0 & 0 \\ ? & ? & ? & ? \end{bmatrix}$$



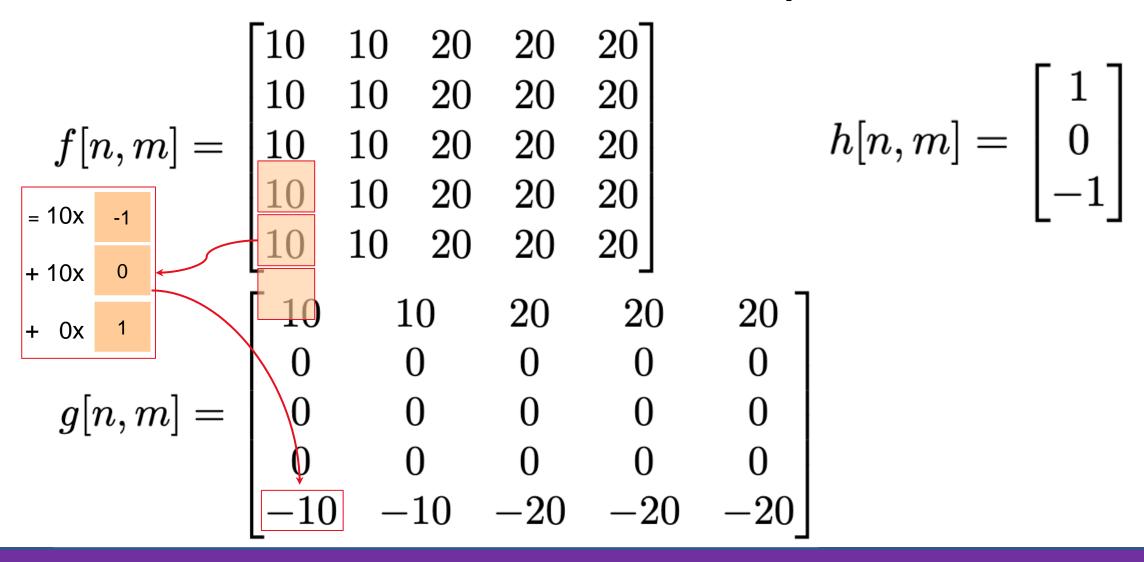
$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

$$h[n,m] = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$



$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

$$h[n,m] = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

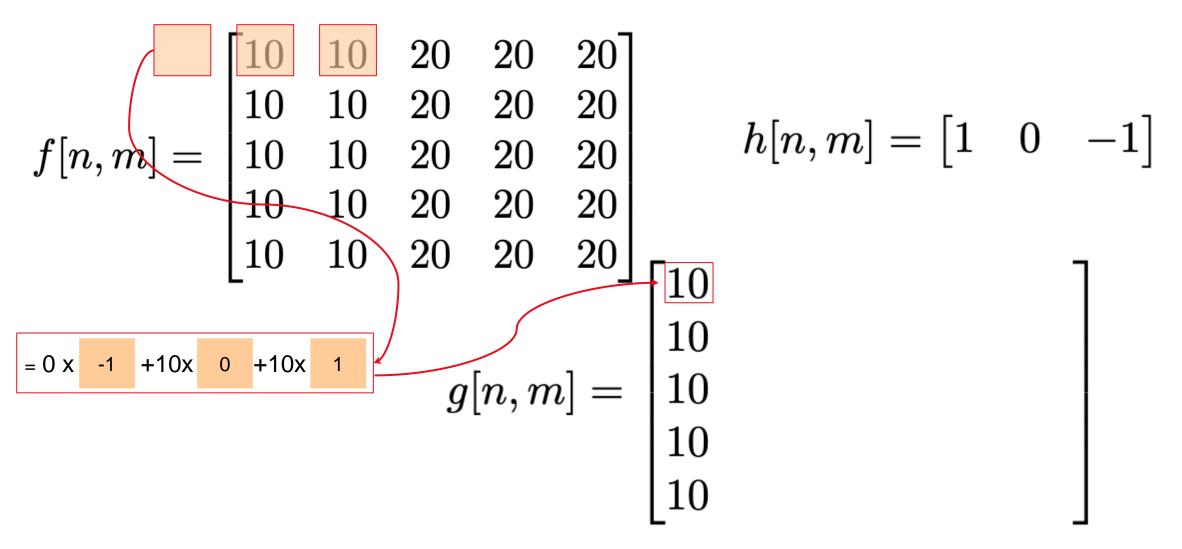


$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

$$h[n,m] = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

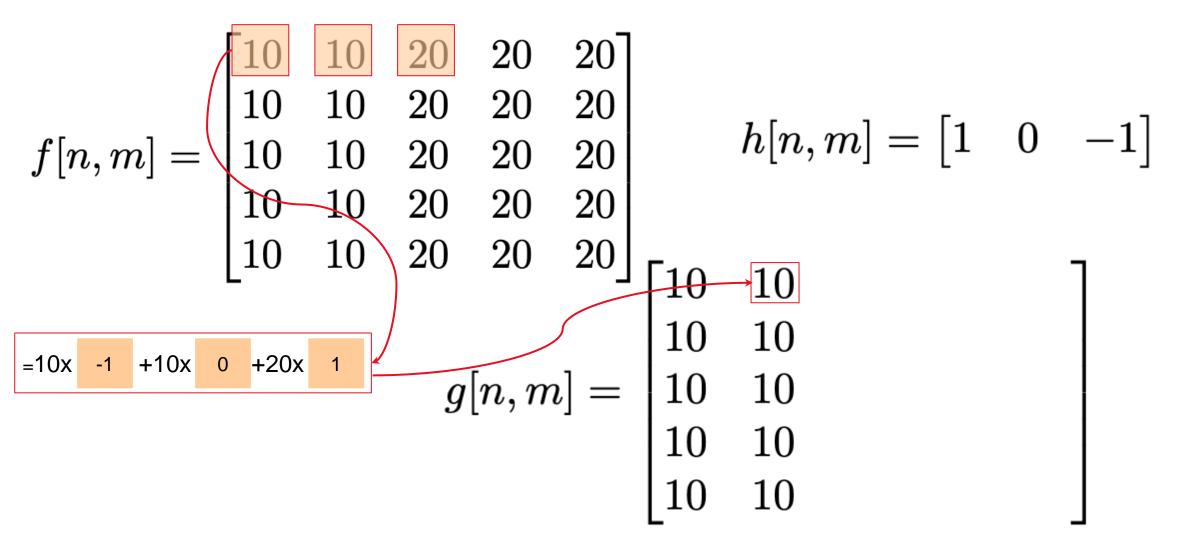
$$g[n,m] = \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix}$$



$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

$$f[n,m] = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

$$g[n,m] = \begin{bmatrix} 10 & ? \\ 10 & ? \\ 10 & ? \\ 10 & ? \\ 10 & ? \\ 10 & ? \end{bmatrix}$$



$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix} h[n,m] = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

$$g[n,m] = \begin{bmatrix} 10 & 10 & ? \\ 10 & 10 & ? \\ 10 & 10 & ? \\ 10 & 10 & ? \\ 10 & 10 & ? \end{bmatrix}$$

$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix} \qquad h[n,m] = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

$$g[n,m] = \begin{bmatrix} 10 & 10 & 10 & ? \\ 10 & 10 & 10 & ? \\ 10 & 10 & 10 & ? \\ 10 & 10 & 10 & ? \\ 10 & 10 & 10 & ? \\ 10 & 10 & 10 & ? \end{bmatrix}$$

Let's do the other one
$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix} \qquad h[n,m] = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

$$g[n,m] = \begin{bmatrix} 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \end{bmatrix}$$

$$h[n,m] = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

$$[a,m] = egin{bmatrix} 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \end{bmatrix}$$

$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix} \qquad h[n,m] = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

$$g[n,m] = \begin{bmatrix} 10 & 10 & 10 & 0 & -20 \\ 10 & 10 & 10 & 0 & -20 \\ 10 & 10 & 10 & 0 & -20 \\ 10 & 10 & 10 & 0 & -20 \\ 10 & 10 & 10 & 0 & -20 \\ 10 & 10 & 10 & 0 & -20 \end{bmatrix}$$

2D discrete derivative filters

Q. What does this filter do?

$$h[n,m] = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

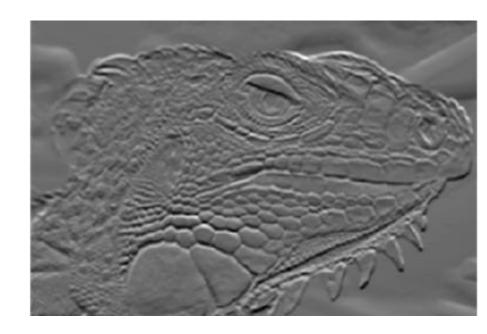
2D discrete derivative filters

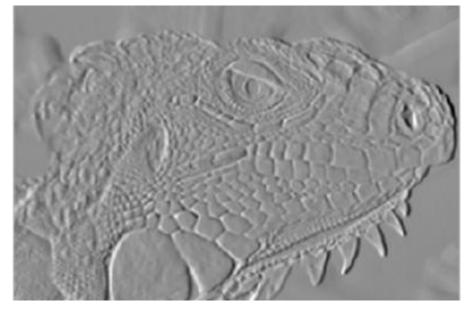
$$h[n,m] = egin{bmatrix} 1 & 0 & -1 \ 1 & 0 & -1 \ 1 & 0 & -1 \end{bmatrix}$$

Q. What does this filter do?

$$h[n,m] = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

Q. Which filter was applied?





What we will learn today

- Convolutions and Cross-Correlation
- Edge detection
- Image Gradients
- A simple edge detector

