Computer Vision

CSE 455
Learning I

Linda Shapiro
Professor of Computer Science & Engineering
Professor of Electrical & Computer Engineering
Learning

- AI/Vision systems are complex and may have many parameters.
- It is impractical and often impossible to encode all the knowledge a system needs.
- Different types of data may require very different parameters.
- Instead of trying to hard code all the knowledge, it makes sense to learn it.
Learning from Observations

- **Supervised Learning** – learn a function from a set of training examples which are preclassified feature vectors.

<table>
<thead>
<tr>
<th>feature vector</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>(shape, color)</td>
<td></td>
</tr>
<tr>
<td>(square, red)</td>
<td>I</td>
</tr>
<tr>
<td>(square, blue)</td>
<td>I</td>
</tr>
<tr>
<td>(circle, red)</td>
<td>II</td>
</tr>
<tr>
<td>(circle blue)</td>
<td>II</td>
</tr>
<tr>
<td>(triangle, red)</td>
<td>I</td>
</tr>
<tr>
<td>(triangle, green)</td>
<td>I</td>
</tr>
<tr>
<td>(ellipse, blue)</td>
<td>II</td>
</tr>
<tr>
<td>(ellipse, red)</td>
<td>II</td>
</tr>
</tbody>
</table>

Given a previously unseen feature vector, what is the rule that tells us if it is in class I or class II?

- (circle, green)
- (triangle, blue)
%Training set of Calenouria and Dorenouria
@DATA
0,1,1,0,0,0,0,0,0,1,1,2,3,0,1,2,0,0,0,0,0,0,0,0,0,1,0,0,1,
0,2,0,0,0,0,1,1,1,0,1,8,0,7,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
3,3,4,0,2,1,0,1,1,1,0,0,0,0,1,0,0,1,1,cal 0,1,0,0,0,1,0,0,0,4,1,2
,2,0,1,0,0,0,0,1,0,0,3,0,2,0,0,1,1,0,0,1,0,0,0,1,0,1,6,1,8,2,0,0,
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,2,0,5,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,cal
0,0,1,0,1,0,0,1,0,1,0,0,1,0,3,0,1,0,0,2,0,0,0,0,1,3,0,0,0,0,0,0,0,0,1,0,
2,0,2,0,1,8,0,5,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,3,0,0,2,1,1,
5,0,0,0,2,1,3,2,0,1,0,0,cal 0,0,0,0,0,0,0,0,0,2,0,0,1,2,0,1,1,0,0,0,1
,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,3,0,0,0,4,1,8,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1
,0,1,0,0,0,0,0,0,0,4,2,0,2,1,1,2,1,1,0,0,0,0,2,0,0,2,2,cal
...
Learning from Observations

- **Unsupervised Learning** – No classes are given. The idea is to find patterns in the data. This generally involves *clustering*.

- **Reinforcement Learning** – learn from feedback after a decision is made.
Topics to Cover

• Inductive Learning
 – decision trees
 – ensembles
 – neural nets
 – kernel machines

• Ensembles

• The Fergus Algorithm with Kadir’s interest operator
<table>
<thead>
<tr>
<th>Decision Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Theory is well-understood.</td>
</tr>
<tr>
<td>• Often used in pattern recognition problems.</td>
</tr>
<tr>
<td>• Has the nice property that you can easily understand the decision rule it has learned.</td>
</tr>
</tbody>
</table>
If the features are continuous, internal nodes may test the value of a feature against a threshold.

Decision Tree Hypothesis Space

Classic ML example: decision tree for “Shall I play tennis today?”

from Tom Mitchell’s ML book
The Stonefly Problem

Calenouria Dorenouria
Imaging Setup at OSU

Transportation Apparatus

Imaging Setup
Original Image Analysis

Feature vector: histogram of SIFT descriptors in a bag of words type of approach.
A Real Decision Tree (WEKA)

```
part23 < 0.5
| part29 < 3.5
| | part34 < 0.5
| | | part8 < 2.5
| | | | part2 < 0.5
| | | | | part63 < 3.5
| | | | | | part20 < 1.5 : dor (53/12) [25/8]
| | | | | | part20 >= 1.5
| | | | | | | part37 < 2.5 : cal (6/0) [5/2]
| | | | | | | part37 >= 2.5 : dor (3/1) [2/0]
| | | | | | | part63 >= 3.5 : dor (14/0) [3/0]
| | | | | | part2 >= 0.5 : cal (21/8) [10/4]
| | | | | part8 >= 2.5 : dor (14/0) [14/0]
| | | | part34 >= 0.5 : cal (38/12) [18/4]
| | | part29 >= 3.5 : dor (32/0) [10/2]
| | part23 >= 0.5
| | | part29 < 7.5 : cal (66/8) [35/12]
| | | part29 >= 7.5
| | | | part24 < 5.5 : dor (9/0) [4/0]
| | | | part24 >= 5.5 : cal (4/0) [4/0]
```
Evaluation

