Computer Vision

CSE 455 Matching and Blending

Linda Shapiro

Professor of Computer Science & Engineering Professor of Electrical & Computer Engineering

Review

- Descriptors
- Matching
- Computing Transformation

Simple Normalized Descriptor

interest point

neighborhood around interest point

normalized neighborhood around interest point

201

45 56 20046 201 20085 101 105

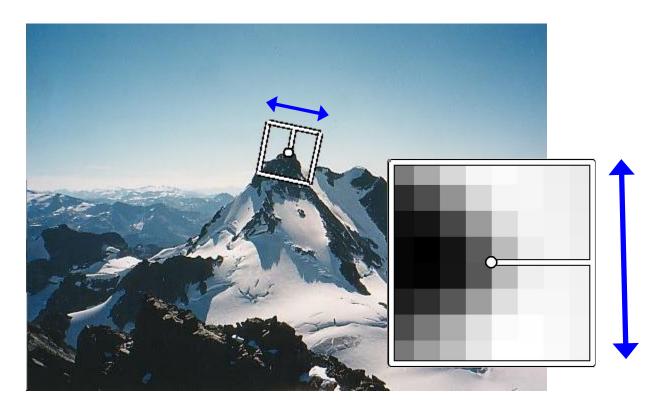
156 145 1 155 0 1 116 100 96

- The simple descriptor just subtracts the center value from each of the neighbors, including itself to normalize for lighting and exposure.
- We can store this as a 1D vector to be efficient:
 156 145 1 155 0 1 116 100 96

Properties of our Descriptor

- Translation Invariant
- Not scale invariant
- Not rotation invariant
- Somewhat invariant to lighting changes
- Let's look at the SIFT descriptor, because it is heavily used, even without using the SIFT key point detector.
- It already solves the scale problem by computing at multiple scales and keeping track.

Rotation invariance

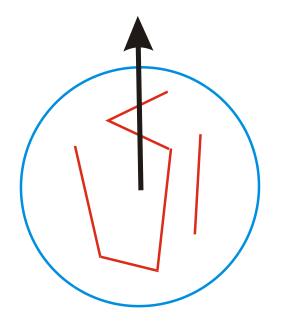


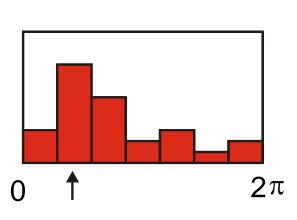
- Rotate patch according to its dominant gradient orientation
- This puts the patches into a canonical orientation.

Orientation Normalization

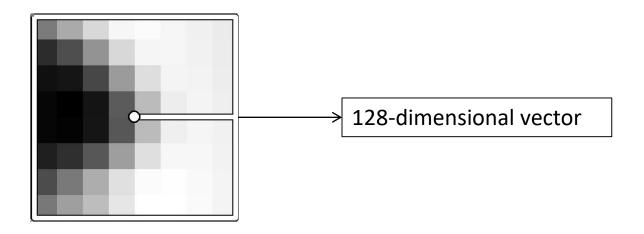
- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation

[Lowe, SIFT, 1999]





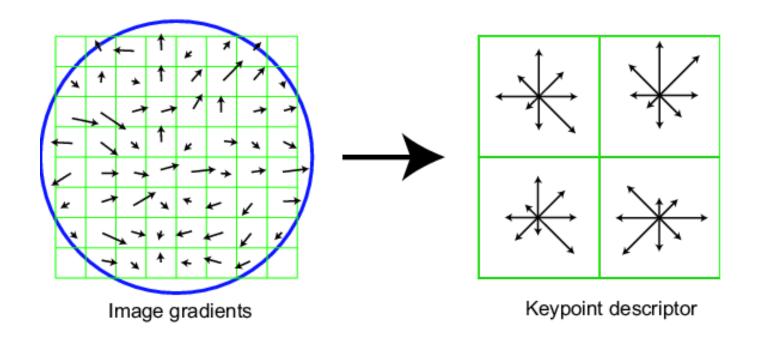
Once we have found the key points and a dominant orientation for each, we need to describe the (rotated and scaled) neighborhood about each.



SIFT descriptor

Full version

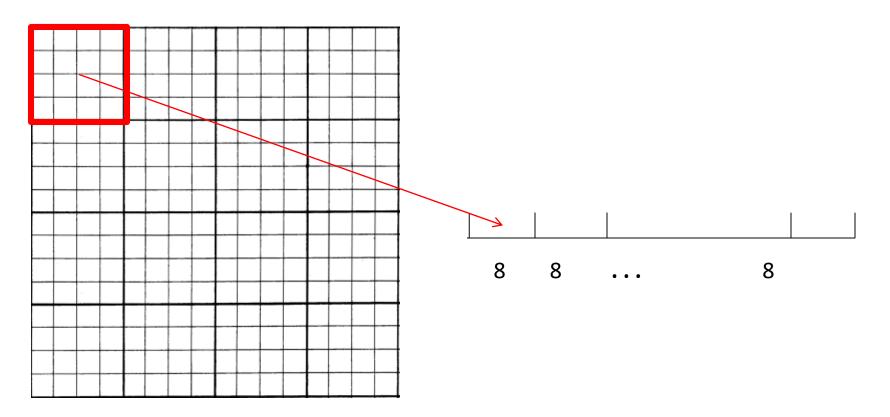
- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor



SIFT descriptor

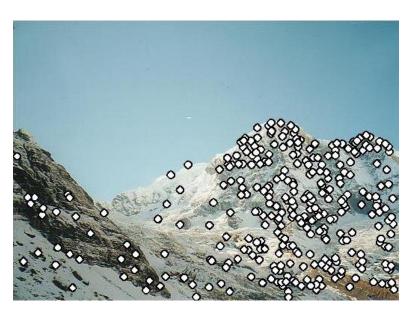
Full version

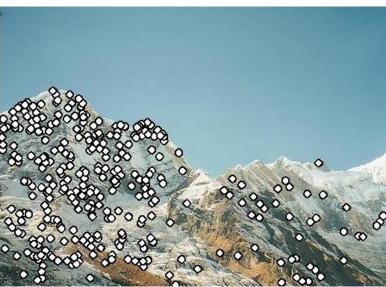
- Divide the 16x16 window into a 4x4 grid of cells
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor



Matching with Features

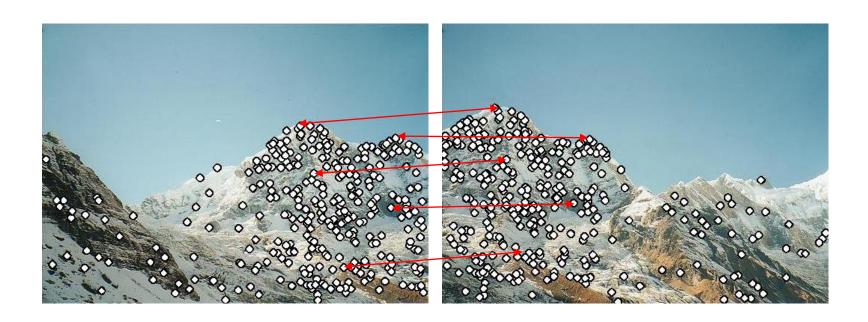
Detect feature points in both images





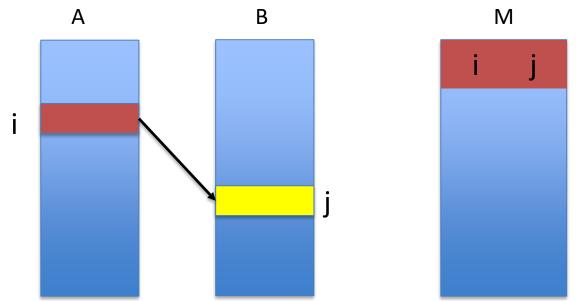
Matching with Features

- Detect feature points in both images
- Find corresponding pairs



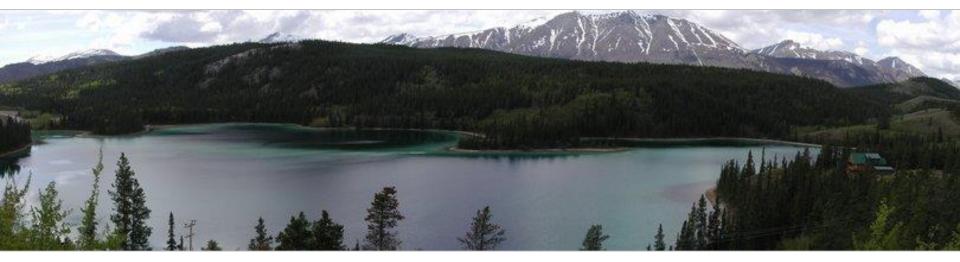
Find the best matches

 For each descriptor a in A, find its best match b in B



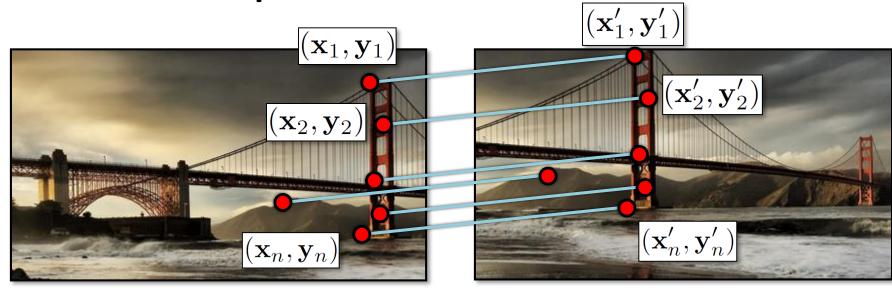
- And store it in a vector of matches
- Note: this is abstract; see code for details.

 Larger Goal: Combine two or more overlapping images to make one larger image



Slide credit: Vaibhav Vaish

Simple case: translations



Displacement of match
$$i$$
 = $(\mathbf{x}_i' - \mathbf{x}_i, \mathbf{y}_i' - \mathbf{y}_i)$

$$(\mathbf{x}_t, \mathbf{y}_t) = \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i' - \mathbf{x}_i, \frac{1}{n} \sum_{i=1}^n \mathbf{y}_i' - \mathbf{y}_i\right)$$

Solving for homographies

$$\begin{bmatrix} x_i' \\ y_i' \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

Why is this now a variable and not just 1?

- A homography is a projective object, in that it has no scale. It is represented by the above matrix, up to scale.
- One way of fixing the scale is to set one of the coordinates to 1, though that choice is arbitrary.
- But that's what most people do and your assignment code does.

Solving for homographies

$$\begin{bmatrix} x_i' \\ y_i' \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$x'_{i} = \frac{h_{00}x_{i} + h_{01}y_{i} + h_{02}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}}$$

$$y'_{i} = \frac{h_{10}x_{i} + h_{11}y_{i} + h_{12}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}}$$
Why the division?

$$x_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}$$

$$y_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}$$

Solving for homographies

$$x'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}$$

 $y'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}$

$$\begin{bmatrix} x_i & y_i & 1 & 0 & 0 & 0 & -x'_i x_i & -x'_i y_i & -x'_i \\ 0 & 0 & 0 & x_i & y_i & 1 & -y'_i x_i & -y'_i y_i & -y'_i \end{bmatrix}$$

$$x_{i}(h_{20}x_{i} + h_{21}y_{i} + h_{22}) = h_{00}x_{i} + h_{01}y_{i} + h_{02}$$

$$y'_{i}(h_{20}x_{i} + h_{21}y_{i} + h_{22}) = h_{10}x_{i} + h_{11}y_{i} + h_{12}$$

$$\begin{bmatrix} x_{i} & y_{i} & 1 & 0 & 0 & 0 & -x'_{i}x_{i} & -x'_{i}y_{i} & -x'_{i} \\ 0 & 0 & 0 & x_{i} & y_{i} & 1 & -y'_{i}x_{i} & -y'_{i}y_{i} & -y'_{i} \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix}$$
This is just for one pair of points.

Direct Linear Transforms (n points)
$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1x_1 & -x'_1y_1 & -x'_1 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -y'_1x_1 & -y'_1y_1 & -y'_1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n & y_n & 1 & 0 & 0 & 0 & -x'_nx_n & -x'_ny_n & -x'_n \\ 0 & 0 & 0 & x_n & y_n & 1 & -y'_nx_n & -y'_ny_n & -y'_n \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A} \qquad \mathbf{h} \qquad \mathbf{0}$$

Defines a least squares problem:

minimize
$$\|\mathbf{A}\mathbf{h} - \mathbf{0}\|^2$$

- Since \mathbf{h} is only defined up to scale, solve for unit vector $\hat{\mathbf{h}}$
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^T \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Direct Linear Transforms

 Why could we not solve for the homography in exactly the same way we did for the affine transform, ie.

$$\mathbf{t} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$$

Answer from Sameer Agarwal (Dr. Rome in a Day)

- For an affine transform, we have equations of the form $Ax_i + b = y_i$, solvable by linear regression.
- For the homography, the equation is of the form

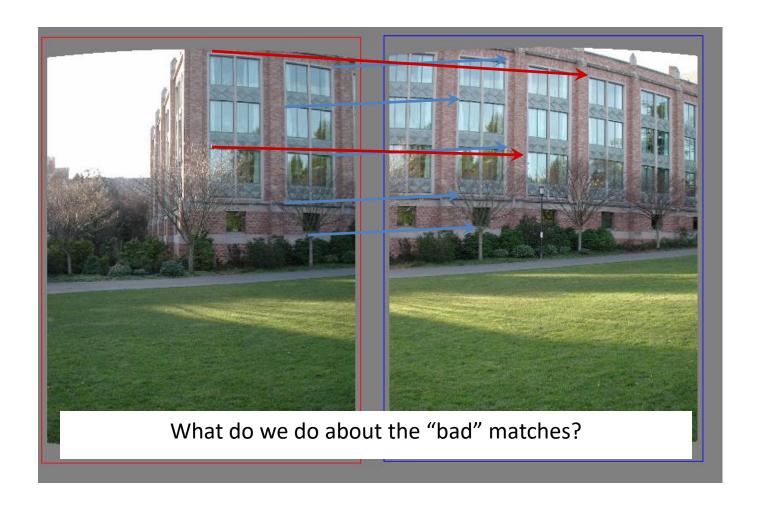
 $H\tilde{x}_i \sim \tilde{y}_i$ (homogeneous coordinates)

and the ~ means it holds only up to scale. The affine solution does not hold.

Colosseum: 2,097 images, 819,242 points

Trevi Fountain: 1,935 images, 1,055,153 points

Matching features



RANSAC for estimating homography

- RANSAC loop:
- Select four feature pairs (at random)
- 2. Compute homography $m{H}$ (exact)
- 3. Compute inliers where $||p_i||$, $H|p_i|| < \varepsilon$
- Keep largest set of inliers
- Re-compute least-squares H estimate using all of the inliers

Panorama algorithm:

Find corners in both images

Calculate descriptors

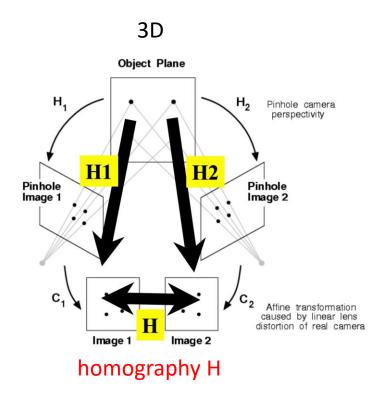
Match descriptors

RANSAC to find homography

Stitch together images with homography

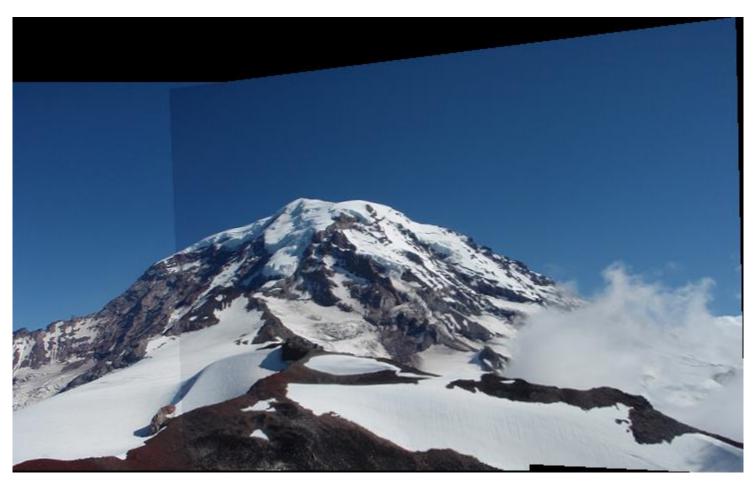
Stitching panoramas:

- We know homography is right choice under certain assumption:
 - Assume we are taking multiple images of planar object

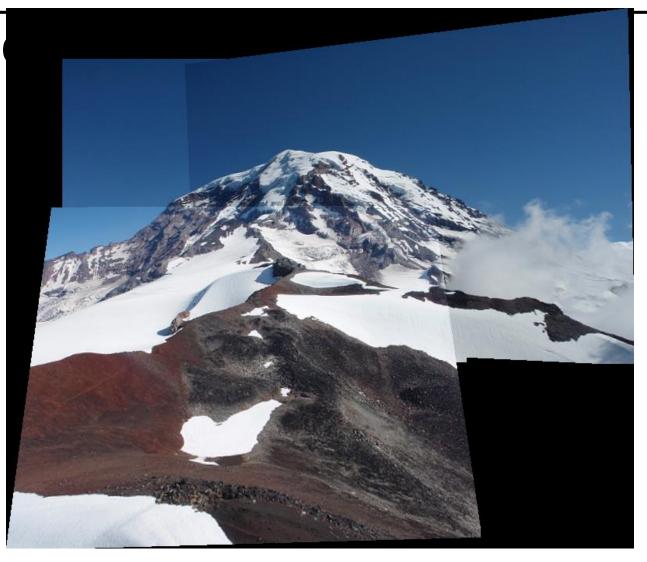


In practice:

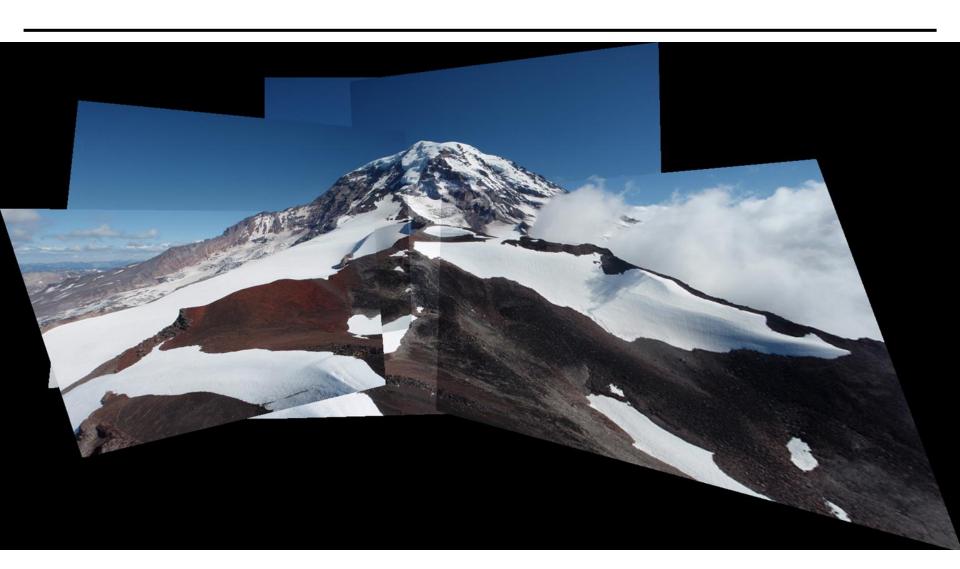
In practice:

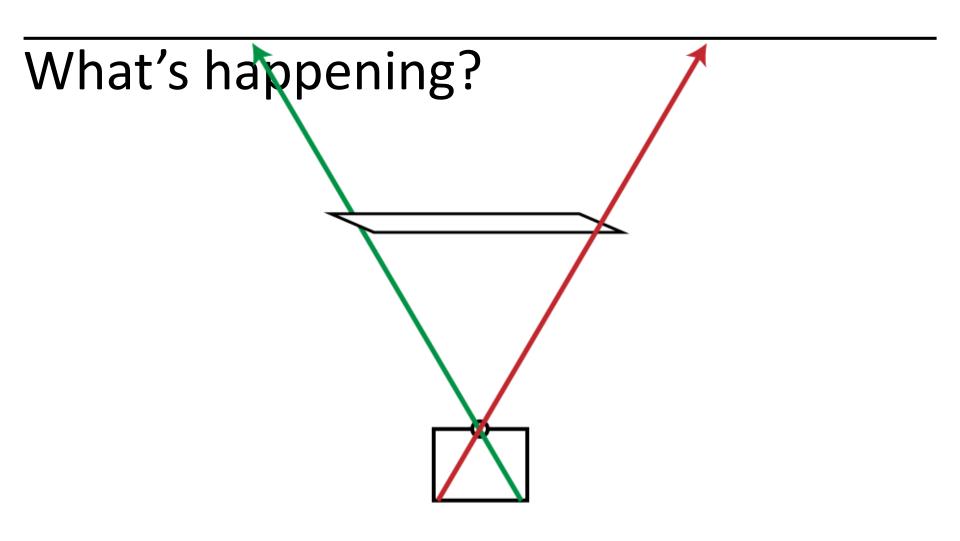


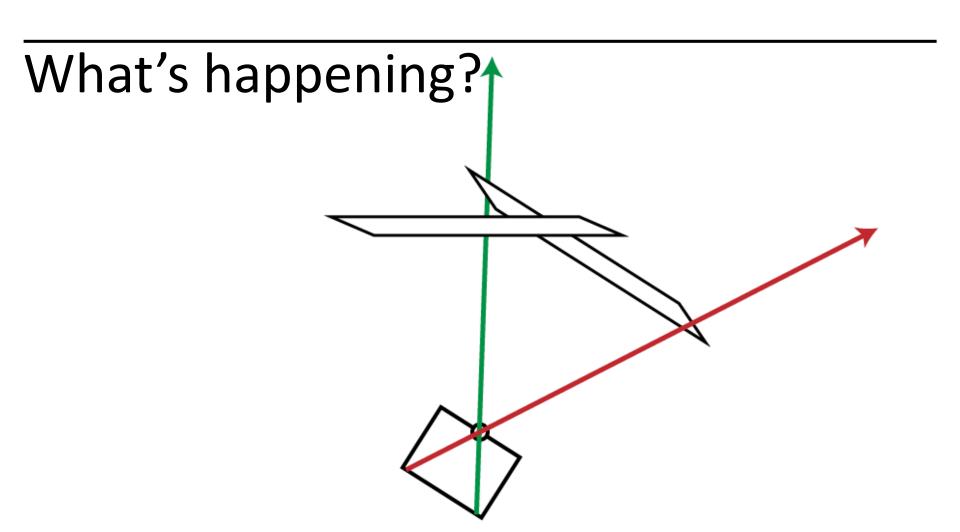
In pra

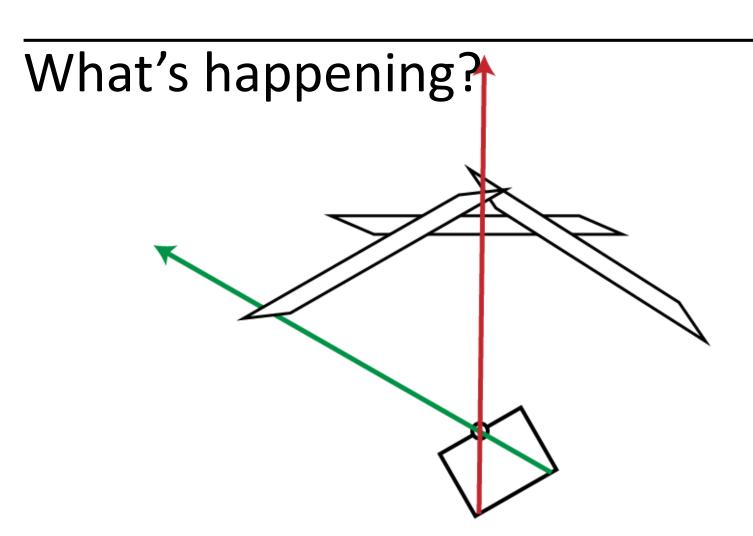


In

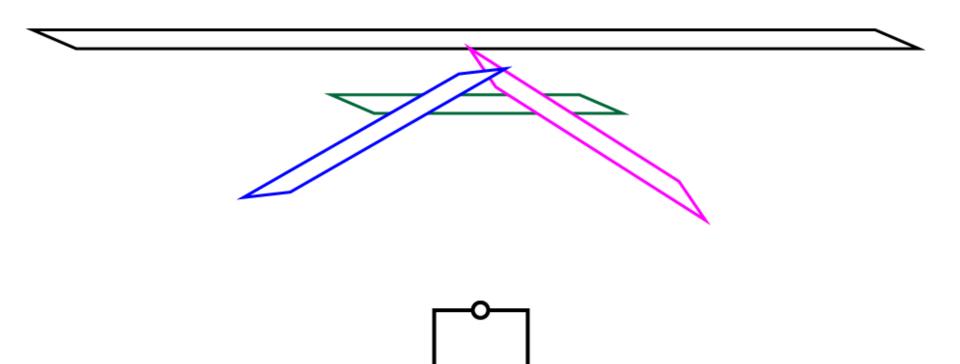


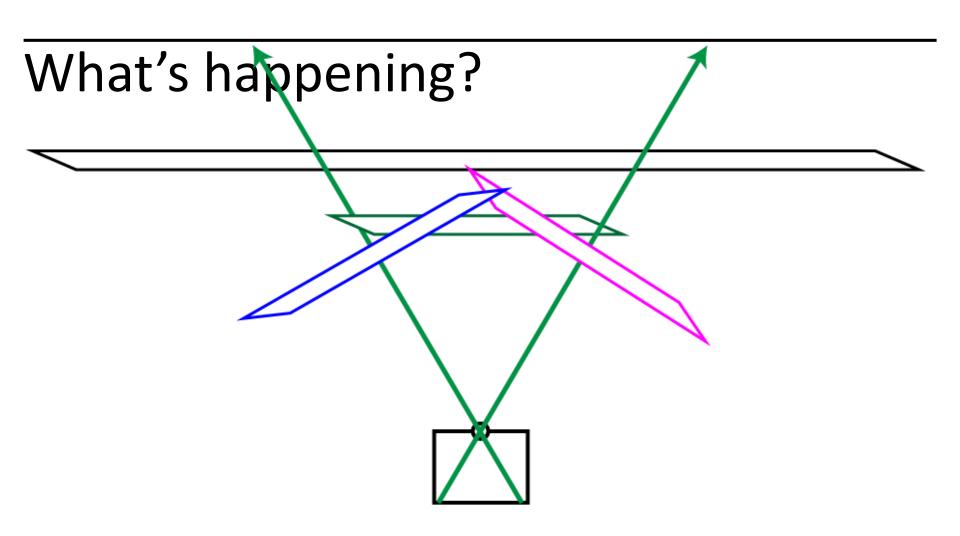




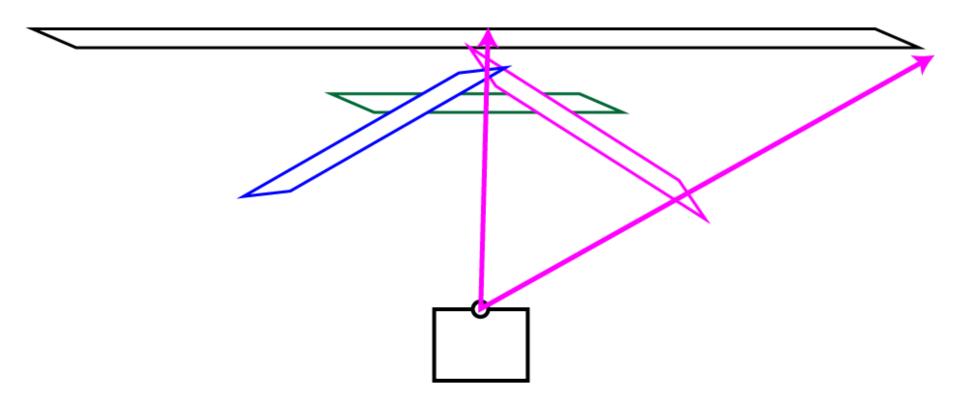


What's happening?

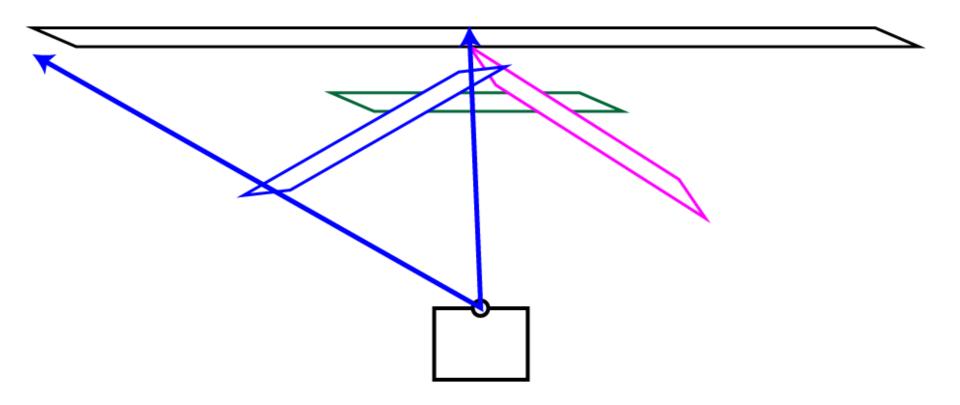


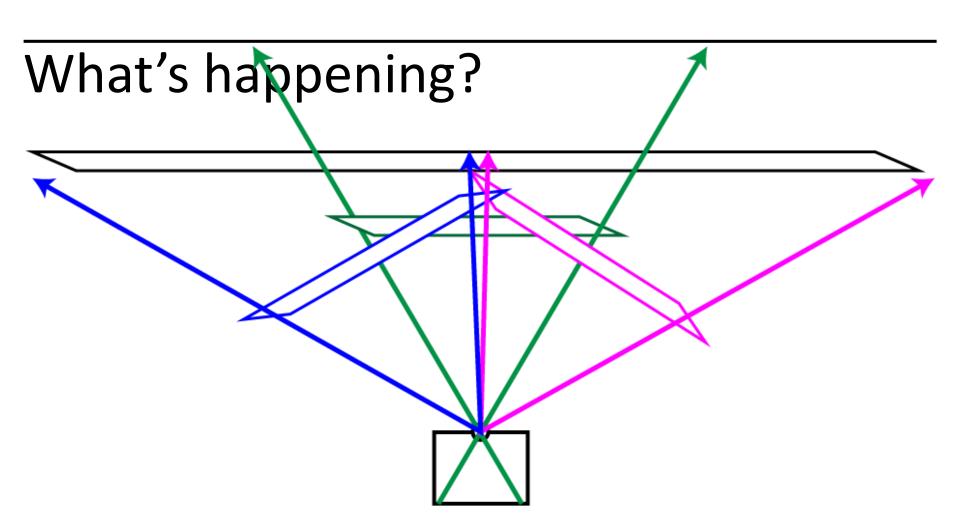


What's happening?

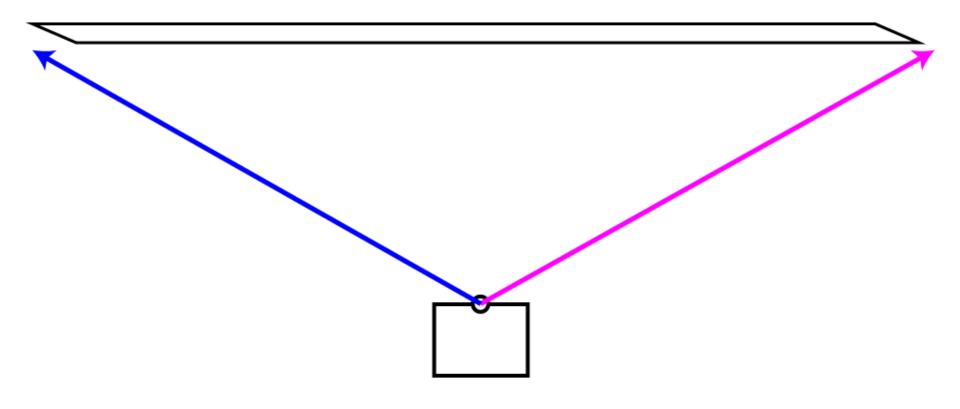


What's happening?





What's happening?



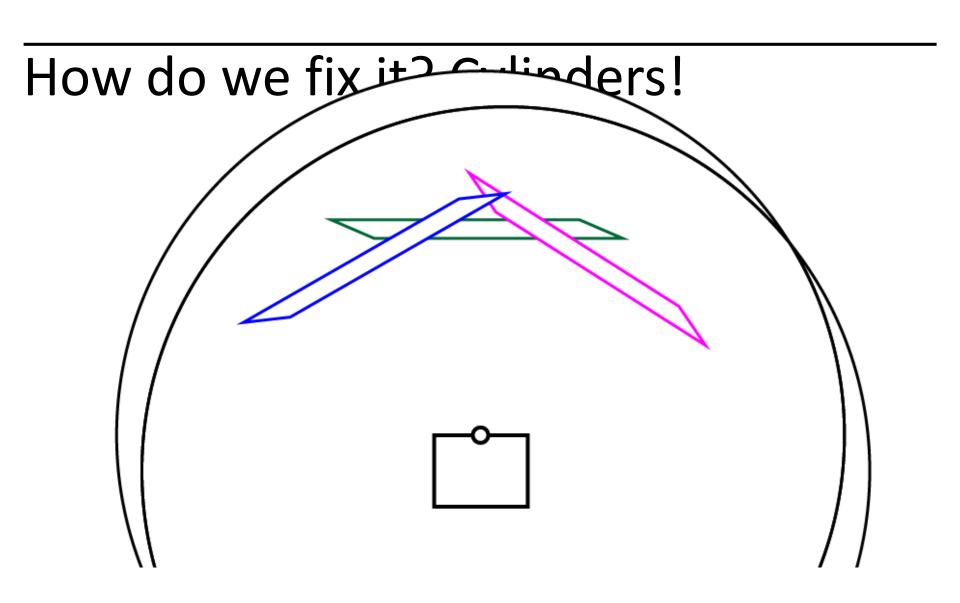
Very bad for big panoramas!

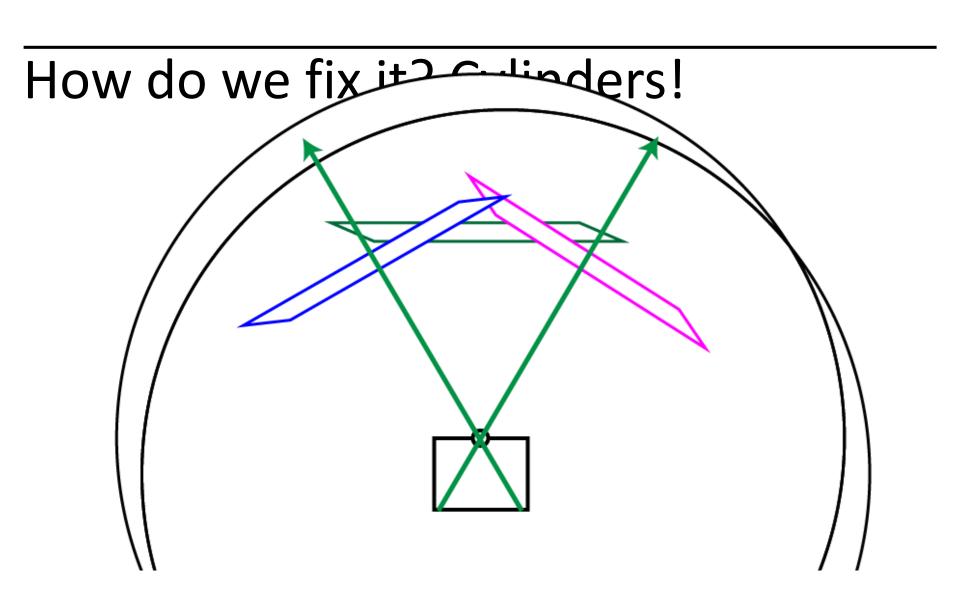
Very bad for big panoramas!

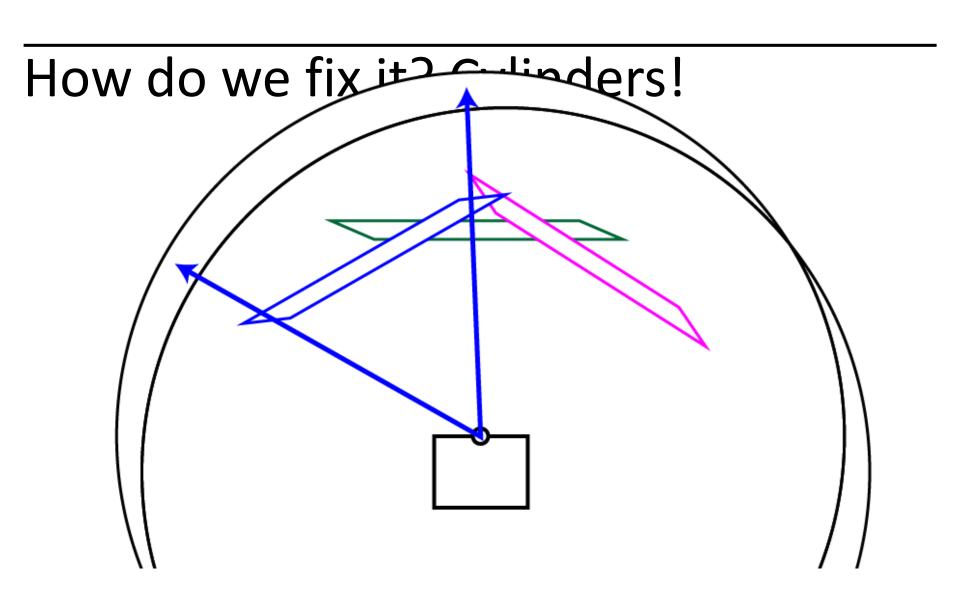
Very bad for big panoramas!

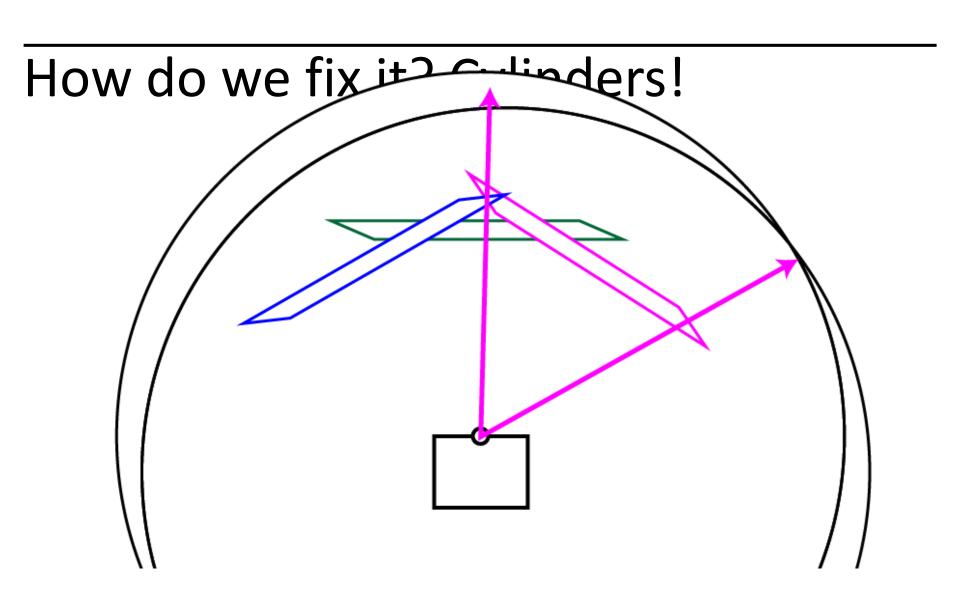
Fails :-(

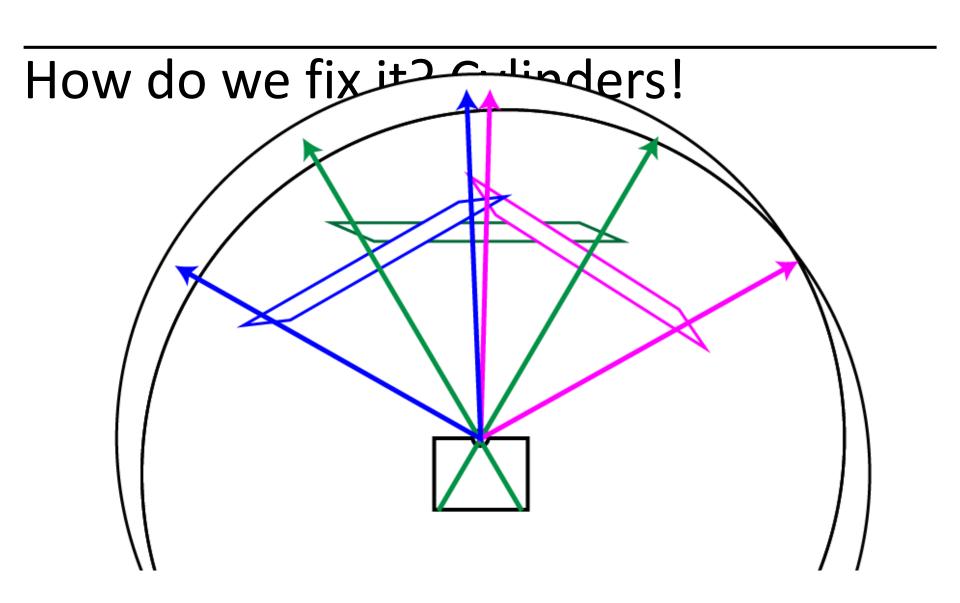
How do we fix it? Cylinders!











How do we fix it? Cylinders!

Calculate angle and height:

$$\theta = (x - xc) / f$$

h = $(y - yc) / f$

Find unit cylindrical coords:

$$X' = \sin(\theta)$$

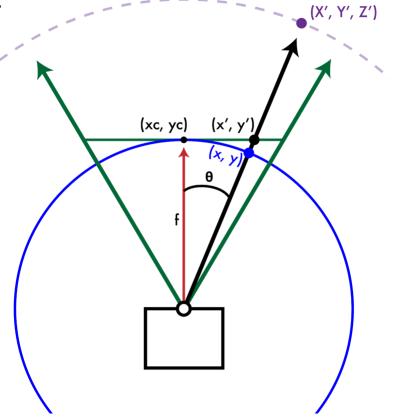
$$Y' = h$$

$$Z' = \cos(\theta)$$

Project to image plane:

$$x' = f X'/Z' + xc$$

$$y' = f Y'/Z' + yc$$



(xc,yc) = center of projection and f = focal length of camera

Dependent on focal length!

f = 300

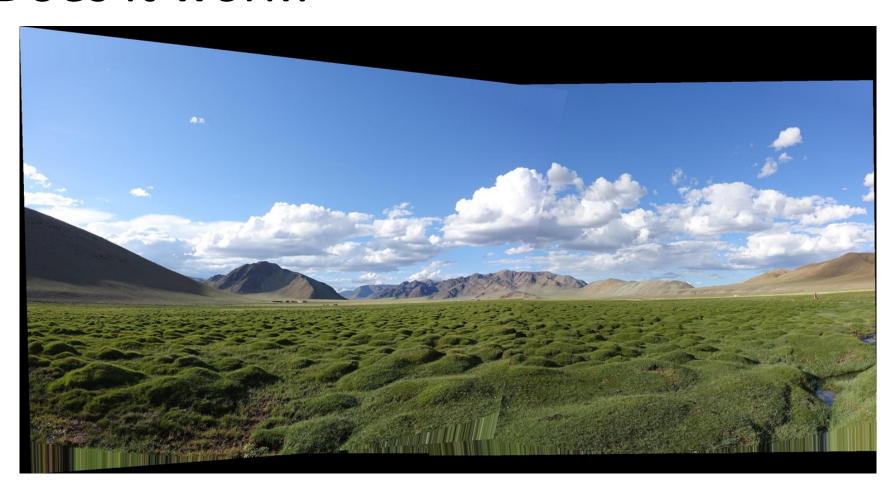
f = 500

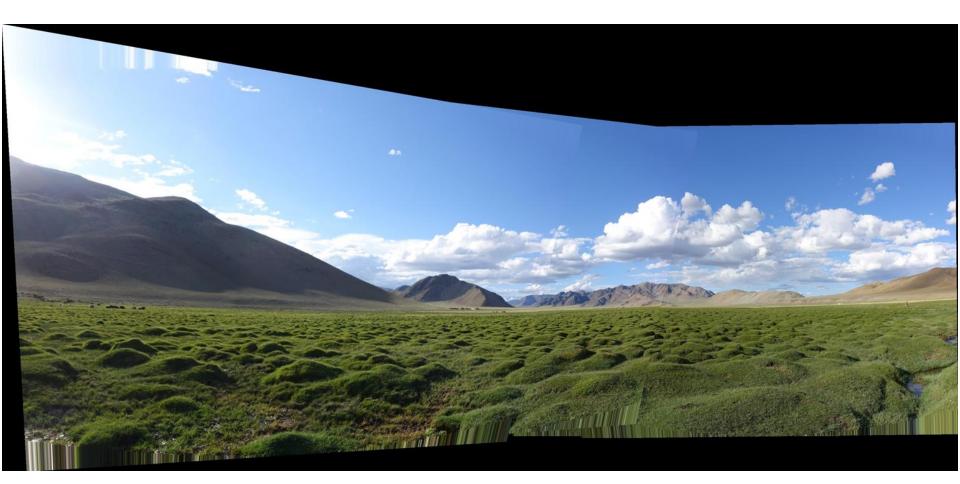
f = 1000

f = 1400

f = 10,000

f = 10,000



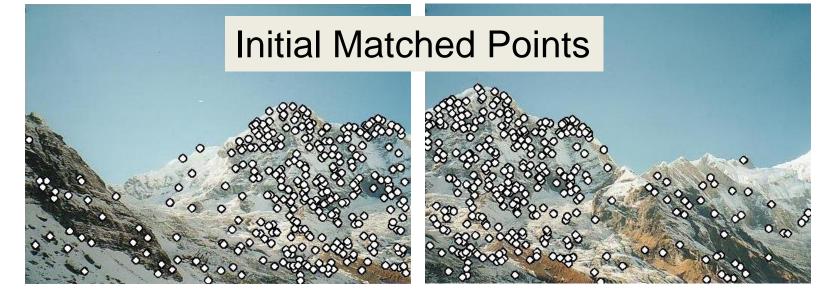


Does it work? Yay!

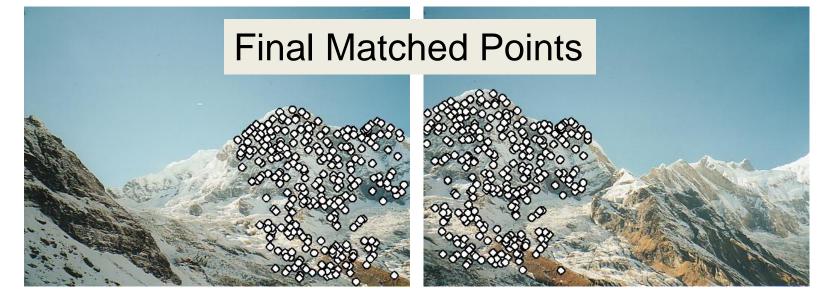
Where are we?

- We are going to build a panorama from two (or more) images.
- We need to learn about
 - Finding interest points
 - Describing small patches about such points
 - Finding matches between pairs of such points on two images, using the descriptors
 - Selecting the best set of matches and saving them
 - Constructing homographies (transformations) from one image to the other and picking the best one
 - Stitching the images together to make the panorama

RANSAC for Homography



RANSAC for Homography



RANSAC for Homography

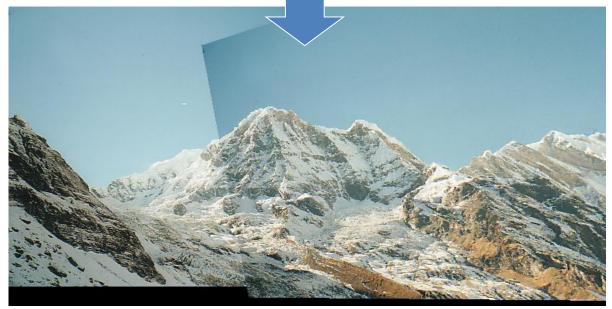
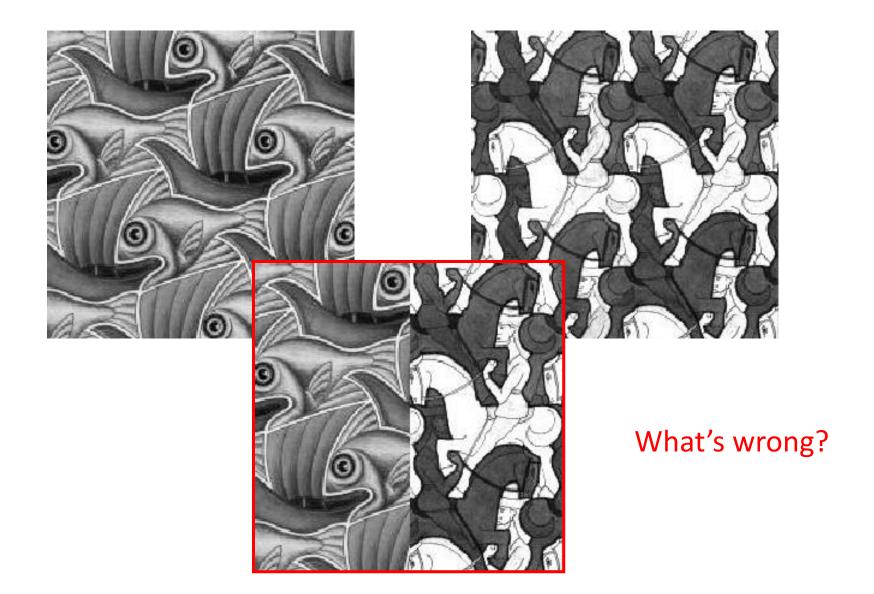
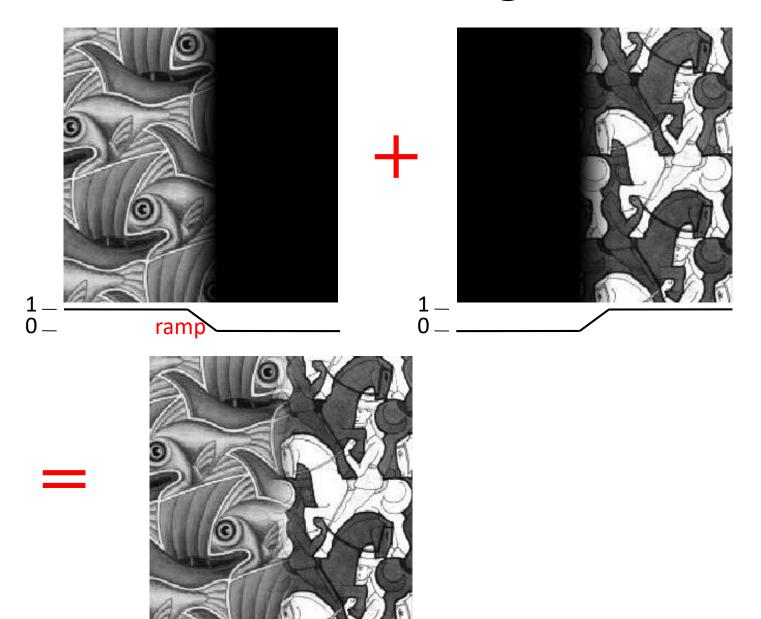


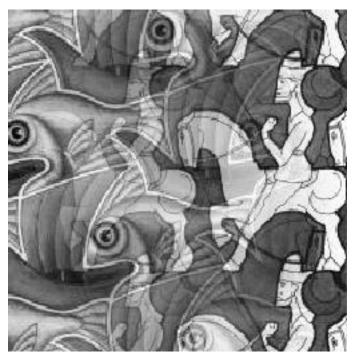
Image Blending

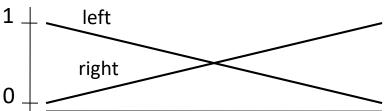


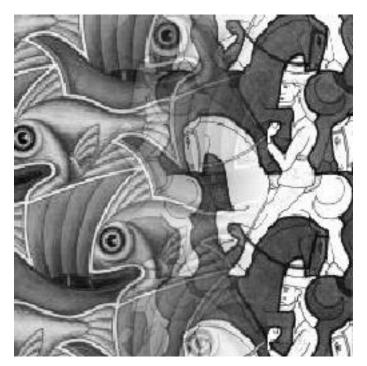
Feathering

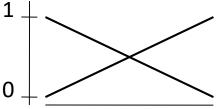


Effect of window (ramp-width) size

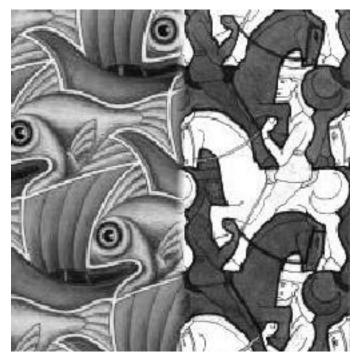


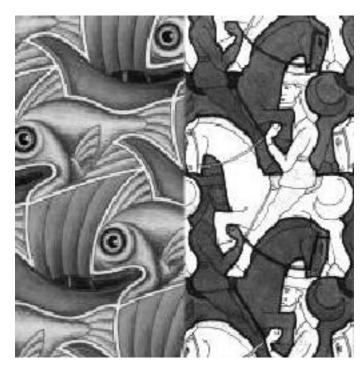






Effect of window size





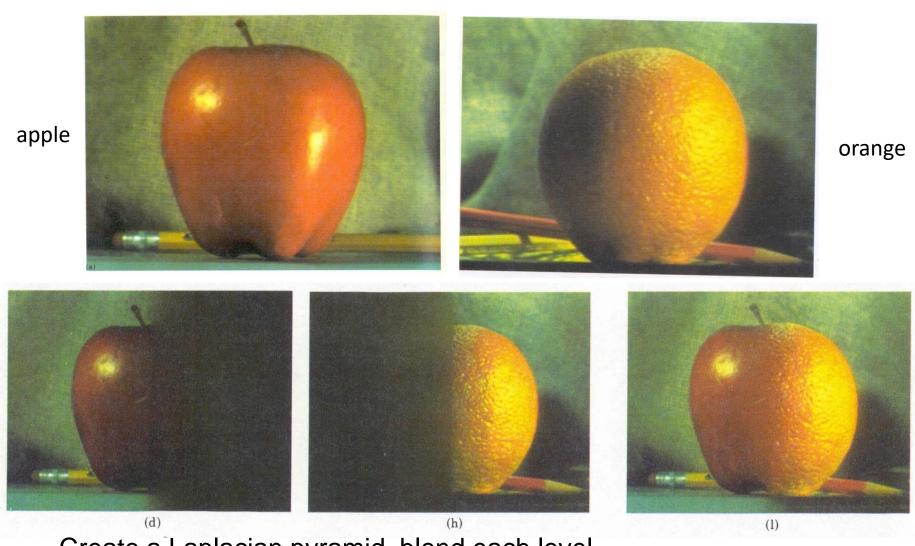
Good window size



What can we do instead?

- "Optimal" window: smooth but not ghosted
- Doesn't always work...

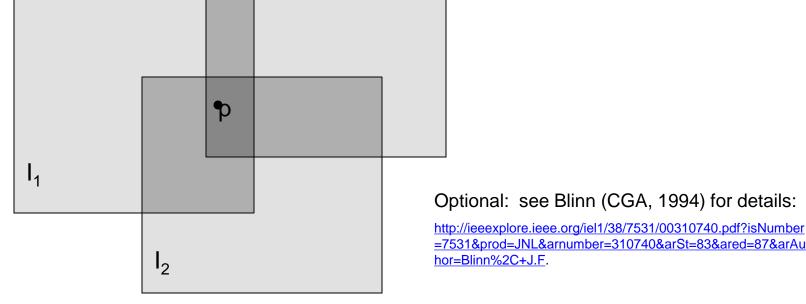
Pyramid blending



Create a Laplacian pyramid, blend each level

• Burt, P. J. and Adelson, E. H., A Multiresolution Spline with Application to Image Mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236. http://persci.mit.edu/pub_pdfs/spline83.pdf

Alpha Blending



 I_3

Encoding blend weights: $I(x,y) = (\alpha R, \alpha G, \alpha B, \alpha)$

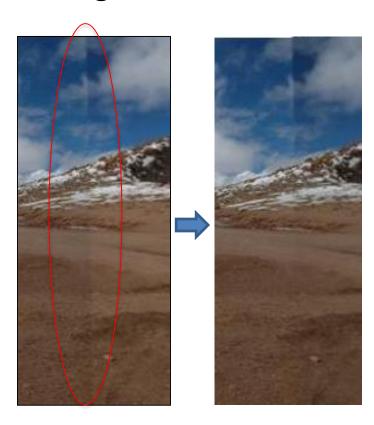
color at p =
$$\frac{(\alpha_1 R_1, \ \alpha_1 G_1, \ \alpha_1 B_1) + (\alpha_2 R_2, \ \alpha_2 G_2, \ \alpha_2 B_2) + (\alpha_3 R_3, \ \alpha_3 G_3, \ \alpha_3 B_3)}{\alpha_1 + \alpha_2 + \alpha_3}$$

Implement this in two steps:

- 1. accumulate: add up the (α premultiplied) RGB values at each pixel
- 2. normalize: divide each pixel's accumulated RGB by its α value

Gain Compensation: Getting rid of artifacts

- Simple gain adjustment
 - Compute average RGB intensity of each image in overlapping region
 - Normalize intensities by ratio of averages



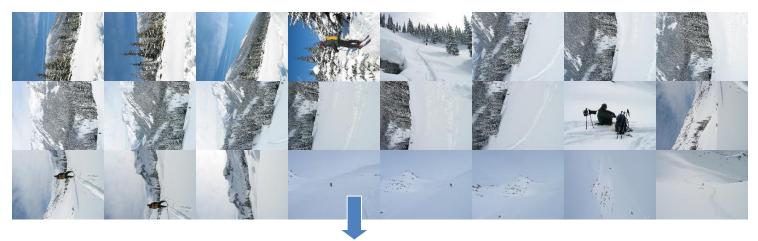
Blending Comparison

(b) Without gain compensation

(c) With gain compensation

(d) With gain compensation and multi-band blending

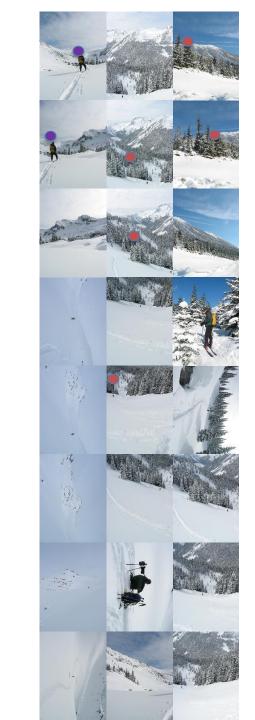
Recognizing Panoramas



Recognizing Panoramas

Input: N images

- Extract SIFT points, descriptors from all images
- 2. Find K-nearest neighbors for each point (K=4)
- 3. For each image
 - a) Select M candidate matching images by counting matched keypoints (m=6)
 - b) Solve homography **H**_{ii} for each matched image



Recognizing Panoramas

Input: N images

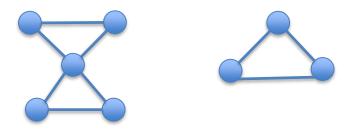
- Extract SIFT points, descriptors from all images
- 2. Find K-nearest neighbors for each point (K=4)
- 3. For each image
 - a) Select M candidate matching images by counting matched keypoints (m=6)
 - b) Solve homography **H**_{ii} for each matched image
 - c) Decide if match is valid $(n_i > 8 + 0.3 n_f)$

inliers # keypoints in overlapping area

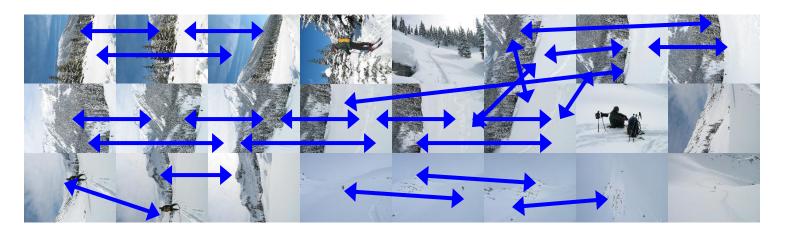
Recognizing Panoramas (cont.)

(now we have matched pairs of images)

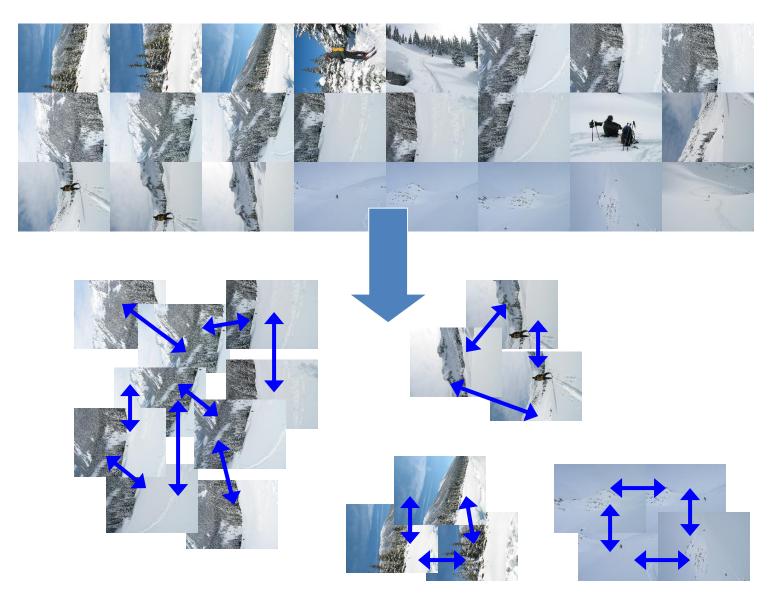
4. Make a graph of matched pairs
Find connected components of the graph



Finding the panoramas



Finding the panoramas

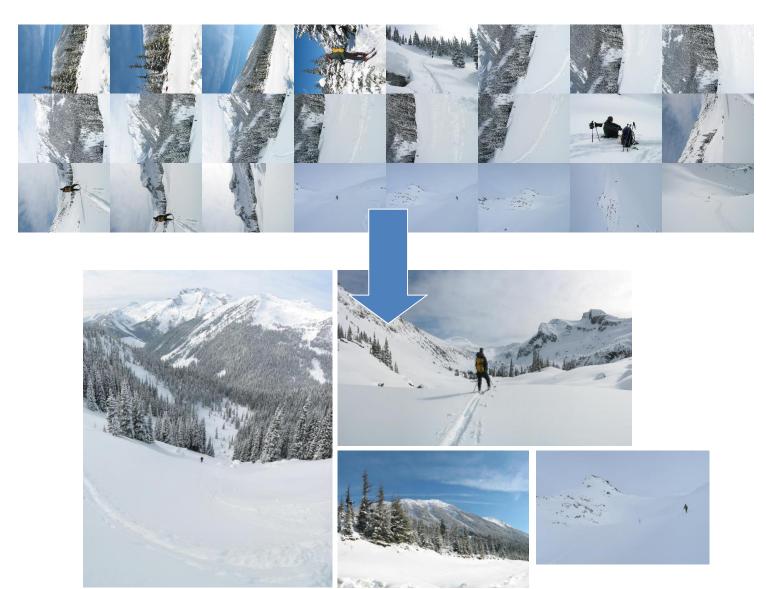


Recognizing Panoramas (cont.)

(now we have matched pairs of images)

- 4. Find connected components
- 5. For each connected component
 - a) Solve for rotation and f
 - b) Project to a surface (plane, cylinder, or sphere)
 - c) Render with multiband blending

Finding the panoramas



Homework 3

CREATING PANORAMAS!

Useful structures (defined in image.h)

Data structure for an point

```
typedef struct{
    float x, y;
} point;
```

Data structure for a descriptor

```
typedef struct{
    point p; <-pixel location
    int n; <-size of data
    float *data;
} descriptor;</pre>
```

Data structure for a match

```
typedef struct{
    point p, q; <-matching
points
    int ai, bi; <-matching
indices of descriptor arrays
    float distance; <-dist.
between matching descriptors
} match;</pre>
```

Overall algorithm

```
image panorama_image(image a, image b, float sigma, float thresh, int
nms, float inlier thresh, int iters, int cutoff)
{
   // Calculate corners and descriptors
    descriptor *ad = harris corner detector(a, sigma, thresh, nms, &an);
   descriptor *bd = harris corner detector(b, sigma, thresh, nms, &bn);
   // Find matches
    match *m = match descriptors(ad, an, bd, bn, &mn);
   // Run RANSAC to find the homography
    matrix H = RANSAC(m, mn, inlier thresh, iters, cutoff);
   // Stitch the images together with the homography
    image combine = combine_images(a, b, H);
return combine;
```

1. Harris corner detection

TODO #1.1: Compute structure matrix S

 TODO #1.2: Compute cornerness response map R from structure matrix S

 TODO #1.3: Find local maxes in map R using nonmaximum suppression

TODO #1.4: Compute descriptors for final corners

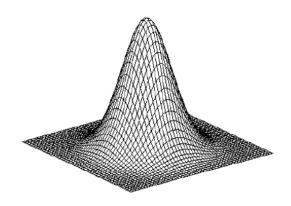
TODO #1.1: structure matrix

Compute Ix and Iy using Sobel filters from HW2

- Create an empty image of 3 channels
 - Assign channel 1 to Ix²
 - Assign channel 2 to ly²
 - Assign channel 3 to Ix * Iy
- Compute weighted sum of neighbors
 - smooth the image with a gaussian of given sigma

TODO #1.1.1: make a fast smoother

Decompose a 2D gaussian to 2 1D convolutions.



Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}} = \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

Separable kernel

- Factors into product of two 1D Gaussians Discrete example:

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

TODO #1.2: response map

For each pixel of the given structure matrix S:

- Get Ix², Iy² and IxIy from the 3 channels
- Compute Det(S) = $Ix^2 * Iy^2 IxIy * IxIy$
- Compute $Tr(S) = Ix^2 + Iy^2$
- Compute R = Det(S) 0.06 * Tr(S) * Tr(S)

TODO #1.3: NMS

For each pixel 'p' of the given response map R

- get value(p)
- loop over all neighboring pixels 'q' in a 2w+1 window
 - +/- w around the current pixel location
 - if value(q) > value (p), value(p) = -999999 (very low)
- set 'p' to value(p)

TODO #1.4: corner descriptors

- Given: Response map after NMS
- Initialize count; loop over each pixel
 - if pixel value > threshold, increment count
- Initialize descriptor array of size 'count'
- Loop over each pixel again
 - if pixel value > threshold, create descriptor for that pixel
 - use describe_index() defined in harris_image.c
 - add this new descriptor to the array

2. Matching descriptors

- TODO #2.1: Implement L1 distance
- TODO #2.2.1: Find best matches from descriptor array "a" to descriptor array "b"
- TODO #2.2.2: Eliminate duplicate matches to ensure one-to-one match between "a" and "b"
- TODO #2.3: Project points given a homography and compute inliers from an array of matches
- TODO #2.4: Implement RANSAC algorithm
- TODO #2.5: Combine images

TODO #2.1: Distance Metrics

For comparing patches we'll use L1 distance.

```
// Calculates L1 distance between to floating point arrays.
// float *a, *b: arrays to compare.
// int n: number of values in each array.
// returns: l1 distance between arrays (sum of absolute differences).
float l1_distance(float *a, float *b, int n)
{
    // TODO: return the correct number.
    return 0;
}
```

TODO #2.2.1: best matches

For each descriptor 'a_r' in array 'a':

- initialize min_distance and best_index
- for each descriptor 'b_s' in array 'b':
- compute L1 distance between a_r and b_s
 - sum of absolute differences
- if distance < min_distance:</p>
 - update min_distance and best_index

TODO #2.2.2: remove duplicates

- Sort the matches based on distance (shortest is first)
- Initialize an array of 0s called 'seen'

- Loop over all matches:
 - if b-index of current match is ≠1 in 'seen'
 - set the corresponding value in 'seen' to 1
 - retain the match
 - else, discard the match

TODO #2.3.1: point projection

• Given point p, set matrix $c_{3x1} = [x-coord, y-coord, 1]$

• Compute $M_{3x1} = H_{3x3} * c_{3x1}$ with given Homography

- Compute x,y coordinates of a point 'q':
 - x-coord: M[0] / M[2]
 - y-coord: M[1] / M[2]

Return point 'q'

TODO #2.3.2, 2.3.3: L2 distance and model inliers

- Loop over each match from array of matches (starting from end):
 - project point 'p' of match using given 'H'
 - compute L2 distance between point 'q' of match and the projected point
 - if distance < given threshold:</p>
 - it is an inlier; bring match to the front of array (swap)
 - update inlier count

TODO #2.3.4: Fitting the homography

- Use the matrix operations discussed in class to solve equations like M*a = b.
- Most of this is already implemented
 - you just have to fill in the matrices M and b with our match information.

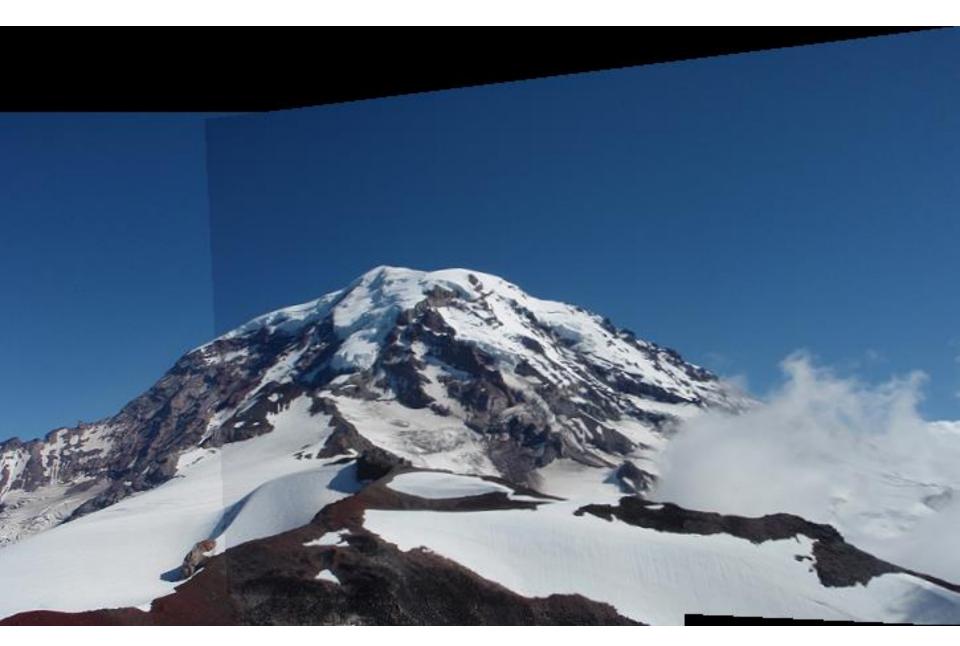
TODO #2.4-2.5: implement RANSAC

- For each iteration:
 - compute homography with 4 random matches
 - call compute_homography() with argument 4
 - if homography is empty matrix, continue
 - else compute inliers with this homography
 - if #inliers > max inliers:
 - compute new homography with all inliers
 - update best_homography with this new homography
 - update max_inliers with #inliers computed with this new homography unless new homography is empty
 - if updated max_inliers > given cutoff: return best_homography
- Return best homography

TODO #2.6: combine images

• Project corners of image 'b' and create a big empty image 'c' to place image 'a' and projected 'b'. This part is given in the code.

- For each pixel in image 'a', get pixel value and assign it to 'c' after proper offset
- For each pixel in image 'c' within projected bounds:
 - project to image 'b' using given homography
 - get pixel value at projected location using bilinear interpolation
 - assign the value to 'c' after proper offset



3. Cylindrical Projection

- Implement cylindrical projection for an image
 - See lecture slides for the formulas
 - See Tryhw3, which will call the panorama code to do the stitching.
 - See code for the code stub you will fill in to cylinderize an image.

Have Fun