Characterizing edges

An edge is a place of rapid change in the image intensity function

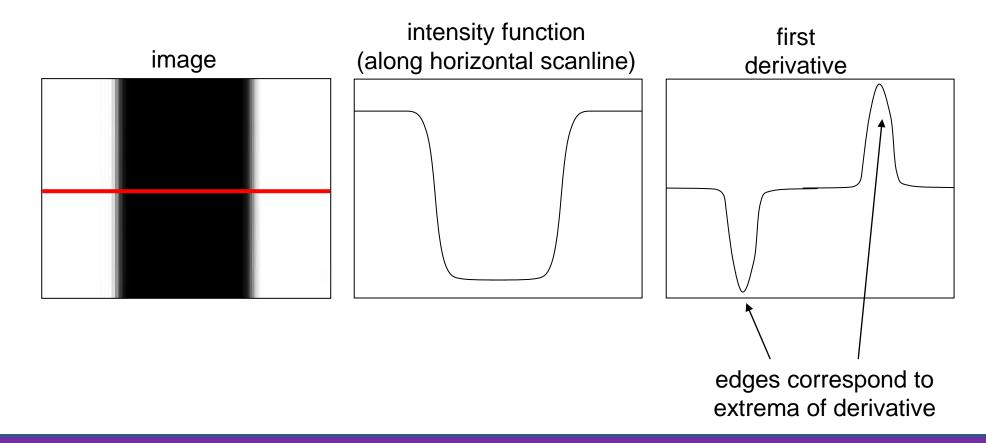
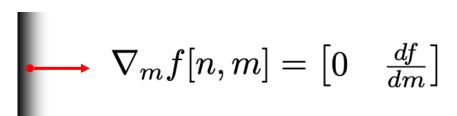
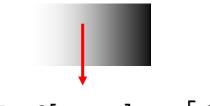


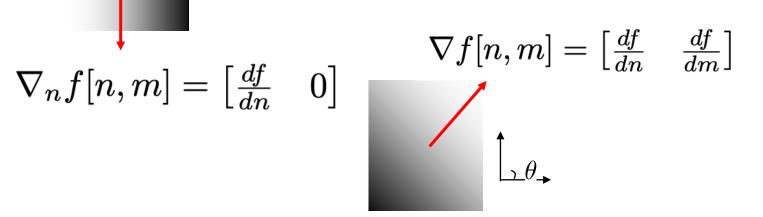
Image gradient

The gradient of an image:





$$abla_n f[n,m] = \begin{bmatrix} \frac{df}{dn} & 0 \end{bmatrix}$$

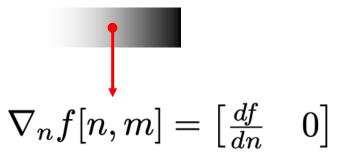


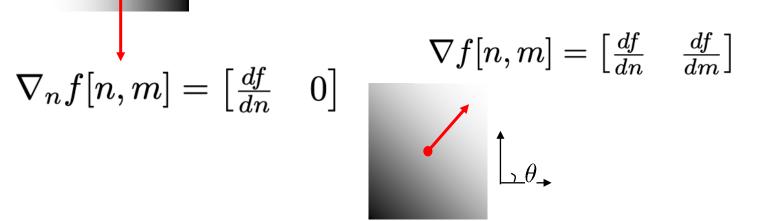
The gradient vector points in the direction of most rapid increase in intensity

$$\theta = \tan^{-1}(\frac{f_m}{f_n})$$

Image gradient

The gradient of an image:





The gradient vector points in the direction of most rapid increase in intensity

The edge strength is given by the gradient magnitude

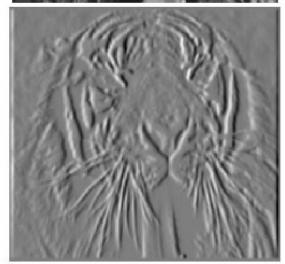
$$|\nabla f[n,m]| = \sqrt{f_n^2 + f_m^2}$$

$$\theta = \tan^{-1}(\frac{f_m}{f_n})$$

Finite differences: example

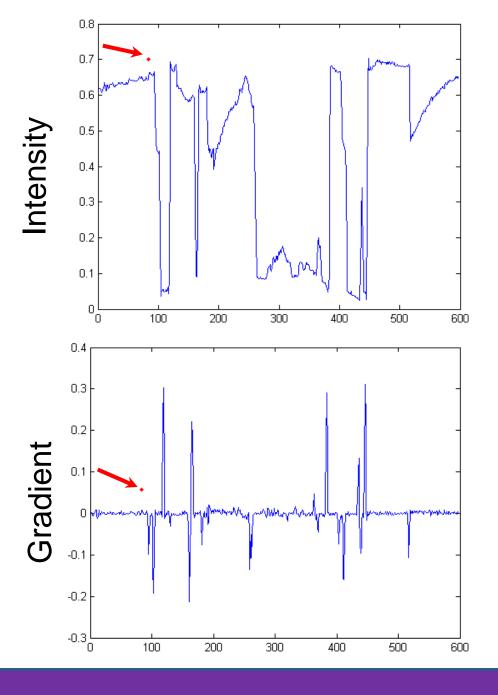
Original Image

Gradient magnitude



height-direction

Intensity profile



Summary

- Convolutions and Cross-Correlation
- Edge detection
- Image Gradients
- A simple edge detector

Next time: Detecting lines