Correctly Classified Instances 281 73.5602 %
Incorrectly Classified Instances 101 26.4398 %
Kappa statistic 0.4718
Mean absolute error 0.3493
Root mean squared error 0.4545
Relative absolute error 69.973 %
Root relative squared error 90.7886 %
Total Number of Instances 382

=== Detailed Accuracy By Class ===

<table>
<thead>
<tr>
<th>Class</th>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>ROC Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>cal</td>
<td>0.77</td>
<td>0.297</td>
<td>0.713</td>
<td>0.77</td>
<td>0.74</td>
<td>0.747</td>
</tr>
<tr>
<td>dor</td>
<td>0.703</td>
<td>0.23</td>
<td>0.761</td>
<td>0.703</td>
<td>0.731</td>
<td>0.747</td>
</tr>
<tr>
<td>Wg Avg.</td>
<td>0.736</td>
<td>0.263</td>
<td>0.737</td>
<td>0.736</td>
<td>0.735</td>
<td>0.747</td>
</tr>
</tbody>
</table>

=== Confusion Matrix ===

a b <-- classified as
144 43 | a = cal
58 137 | b = dor

Precision = TP/(TP+FP)
Recall = TP/(TP+FN)
F-Measure = 2 x Precision x Recall

 Precision + Recall
Properties of Decision Trees

- They divide the decision space into axis parallel rectangles and label each rectangle as one of the k classes.
- They can represent Boolean functions.
- They are variable size and deterministic.
- They can represent discrete or continuous parameters.
- They can be learned from training data.
Learning Algorithm for Decision Trees

Growtree(S) \ /* Binary version */\n if (y==0 for all (x,y) in S) return newleaf(0)
 else if (y==1 for all (x,y) in S) return newleaf(1)
 else
 choose best attribute \(x_j \)
 \(S_0 = (x,y) \) with \(x_j = 0 \)
 \(S_1 = (x,y) \) with \(x_j = 1 \)
 return new node(\(x_j \), Growtree(S_0), Growtree(S_1))

How do we choose the best attribute?
What should that attribute do for us?
Shall I play tennis today?
Which attribute should be selected?

“training data”

- **outlook**
 - sunny
 - yes
 - yes
 - yes
 - yes
 - yes
 - no
 - yes
 - yes
 - yes
 - yes
 - overcast
 - yes
 - yes
 - yes
 - yes
 - yes
 - no
 - no
 - rainy
 - yes
 - yes
 - yes
 - yes
 - no
 - no

- **windy**
 - false
 - yes
 - yes
 - yes
 - yes
 - yes
 - no
 - no
 - true
 - yes
 - yes
 - yes
 - yes
 - yes
 - no
 - no

- **humidity**
 - high
 - yes
 - yes
 - yes
 - yes
 - yes
 - no
 - no
 - normal
 - yes
 - yes
 - yes
 - yes
 - yes
 - yes
 - no
 - no

- **temperature**
 - hot
 - yes
 - yes
 - yes
 - yes
 - yes
 - no
 - no
 - mild
 - yes
 - yes
 - cool
 - yes
 - yes
 - yes
 - yes
 - yes
 - yes
 - no
 - no
Criterion for attribute selection

• Which is the best attribute?
 – The one that will result in the smallest tree
 – **Heuristic:** choose the attribute that produces the “purest” nodes

• Need a good measure of purity!
 – Maximal when?
 – Minimal when?
Information Gain

Which test is more informative?

Split over whether Balance exceeds 50K

- Less or equal 50K
- Over 50K

Split over whether applicant is employed

- Unemployed
- Employed
Information Gain

Impurity/Entropy (informal)

– Measures the level of impurity in a group of examples
Impurity

Very impure group

Less impure

Minimum impurity
Entropy: a common way to measure impurity

- Entropy = \(\sum_{i} - p_i \log_2 p_i \)

 \(p_i \) is the probability of class \(i \)

 Compute it as the proportion of class \(i \) in the set.

16/30 are green circles; 14/30 are pink crosses

\[\log_2(16/30) = -0.9; \quad \log_2(14/30) = -1.1 \]

Entropy = \(- (16/30)(-0.9) - (14/30)(-1.1) = 0.99 \)

- Entropy comes from information theory. The higher the entropy the more the information content.

What does that mean for learning from examples?
2-Class Cases:

• What is the entropy of a group in which all examples belong to the same class?
 – entropy = -1 \log_2 1 = 0

 not a good training set for learning

• What is the entropy of a group with 50% in either class?
 – entropy = -0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1

 good training set for learning
Information Gain

- We want to determine which attribute in a given set of training feature vectors is most useful for discriminating between the classes to be learned.

- Information gain tells us how important a given attribute of the feature vectors is.

- We will use it to decide the ordering of attributes in the nodes of a decision tree.
Calculating Information Gain

Information Gain = \(\text{entropy(parent)} - [\text{average entropy(children)}] \)

\[\text{parent entropy} = -\left(\frac{14}{30} \cdot \log_2 \frac{14}{30} \right) - \left(\frac{16}{30} \cdot \log_2 \frac{16}{30} \right) = 0.996 \]

\[\text{child entropy} = -\left(\frac{13}{17} \cdot \log_2 \frac{13}{17} \right) - \left(\frac{4}{17} \cdot \log_2 \frac{4}{17} \right) = 0.787 \]

Entire population (30 instances)

(Weighted) Average Entropy of Children = \(\left(\frac{17}{30} \cdot 0.787 \right) + \left(\frac{13}{30} \cdot 0.391 \right) = 0.615 \)

Information Gain = \(0.996 - 0.615 = 0.38 \) for this split
Entropy-Based Automatic Decision Tree Construction

Training Set S

$x_1 = (f_{11}, f_{12}, \ldots, f_{1m})$

$x_2 = (f_{21}, f_{22}, f_{2m})$

. . .

$x_n = (f_{n1}, f_{n2}, f_{2m})$

Node 1

What feature should be used?

What values?

Quinlan suggested information gain in his ID3 system and later the gain ratio, both based on entropy.
Using Information Gain to Construct a Decision Tree

1. Choose the attribute A with highest information gain for the full training set at the root of the tree.

2. Construct child nodes for each value of A. Each has an associated subset of vectors in which A has a particular value.

3. Repeat recursively till when?
Simple Example

Training Set: 3 features and 2 classes

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>II</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>II</td>
</tr>
</tbody>
</table>

How would you distinguish class I from class II?
\[
\begin{array}{cccc}
X & Y & Z & C \\
1 & 1 & 1 & I \\
1 & 1 & 0 & I \\
0 & 0 & 1 & \text{II} \\
1 & 0 & 0 & \text{II} \\
\end{array}
\]

\[E_{\text{parent}} = 1\]

Split on attribute X

If X is the best attribute, this node would be further split.

\[
\begin{align*}
E_{\text{child}_1} &= -(1/3)\log_2(1/3) - (2/3)\log_2(2/3) \\
&= .5284 + .39 \\
&= .9184 \\
\end{align*}
\]

\[
\begin{align*}
E_{\text{child}_2} &= 0 \\
\end{align*}
\]

\[
\text{GAIN} = 1 - (3/4)(.9184) - (1/4)(0) = .3112
\]
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>II</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>II</td>
</tr>
</tbody>
</table>

$E_{\text{parent}} = 1$

Split on attribute Y

$\text{GAIN} = 1 - \left(\frac{1}{2}\right) 0 - \left(\frac{1}{2}\right) 0 = 1$; BEST ONE
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>I</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>II</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>II</td>
</tr>
</tbody>
</table>

\[E_{\text{parent}} = 1 \]

Split on attribute Z

\[\text{GAIN} = 1 - \left(\frac{1}{2} \right) \left(1 \right) - \left(\frac{1}{2} \right) \left(0 \right) = 0 \]

ie. NO GAIN; WORST

\[E_{\text{child}1} = 1 \]

\[E_{\text{child}2} = 1 \]
feature vector
(square, red) | class | I
(square, blue) | I
(circle, red) | II
(circle blue) | II
(triangle, red) | I
(triangle, green) | I
(ellipse, blue) | II
(ellipse, red) | II

Try the shape feature

Entropy?

GAIN?
Try the color feature

```
<table>
<thead>
<tr>
<th>feature vector</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>square, red</td>
<td>I</td>
</tr>
<tr>
<td>square, blue</td>
<td>I</td>
</tr>
<tr>
<td>circle, red</td>
<td>II</td>
</tr>
<tr>
<td>circle blue</td>
<td>II</td>
</tr>
<tr>
<td>triangle, red</td>
<td>I</td>
</tr>
<tr>
<td>triangle, green</td>
<td>I</td>
</tr>
<tr>
<td>ellipse, blue</td>
<td>II</td>
</tr>
<tr>
<td>ellipse, red</td>
<td>II</td>
</tr>
</tbody>
</table>
```

Many-Valued Features

- Your features might have a large number of discrete values.
 Example: pixels in an image have (R,G,B) which are each integers between 0 and 255.
- Your features might have continuous values.
 Example: from pixel values, we compute gradient magnitude, a continuous feature.
One Solution to Both

- We often group the values into bins

What if we want it to be a binary decision at each node?

Use thresholds in a binary tree.
Training and Testing

- Divide data into a **training set** and a separate **testing set**.
- Construct the decision tree using the training set only.
- Test the decision tree on the training set to see how it’s doing.
- Test the decision tree on the **testing set** to report its real performance.
Measuring Performance

• Given a test set of labeled feature vectors e.g. (square,red) I
• Run each feature vector through the decision tree
• Suppose the decision tree says it belongs to class X and the real label is Y
• If (X=Y) that’s a correct classification
• If (X<>Y) that’s an error
Measuring Performance

- In a 2-class problem, where the classes are positive or negative (ie. for cancer)
 - # true positives TP
 - # true negatives TN
 - # false positives FP
 - # false negatives FN
- **Accuracy** = #correct / #total = \(\frac{TP + TN}{TP + TN + FP + FN} \)
- **Precision** = \(\frac{TP}{TP + FP} \)

 How many of the ones you said were cancer really were cancer?
- **Recall** = \(\frac{TP}{TP + FN} \)

 How many of the ones who had cancer did you call cancer?
More Measures

• F-Measure = $2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$

Gives us a single number to represent both precision and recall.

In medicine:

• Sensitivity = $\frac{\text{TP}}{\text{TP} + \text{FN}} = \text{Recall}$

The sensitivity of a test is the proportion of people who have a disease who test positive for it.

• Specificity = $\frac{\text{TN}}{\text{TN} + \text{FP}}$

The specificity of a test is the number of people who DON’T have a disease who test negative for it.
Measuring Performance

- For multi-class problems, we often look at the **confusion matrix**.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C(i,j) = number of times (or percentage) class i is given label j.
Overfitting

• Suppose the classifier h has error (1-accuracy) of $\text{error}_{\text{train}}(h)$
• And there is an alternate classifier (hypothesis) h' that has $\text{error}_{\text{train}}(h')$
• What if $\text{error}_{\text{train}}(h) < \text{error}_{\text{train}}(h')$
• But $\text{error}_{D}(h) > \text{error}_{D}(h')$ for full test set D
• Then we say h overfits the training data
What happens as the decision tree gets bigger and bigger?

Overfitting in Decision Tree Learning

Error on training data goes down, on testing data goes up
Reduced Error Pruning

• Split data into training and validation sets

• Do until further pruning is harmful

 1. Evaluate impact on validation set of pruning each possible node (and its subtree)

 2. Greedily remove the one that most improves validation set accuracy

• Then you need an additional independent testing set.
The tree is pruned back to the red line where it gives more accurate results on the test data.

Effect of Reduced-Error Pruning
• The WEKA example with Calenouria and Dorenouria I showed you used the REPTree classifier with 21 nodes.

• The classic decision tree for the same data had 65 nodes.

• Performance was similar for our test set.

• Performance increased using a random forest of 10 trees, each constructed with 7 random features.
Decision Trees: Summary

- **Representation** = decision trees
- **Bias** = preference for small decision trees
- **Search algorithm** = none
- **Heuristic function** = information gain or information content or others
- **Overfitting and pruning**
- **Advantage** is simplicity and easy conversion to rules.
An ensemble is a set of classifiers whose combined results give the final decision.
MODEL* ENSEMBLES

• Basic Idea
 • Instead of learning one model
 • Learn several and combine them

• Often this improves accuracy by a lot

• Many Methods
 • Bagging
 • Boosting
 • Stacking

*A model is the learned decision rule. It can be as simple as a hyperplane in n-space (ie. a line in 2D or plane in 3D) or in the form of a decision tree or other modern classifier.
Bagging

• Generate bootstrap replicates of the training set by sampling with replacement

• Learn one model on each replicate

• Combine by uniform voting
Boosting

• Maintain a vector of weights for samples
• Initialize with uniform weights
• Loop
 – Apply learner to weighted samples
 – Increase weights of misclassified ones
• Combine models by weighted voting
Idea of Boosting
1. Set all E weights to 1, and learn H1.
2. Repeat m times: increase the weights of misclassified Es, and learn H2,…Hm.
3. H1..Hm have “weighted majority” vote when classifying each test
Weight(H) = accuracy of H on the training data
ADABOOST

- ADABOOST boosts the accuracy of the original learning algorithm.

- If the original learning algorithm does slightly better than 50% accuracy, ADABOOST with a large enough number of classifiers is guaranteed to classify the training data perfectly.
/* First find the sum of the weights of the misclassified samples */
for j = 1 to N do /* go through training samples */
 if h[m](x_j) <> y_j then error <- error + w_j

/* Now use the ratio of error to 1-error to change the weights of the correctly classified samples */
for j = 1 to N do
 if h[m](x_j) = y_j then w[j] <- w[j] * error/(1-error)
Example

• Start with 4 samples of equal weight .25.
• Suppose 1 is misclassified. So error = .25.
• The ratio comes out .25/.75 = .33
• The correctly classified samples get weight of .25*.33 = .0825

.2500
.0825
.0825
.0825

What’s wrong? What should we do?

We want them to add up to 1, not .4975.

Answer: To normalize, divide each one by their sum (.4975 or .5).
Sample Application: Insect Recognition

Using circular regions of interest selected by an interest operator, train a classifier to recognize the different classes of insects.
Boosting Comparison

- **ADTree classifier only** (alternating decision tree)

- Correctly Classified Instances: 268 (70.1571 %)
- Incorrectly Classified Instances: 114 (29.8429 %)
- Mean absolute error: 0.3855
- Relative absolute error: 77.2229 %

<table>
<thead>
<tr>
<th>Classified as -></th>
<th>Hesperperla</th>
<th>Doroneuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Hesperperlas</td>
<td>167</td>
<td>28</td>
</tr>
<tr>
<td>Real Doroneuria</td>
<td>51</td>
<td>136</td>
</tr>
</tbody>
</table>
Boosting Comparison

AdaboostM1 with ADTree classifier

- Correctly Classified Instances 303 79.3194 %
- Incorrectly Classified Instances 79 20.6806 %
- Mean absolute error 0.2277
- Relative absolute error 45.6144 %

<table>
<thead>
<tr>
<th>Classified as -></th>
<th>Hesperperla</th>
<th>Doroneuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Hesperperlas</td>
<td>167</td>
<td>28</td>
</tr>
<tr>
<td>Real Doroneuria</td>
<td>51</td>
<td>136</td>
</tr>
</tbody>
</table>
Boosting Comparison

- **RepTree classifier only** *(reduced error pruning)*

 - Correctly Classified Instances: 294, 75.3846%
 - Incorrectly Classified Instances: 96, 24.6154%
 - Mean absolute error: 0.3012
 - Relative absolute error: 60.606%

<table>
<thead>
<tr>
<th>Classified as -></th>
<th>Hesperperla</th>
<th>Doroneuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Hesperperlas</td>
<td>169</td>
<td>41</td>
</tr>
<tr>
<td>Real Doroneuria</td>
<td>55</td>
<td>125</td>
</tr>
</tbody>
</table>
Boosting Comparison

AdaboostM1 with RepTree classifier

- Correctly Classified Instances: 324 (83.0769 %)
- Incorrectly Classified Instances: 66 (16.9231 %)
- Mean absolute error: 0.1978
- Relative absolute error: 39.7848 %

<table>
<thead>
<tr>
<th>Classified as -></th>
<th>Hesperperla</th>
<th>Doroneuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Hesperperlas</td>
<td>180</td>
<td>30</td>
</tr>
<tr>
<td>Real Doroneuria</td>
<td>36</td>
<td>144</td>
</tr>
</tbody>
</table>
References

Stacking

- Apply multiple base learners (e.g.: decision trees, naive Bayes, neural nets)
- Meta-learner: Inputs = Base learner predictions
- Training by leave-one-out cross-validation: Meta-L. inputs = Predictions on left-out examples
Random Forests

- **Tree bagging** creates decision trees using the bagging technique. The whole set of such trees (each trained on a random sample) is called a decision forest. The final prediction takes the average (or majority vote).

- **Random forests** differ in that they use a modified tree learning algorithm that selects, at each candidate split, a random subset of the features.
Back to Stone Flies

Random forest of 10 trees, each constructed while considering 7 random features. Out of bag error: 0.2487. