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Lecture 2

Pixels and Filters
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Administrative

A0 is out. 

- It is ungraded

- Meant to help you with python and numpy basics

- Learn how to do homeworks and submit them on gradescope.
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● Assignment 0 (Using Colabs, Python basics)

○ Recommended Due by Oct 2 (Ungraded)

● Assignment 1 (Filters, Convolutions, Edges)

○ Due Oct 14, 11:59 PST

● Assignment 2 (Keypoints, Panoramas)

○ Due Oct 28, 11:59 PST

● Assignment 3 (Cameras, Clustering, Segmentation)

○ Due Nov 12, 11:59 PST

● Assignment 4 (kNN, PCA, LDA, Detection)

○ Due Nov 25, 11:59 PST

● Assignment 5 (CNNs)

○ Due Dec 4, 11:59 PST

Grading policy - Assignments
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Grading policy - assignments

● Most assignments will have an extra credit worth 1% of your 
total grade.

● Late policy
■ 5 free late days – use them in your ways

■ Maximum of 2 late days per assignment

■ Afterwards, 10% off per day late

● Collaboration policy
■ Read the student code book, understand what is ‘collaboration’ and what is 

‘academic infraction’

■ We have links to this on the course webpage

4Linda Shapiro  Sept 30, 2025



Ranjay Krishna January 09, 2024Lecture 2 -

Recitations 

● Friday afternoons 12:30-1:20pm @ SIG 134

This week:

We will go over Linear algebra basics

Administrative
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So far: Computer vision extracts geometric 3D information 

from 2D images

TRI & GATech’s ShaPO (ECCV’22): https://zubair-irshad.github.io/projects/ShAPO.html
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So far: why is computer vision hard?

It is an ill-posed 

problem
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● Color spaces

● Image sampling and quantization

● Image histograms

● Images as functions

● Filters

● Properties of systems

Today’s agenda

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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● Color spaces

● Image sampling and quantization

● Image histograms

● Images as functions

● Filters

● Properties of systems

Today’s agenda

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7

10



Ranjay Krishna January 09, 2024Lecture 2 -

Linear color spaces

• Defined by a choice of three primaries

• The coordinates of a color are given by the weights of the primaries 

used to match it

mixing two lights 

produces colors that lie 

along a straight line in 

color space

mixing three lights produces 

colors that lie within the 

triangle they define in color 

space
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Explaining Color - Simplified

.* =

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 
1995
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The Physics of Light Sources
Some examples of the spectra of light 
sources

A. Ruby Laser B. Gallium Phosphide Crystal

13Linda Shapiro  Sept 30, 2025



Ranjay Krishna January 09, 2024Lecture 2 -

The Physics of Reflectance
Some examples of the reflectance spectra of 
surfaces
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Physiology of Human Vision

15Linda Shapiro  Sept 30, 2025

Humans have three types 
of cones, each sensitive to
different wavelengths of 
light (blue, green, and red).
The brain integrates the 
signals from these cones 
to perceive a wide spectrum
of colors.
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Color is a psychological phenomenon

• The result of interaction between 

physical light in the environment and our 

visual system.

• A psychological property of our visual 

experiences when we look at objects and 

lights, not a physical property of those 

objects or lights.

Slide credit: Lana 

Lazebnik
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RGB space

Primaries are monochromatic lights (for monitors, they correspond to the three 

types of phosphors, which are substances that emit light.)

RGB primaries
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• Primaries (X, Y and Z) are imaginary

• X: Represents a mix of red and green.

• Y: Represents luminance (brightness).

• Z: Represents a mix of blue and green.

• 2D visualization: draw (x,y), where

x = X/(X+Y+Z), y = Y/(X+Y+Z)

Linear color spaces: CIE XYZ

http://en.wikipedia.org/wiki/CIE_1931_color_space
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Nonlinear color spaces: HSV

• Perceptually meaningful dimensions: Hue, Saturation, Value (Intensity)
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● Color spaces

● Image sampling and quantization

● Image histograms

● Images as functions

● Filters

● Properties of systems

Today’s agenda

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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Image Formation

Light 
Source

Physical 
Object

Lens

Sensor 
Plane
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Camera sensors produce discrete outputs

https://commons.wikimedia.org/wiki/File:Mirrorless_Camera_Sensor.jpg

https://ai.stanford.edu/~syyeung/cvweb/Pictures1/imagematrix.png
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Types of Images

Binary Grayscal
e

Color
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Binary image representation
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Grayscale image representation
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Q. If you used HSV to represent grayscale images, is 

the slider representing hue? Or saturation? Or value?

