CSE455: Computer Vision

Geometric Primitives & Transformations

Raymond Yu

Reference: Szeliski 2.1



What is the most popular topic at CVPR?

Publication h5-index h5-median
Nature 467 707
2. The New England Journal of Medicine 439 876
s Science 424 665

IEEE/CVF Conference on Computer Vision and

Pattern Recognition

5. The Lancet 368 688
6. Nature Communications 349 456
7. Advanced Materials 326 415
8. Cell 316 503
9. Neural Information Processing Systems 309 503
10. International Conference on Learning 303 563

Representations

h5-index: largest number h such that h articles published in the last 5 years have at least h citations each. https://scholar.google.com/citations?view op=top venues&hl=en



https://scholar.google.com/citations?view_op=top_venues&hl=en

C V P R 2 O 2 3 by the Numbers o PICKINSTITUTIONS

Award Candidate :
Highlight @ Gl -
Selecting a category below changes the paper list on the right. Paper
‘ ) AUTHORS | PAPERS
1 3D from multi-view and sensors 1,090 246 # AUTHORS # PAPERS
2 Image and video synthesis and generation 889 | 185 1,000
3 Humans: Face, body, pose, gesture, movement 813 166
4 Transfer, meta, low-shot, continual, or long-tail learning 688 153 800
5 Recognition: Categorization, detection, retrieval 673 139 600
6 Vision, language, and reasoning 631 118 400
7 Low-level vision el 126 200
8 Segmentation, grouping and shape analysis 5244 113
9 Deep learning architectures and techniques 485 92 0
A0 MU -modaliearning . 89 3D from multi-view and sensors
11 3D fnjom smglt? |ma§;es N . pl B Award Candidate B Highlight I Paper
12 Medical and biological vision, cell microscopy
13 Video: Action and event understanding 83
14 Autonomous driving 69 33 Neul\/_lap:.NeuraI Coordinate Mapping by Auto-Transdecoder for Camera
; : : ; Localization
5 Self-supervised or unsupervised representation learning yi
8 Saiasets anaeiElation = Object Pose Estimation with Statistical Guarantees: Conformal Keypoint
1; f\fjene analTSiS an: un:(;rsftanding & Detection and Geometric Uncertainty Propagation
1 versarial attack and defense 274 K
19 Efficient and scalable vision - NeuralUDF: Learning Unsigned Distance Fields for Multi-view Reconstruction of
20 Computational imaging ' 120 Surfaces with Arbitrary Topologies
21 Video: Low-level analysis, motion, and tracking 2.
22 Vision applications and systems 1' 143 NEF: Neural Edge Fields for 3D Parametric Curve Reconstruction from
23 Vision + graphics 1’ Multi-view Images
24 Robotics |
25 Transparency, fairness, accountability, privacy, ethics in vision 12. 330 Looking Through.the Glass: Neural Surface Reconstruction Against High
: e Specular Reflections
26 Explainable computer vision 10.
27 Embodied vision: Active agents, simulation 80'
28 Document analysis and understanding 72| 357 Multi-View Azimuth Stereo via Tangent Space Consistency
29 Machine learning (other than deep learning) 65'
30  Physics-based vision and shape-from-X | https://cvpr2023.thecvf.com/Conferences/2023 /AcceptedPapers



https://cvpr2023.thecvf.com/Conferences/2023/AcceptedPapers

Why do we care about Geometry?

» Self-driving cars: navigation, collision avoidance
* Robots: navigation, manipulation

* Graphics & AR/VR: augment or generate images
* Photogrammetry (architecture, surveys)

» Pattern Recognition (web, medical imaging, etc)



Geometry is more useful now than
ever!
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https://github.com/TRI-ML/packnet-sfm

Overview of Geometric Vision in CSE455

Geometric Image Formation
The Pinhole Camera model + Calibration
Multi-view Geometry

Structure-from-Motion

Reference textbooks: Szeliski, Hartley & Zisserman to go deeper
Slides credits: Fei-Fei Li, JC Niebles, J. Wu, K. Kitani, S. Lazebnik, S. Seitz, D. Fouhey, J. Johnson



http://szeliski.org/Book/
https://www.robots.ox.ac.uk/~vgg/hzbook/

What will we learn today?

e \WWhy Geometric Vision Matters
e Geometric Primitives in 2D & 3D

e 2D & 3D Transformations



General Advice / Observations

 Fundamentals: need to (eventually) feel easy
* Try to do the math in parallel live in class!
* If not grokking this: practice later, ask on Ed, OH

» Lots of good (hard?) exercises in Szeliski's book



What will we learn today?

Why Geometric Vision Matters



Images are

2D projections of
the 3D world



Simplified Image Formation

light {}

SOuUrce

Figure: R. Szeliski



Perspective Projection

As the word perspective implies, the resultant 2D image
depends on the viewpoint of the camera

~—t—tll JEEE

S m— O\

Fig ure: https://www.youtube.com/@huseyin_ozde...



https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Can we understand the 3D
world
from 2D images?






CV is an ill-posed inverse problem
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What will we learn today?

Geometric Primitives in 2D & 3D



Points in Cartesian and Homogeneous Coordinates

2D points: x = (z,y) € R* or column vector x =

3D points: x = (z,y,2) € R*(often noted X or P)

Homogeneous coordinates: append a 1

X = (z,y,1) X = (2,9,%,1)

Why?



Homogeneous coordinates in 2D

2D Projective Space: P = R* — (0,0, 0)

* heterogeneous - homogeneous

* homogeneous - heterogeneous

;

|

(same story in 3D with P?)
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* points differing only by scale are equivalent: (x,y,w)~ A (x,y,w)
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Homogeneous coordinates in 2D
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In homogeneous coordinates, a point and
its scaled versions are same

y
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=W y — Wy w#()
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Fig ure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Everything is easier in Projective Space

2D Lines:

Representation: | = (a, b, c)
—quation: ax +by+c =0
n homogeneous coordinates: 'l =0

General 1dea;: homogenous coordinates
unlock the full power of linear algebral



Everything is easier in Projective Space

2D Lines:
x'1=0,vX = (x,y,w) € P? \d
| = (fin, 71y, d) = (B, d) with [|]| = 1 e

3D planes: samel

X'm=0,vX = (x,y,z,w) € P3

m = (fiz, iy, 1z, d) = (B, d) with ||| = 1




Benefits of Homogeneous Coordinates

Line — Point duality:

~

* line between two 2D points: 1 = X; X Xo
1 X 12

* Intersection of two 2D lines:

Representation of Infinity:

* points at infinity: (x,y,0); line at infinity: (0,0,1)
Parallel & vertical lines are easy (take-home: intersect //)

Makes 2D & 3D transformations linear!



Cross-product quick reminder

a x b = |la]| [[b|sin(6) n

axb=lalb=| a3 0 —a;|]|b




Questions?



What will we learn today?

2D & 3D Transformations



The camera as a coordinate transformation

A camera is @ mapping 3D object -
3D to 2D transform
from: \ (camera)
the 3D world

. 2D image

to:

a 2D image

Source: K. Kitani



The camera as a coordinate transformation

A camera is a mapping
3D object -
3D to 2D transform
from: \ (camera)
the 3D world
—
2D image . . 2D image
to: s
a 2D image 2D to 2D transform

(image warping)

Source: K. Kitani



Cameras and objects can move!

p=XYZ1)

(b)

Figure 2.12 A point is projected into two images: (a) relationship between the 3D point co-
ordinate (X,Y, Z, 1) and the 2D projected point (xz,y, 1,d); (b) planar homography induced

by points all lying on a common plane 1y - p + co = 0.

Figure: R. Szeliski



2D Transformations Zoo

R
y‘ / 51m11 arlty projective — |
translation
_y
\
Euchdea afﬁne -
X

\

Figure: R. Szeliski



Transformation = Matrix Multiplication

Scale Flip across y
Sy 0 | -1 0
-5 o M=
Rotate Flip across origin
cos —sinf —1 0
- { sinf  cosf } M = { 0o -1
Shear Identity
1 s, 110
“la ¥ M=o 7]




Scaling

S, 0O " r| |8z
_O Sy | Y Syl
A p p’
p’
A = lir
P

Slide: JC. Niebles



Rotation

\ x' = xcosf —ysinb
y = zsinf + ycosf
/ z’ : :
xr = [ o/ :| or in matrix form:
: x’ cosf) —sinf T
A , | = .
3 rotation around Yy sin 6 cos 6 Y
the origin

Slide: K. Kitani



Translation

x'=x+t,
Yy =yt

E— : As a matrix?

Slide: JC. Niebles



Translation with homogeneous coordinates

_x_
_ x]_)

o P=ly 31,
R iy
y L, X

t = — |t
48 ol |
p' =Tp
X + tx] 1 0 t]x I ¢
p' > |ly+ty|=(0 1 t, y=[0 1]p=Tp
1 0O 0 11LL1-

Slide: JC. Niebles



2D Transformations with homogeneous coordinates

No change
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L
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Figure: Wikipedia



Questions?



2D Transformations Zoo

R
yA / 51m11ar1ty projective —
translation
P 4
\
Euchdean afﬁne -
X

\

Figure: R. Szeliski



Euclidean / Rigid Transformation

cos@ -sinf lz
Euclidean (rigid): rotation + translation sinf cos6 ty

0 0 1

) /S imilarity Q projective
translation
/y
4._.—7
Euclidean Aﬁ

How many degrees of freedom?

S




Similarity Transformation

b 1 |
a i,
0 1

a
Similarity: Scaling + rotation + translation | }

How many degrees of freedom?

) /S imilarity Q projective
translation
oW
4._.-7
Euclidean Ae

>
p—/ X




Similarity Transformation

—b 1 [acosf —asind bo-
a i, asinf  acosd b,
0 1 | ¢ Y

How many degrees of freedom? - -

V /s larits Q projective
translation
oW
4.,.-7
Euclidean qttme

\——-// ;\‘

a
Similarity: Scaling + rotation + translation| }




Affine Transformation

Affine transformations are combinations of

* Arbitrary (4-DOF) linear transformations + translations
X' — AOO A()l X + bO
/
v (4, A,|ly] |b, 1 [
- ] — X 00
[ T — g =
' X i * y = AIO
X X ’ 1 O
} y y I |
L’ ] L’ ] 1 1 L
Cartesian H ) T
coordinates Omogeneous
coordinates

SN

01

11

i [y ]
by ||y
1L 1]

Source: K. Kitani



Affine Transformation

Affine transformations are combinations of

* Arbitrary (4-DOF) linear transformations + translations —_—

— +
Y’ A, A |l yv] | b o o
A ot el W07 : o Ay Aoy bol| x
' -x. -x,' — y' — AIO All bl y
!x] !xr] ¥ y’ L 1_ 0 0 1--1-
¥ y | : I
K- . . How many degrees of freedom?
coordinates Homogeneous
coordinates

Source: K. Kitani



Affine Transformation

This matrix is a linear transformation

zf matrix in 3D
1‘ = B
" Ay Ay byl x
y'|1=[4w Ay by
1 i 0 0 | 1
1 X
> >

‘,’

Fig ure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Affine Transformation

a4

Fig ure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Affine Transformation

Fig ure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Affine Transformation

Fig ure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Affine Transformation

_______________________

Fig ure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Affine Transformation

Affine transformations are combinations of

* Arbitrary (4-DOF) linear transformations + translations

Properties of affine transformations:

e origin does not necessarily map to origin
* lines map to lines

* parallel lines map to parallel lines

* ratios are preserved

AN

00

AN

10

SN

01

11

bo |l x]
b ||y
1|l 1]

Source: K. Kitani



Projective Transformation (homography)

Projective transformations are combinations of [ x '] A Aoy By x|
» Affine transformations + projective warps wiy'|=A4,, A, by
Ly Ay A 1L

How many degrees of freedom?

Source: K. Kitani



Projective Transformation (homography)

_______________________

As an example let
hy>0, h,<0 and |h|>|h,|

Fig ure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Projective Transformation (homography)

_______________________

As an example let As an example let
h,>0, h,<0 and |h,|>|h,] hy>0, h,<0 and |A,|>|h,]|

Fig ure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Projective Transformation (homography)

z'=dyhy+1>1
A

—_— [ Corner 1

1 ” i
Z':dlhl+l<1’ . i
/ ,ﬁ)mer 1

g g g g -

<  Corner 3 : do 2
/,&‘z'=d0ho+dlhl+l>l
4 A le let d As an example let
As an example let s an example le iy Rt [
h,>0, h,<0 and |h,|>|h,| hy>0, h,<0 and |A,|>|h,]| ,>0, h,<0 and |A|>|h,

Fig ure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Projective Transformation (homography)

When going back to
Cartesian coordinates

’ ('()/'1M2'2d0h0+1>1

| x coordinate of corner 1
is mapped to a smaller value
because z'>1

1

S T

‘orner

z'=d h+1<l1
y coordinate of cornet 3
is mapped to a greater value
because z'<1

Corner 3!

i

d 1

0

X
,.' >
i \wz’:doh0+d,hl+l>l

x and y coordinates of
corner 2 are mapped to smaller
values, because z'>1

dl

As an example let
hy>0, h,<0 and |A,|>|h,|

Fig ure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Projective Transformation (homography)

Original Image

1 0
0

. )
1 0
| |hy h 1

=

h,>0, h,<0 and |A|>|h,|

Warped Image

Fig ure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Projective Transformation (homography)

Projective transformations are combinations of x'| |4 Ao Dol x
» Affine transformations + projective warps wiy'|=A4,, A, by
L1 [k By 1)UL

How many degrees of freedom?
Properties of projective transformations:

 origin does not necessarily map to origin
* lines map to lines —_—
e parallel lines do not necessarily map to parallel lines

 ratios are not necessarily preserved

Source: K. Kitani



Questions?



Composing Transformations

Transformations = Matrices => Composition by Multiplication!
p' = RyR Sp
In the example above, the result is equivalent to
p' = R2(R1(Sp))
Equivalent to multiply the matrices into single transformation matrix:

p' = (R2R1S)p

Order Matters! Transformations from right to left.



Scaling & Translating != Translating & Scaling

1 0 ¢t][s, 0 O0]rx s, 0 t]rx SyX + Ly
p"' =TSp = [0 1 ty] [O s, 0 |)’] =[(0 s, ¢t [)" =[5,y + 1y
0 0 11L0 o0 1111 0 0 111 1
s, 0 0111 0 ¢]rx s, 0 s.t.]rx S, X + S,t,
p'""=STp=10 Sy 0] [0 1 ¢, ’y] =10 s, st H = |5,y + s,t,
0 0 1llo o 111 0 O 1 11 1




Similarity: Translation + Rotation + Scaling

p'=(TRS)p
q

1 0 t,][cosf@ —sinb O s, 0 0
p =TRSp=|0 1 ¢, sm 7] cos 7] 0 s, O
0 0 1 0 0 1

cos@ —siné t 0 O
smH cosH

- 15 SIS 1[1]=1R: t]H

This is the form of the
general-purpose
transformation matrix



2D Transforms = Matrix Multiplication

Transformation Matrix # DoF Preserves Icon
translation [I t} 2 orientation
2x3
rigid (Euclidean) [R t] 3 lengths O
2x 3
similarity [sR t] 4  angles O
2% 3
affine —A_ 6 parallelism D
L 12x3
projective H 2y 8 straight lines G
L 1 oX

Table 2.1 Hierarchy of 2D coordinate transformations, listing the transformation name, its

matrix form, the number of degrees of freedom, what geometric properties it preserves, and

a mnemonic icon. Each transformation also preserves the properties listed in the rows below

it, i.e., similarity preserves not only angles but also parallelism and straight lines. The 2 X

3 matrices are extended with a third [0 1] row to form a full 3 x 3 matrix for homogeneous

coordinate transformations.

Figure: R. Szeliski



3D Transforms = Matrix Multiplication

Transformation Matrix # DoF Preserves Icon
translation [I t] 3 orientation
3x4
rigid (Euclidean) [R t] e 6 lengths Q
X
similarity [sR t] 7 angles O
3x4
affine _A- 12 parallelism D
L. Jd3x4
projective -I':I- 15 straight lines G
L 14x4

Table 2.2  Hierarchy of 3D coordinate transformations. Each transformation also pre-
serves the properties listed in the rows below it, i.e., similarity preserves not only angles but
also parallelism and straight lines. The 3 x 4 matrices are extended with a fourth (07 1]
row to form a full 4 X 4 matrix for homogeneous coordinate transformations. The mnemonic

icons are drawn in 2D but are meant to suggest transformations occurring in a full 3D cube. Figure: R. Szeliski



What did we learn today?

* Geometry is essential to Computer Vision!
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« Geometric Primitives in 2D & 3D

« Homogeneous coordinates, points, lines, and planes in 2D & 3D



What did we learn today?

* Geometry is essential to Computer Vision!

« Geometric Primitives in 2D & 3D

« Homogeneous coordinates, points, lines, and planes in 2D & 3D
» 2D & 3D Transformations

 scaling, translation, rotation, rigid, similarity, affine, homography



Questions?






3D Rotations: SO(3) representations

Figure: Wikipedia

Euler Angles. yaw, pitch, roll (a,S,y)
- compose R(Yy)R(B)R(a) (order, axes!)

Axis-angle. (1,0) or w = 0n
- matrix via Rodrigues formula (simple for small 8)
R(D,0) = I +sinf[f]y + (1 —cosf)[A]3 ~ 1+ [fa]y

\%
. . —— . 0 6
Unit Quaternions. q = (x,y,z,w) = (sm; n, cos ;), lg|| =1

—> continuous, nice algebraic properties, matrix via Rodrigues

[1 —2(y2 +2%) 2wy — 2w) 2(zz + yw) ]

R(q) = { 2xy +zw) 1—-2(x%+22) 2yz—zw) J

'
llall g3,

e

2(xz — yw) 2(yz + zw) 11— 2(x? + y?)
See Szeliski 2.1.3 for more details



Intersecting Parallel Lines



Intersecting Parallel Lines

X X
52~(le _al) O)



2D planar transformations

rotation

around the

origin

Polar coordinates...
X =T cos (o)

y =r sin ()

X =rcos (¢ +0)

y’ =rsin (¢ + 0)

Trigonometric Identity...
X =1 cos(p) cos(B) - r sin(o)
sin(6)

y’ =1 sin(¢) cos(0) + r cos(o)
sin(0)

Substitute...
X =X cos(0) -y sin(0)
y =xsin(0) + v cos(Q)

XL