Linda Shapiro  Sept 30, 2025
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Color image representation

B channel G channel R channel
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Color image - one channel

R channel
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Types of Images

Binary Grayscal
e

Color
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Digital Images 

are Sampled

What happens when we 
zoom into the images we 
capture?
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Errors due to Sampling
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Resolution
is a sampling parameter, defined in dots per inch (DPI) 
or equivalent measures of spatial pixel density
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Images are Sampled and Quantized

231

75

148

• An image contains discrete number of 
pixels

–Pixel value:

• “grayscale”

(or “intensity”): [0,255]
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Images are Sampled and Quantized

• An image contains discrete number of 
pixels

–Pixel value:

• “grayscale”

(or “intensity”): [0,255]

• “color”

–RGB: [R, G, B]

[249, 215, 203]

[90, 0, 53]

[213, 60, 67]
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With this loss of information (from sampling and 

quantization),

Can we still use images for useful tasks?

35Linda Shapiro  Sept 30, 2025
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● Color spaces

● Image sampling and quantization

● Image histograms

● Images as functions

● Filters

● Properties of systems

Today’s agenda

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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Starting with grayscale images: 
● Histogram captures the 

distribution of gray levels in the 

image. 

● How frequently each gray level 

occurs in the image
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Grayscale histograms in code

● Histogram of an image provides the frequency of the brightness 

(intensity) value in the image. 

Here is an efficient implementation of calculating histograms:

def histogram(im):
h = np.zeros(255)
for row in im.shape[0]:

for col in im.shape[1]:
val = im[row, col]
h[val] += 1
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Visualizing h[:]

39

def histogram(im):
h = np.zeros(255)
for row in im.shape[0]:

for col in im.shape[1]:
val = im[row, col]
h[val] += 1
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Visualizing Histograms for patches

Slide credit: Dr. Mubarak 
Shah
40Linda Shapiro  Sept 30, 2025
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Histogram – use case

Slide credit: Dr. Mubarak 
Shah41

In emphysema, the inner walls of the lungs' 

air sacs called alveoli are damaged, causing 

them to eventually rupture.

You can take a picture of the lung with 

special dye to mark the alveoli
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Histograms are a convenient representation to 

extract information 

Can we develop better transformations than histograms?
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● Color spaces

● Image sampling and quantization

● Image histograms

● Images as functions

● Filters

● Properties of systems

Today’s agenda

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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At every pixel location, 

we get an intensity 

value for that pixel.

The world captured by 

the image continues 

beyond the confines of 

the image

Images are a function!!!

This is a new formalism that will allow us to borrow ideas from signal 

processing to extract meaningful information.
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Images as discrete functions

• Digital images are usually discrete:

– Sample the 2D space on a regular grid

• Represented as a matrix of integer values
pixel intensity

n

m
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• The input to the image function is a pixel location, [n m]

• The output to the image function is the pixel intensity

Images as discrete function f

pixel intensity

n

m
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• The input to the image function is a pixel location, [n m]

• The output to the image function is the pixel intensity

Q1. What is f[0, 0]?

Images as discrete function f

pixel intensity

n

m
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• The input to the image function is a pixel location, [n m]

• The output to the image function is the pixel intensity

Q2. What is f[0, 4]?

Images as discrete function f

pixel intensity

n

m
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• The input to the image function is a pixel location, [n m]

• The output to the image function is the pixel intensity

Q2. What is f[0, -8]?

Images as discrete function f

pixel intensity

n

m
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Images as coordinates

We can represent this function as f.
f[n, m] represents the pixel intensity at that value.

Notation for 
discrete 
functions

50

n and m can be 
any integer

Even negative!!
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We don’t have the intensity values for 

negative indices

51

n and m can be 
any integer 

Even negative!!
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• An Image as a function f from R2 to RC:

• if grayscale then C=1, 

• if color then C=3

• f [n, m] gives the intensity at position [n, m] ​

• Has values over a rectangle, with a finite range:

f: [0,H] x [0,W]     [0,255]

Images as functions

52Linda Shapiro  Sept 30, 2025
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• An Image as a function f from R2 to RC:

• if grayscale, C=1, 

• if color, C=3

• f [n, m] gives the intensity at position [n, m] ​

• Has values over a rectangle, with a finite range:

f: [0,H] x [0,W]     [0,255]

Images as functions

53

Domain support range
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• An Image as a function f from R2 to RC:

• if grayscale, C=1,

• if color, C=3

• f [n, m] gives the intensity at position [n, m] ​

• Has values over a rectangle, with a finite range:

f: [0,H] x [0,W]     [0,255]

Images as functions

Domain support range

54

● Doesn’t have values outside of the image rectangle

f: [-inf,inf] x [-inf,inf]     [0,255]

● We assume that f[n, m] = 0 outside of the image 

rectangle unless otherwise defined.
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Images as functions

• An Image is a function f from R2 to RC:

• f [n, m] gives the intensity at position [n, m] ​

• Defined over a rectangle, with a finite range:
f: [a,b] x [c,d ]   [0,255]

55

Domain support range
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Histograms are also a type of function
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● Color spaces

● Image sampling and quantization

● Image histograms

● Images as functions

● Filters

● Properties of systems

Today’s agenda

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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Super-resolutionDe-noising

In-painting

Bertamio et al 

Applications of filters
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Systems and Filters

Filtering:
– Forming a new image whose pixel values are 

transformed from original pixel values

Goals of filters: 
• Goal is to extract useful information from images, 

or transform images into another domain where 
we can modify/enhance image properties
• Features (edges, corners, blobs…)
• super-resolution; in-painting; de-noising
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Intuition behind systems

● We will view systems as a sequence of filters applied to an image

● For example, multiplying by a constant leaves the semantic content intact 

○ but can reveal interesting patterns
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● Neural networks and specifically convolutional neural networks are a 

sequence of filters (except they are a non-linear system) that contains 

multiple individual linear sub-systems.

As an aside - we will go into detail later in the course:
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Systems use Filters

● we define a system as a unit that converts an input function f[n,m]

into an output (or response) function g[n,m]

○ where (n,m) index into the function

○ In the case for images, (n,m) represents the spatial position in 

the image.
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Images produce a 2D matrix with pixel intensities at 

every location

Notation for 
discrete 
functions
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2D discrete system 

(system is a sequence of filters)
S is the system operator, defined as a mapping or assignment 
of possible inputs f[n,m] to some possible outputs g[n,m].
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Filter example #1: Moving Average

65

Q. What do you think will happen to the 

photo if we use a moving average 

filter? 

Assume that the moving average 

replaces each pixel with an average 

value of itself and all its neighboring 

pixels.
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Filter example #1: Moving Average
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Visualizing what happens with a moving average filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Courtesy of S. Seitz

67

The red box is 

the h matrix
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0
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0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0
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0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0
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Visualizing what happens with a moving average filter
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0
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0 0 0 90 90 90 90 90 0 0
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0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20
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0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0
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Visualizing what happens with a moving average filter
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0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0
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Visualizing what happens with a moving average filter
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0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Visualizing what happens with a moving average filter
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0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Visualizing what happens with a moving average filter
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Visual interpretation of moving average

A moving average over a 3 × 3 neighborhood window

h is a 3x3 matrix with values 1/9 everywhere.

73

1 11

1 11

1 11

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0
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0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Filter example #1: Moving Average

In summary:

• This filter “Replaces” each 
pixel with an average of its 
neighborhood.

• Achieve smoothing effect 
(remove sharp features)

74

1 11

1 11

1 11
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How do we represent applying this filter mathematically?

Mathematical interpretation of moving average

75

1 11

1 11

1 11

Linda Shapiro  Sept 30, 2025



Ranjay Krishna January 09, 2024Lecture 2 -

0 0 0 0 0 0 0 0 0 0
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Mathematical 

interpretation of 

moving average
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0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0
77

Mathematical 

interpretation of 

moving average

…
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0
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Mathematical 

interpretation of 

moving average

…
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0
79

Mathematical 

interpretation of 

moving average
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0
80

Lastly, divide by 1/9
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0
81

Now, instead of [0, 0], let’s do [n, m]
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0
82

Now, instead of [0, 0], let’s do [n, m]

…
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0
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Now, instead of [0, 0], let’s do [n, m]

…
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0
84

Now, instead of [0, 0], let’s do [n, m]

…
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0
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Now, instead of [0, 0], let’s do [n, m]

…
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0
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Now, instead of [0, 0], let’s do [n, m]

…
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0
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Now, instead of [0, 0], let’s do [n, m]
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0
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Now, instead of [0, 0], let’s do [n, m]
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0
89

Now, instead of [0, 0], let’s do [n, m]
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0
90

Lastly, divide by 1/9
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We can re-write the equation using summations

Q. What values will k take?

91

1 11

1 11

1 11

Mathematical interpretation of moving average



Ranjay Krishna January 09, 2024Lecture 2 -

How do we represent applying this filter mathematically?

k goes from n-1 to n+1

92

Mathematical interpretation of moving average
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1 11

1 11
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Mathematical interpretation of moving average

How do we represent applying this filter mathematically?

Q. What values will l take?

1 11

1 11

1 11
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How do we represent applying this filter mathematically?

l goes from m-1 to m+1

94

Mathematical interpretation of moving average

1 11

1 11

1 11
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Math formula for the moving average filter

95

A moving average over a 3 × 3 neighborhood window

We can write this operation mathematically:

1 11

1 11

1 11
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Rewriting this formula

96

1 11

1 11

1 11

We are almost done. Let’s rewrite this formula a little bit

Let 
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Rewriting this formula

97

1 11

1 11

1 11

We are almost done. Let’s rewrite this formula a little bit

Let 

therefore, 

Now we can replace k in the equation above
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Rewriting this formula

98

1 11

1 11

1 11

We are almost done. Let’s rewrite this formula a little bit

Let 

therefore, 
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Rewriting this formula

99

1 11

1 11

1 11

So now we have this:
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So now we have this:

We can simplify the equations in red:

Rewriting this formula

100

1 11

1 11

1 11
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So now we have this:

Remember that summations are just for-loops!!

Rewriting this formula

101

1 11

1 11

1 11

Linda Shapiro  Sept 30, 2025



Ranjay Krishna January 09, 2024Lecture 2 -

So now we have this:

Remember that summations are just for-loops!!

Rewriting this formula
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1 11

1 11

1 11
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One last change: since there are no more k and only k’, 

let’s just write k’ as k

Rewriting this formula

103

1 11

1 11

1 11
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Let’s repeat for l, just like we did for k

Mathematical interpretation of moving average

104

1 11

1 11

1 11

Linda Shapiro  Sept 30, 2025



Ranjay Krishna January 09, 2024Lecture 2 -

Filter example #1: Moving Average
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Filter example #2: Image Segmentation

Q. How would you use pixel values to design a filter to segment an image so that 

you only keep around the edges?
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Filter example #2: Image Segmentation

● Use a simple pixel threshold:
255,
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Summary so far

- Discrete systems convert input discrete signals and convert them into 

something more meaningful.

- There are an infinite number of possible filters we can design. 

- What are ways we can category the space of possible systems?
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● Color spaces

● Image sampling and quantization

● Image histograms

● Images as functions

● Filters

● Properties of systems

Today’s agenda
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●Amplitude properties:

○Additivity

Properties of systems
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Example question:

Q. Is the moving average filter additive?

I leave it to you!

How would you prove it?

111

1 11

1 11

1 11

Linda Shapiro  Sept 30, 2025



Ranjay Krishna January 09, 2024Lecture 2 -

●Amplitude properties:

○Additivity

Properties of systems
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●Amplitude properties:

○Additivity

○Homogeneity

Properties of systems

119Linda Shapiro  Sept 30, 2025



Ranjay Krishna January 09, 2024Lecture 2 -

Another question:

Q. Is the moving average filter homogeneous?

Practice proving it at home using:

120

1 11

1 11

1 11
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● Color spaces

● Image sampling and quantization

● Image histograms

● Images as functions

● Filters

● Properties of systems

What we covered today
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Next time:

122

Linear systems and convolutions
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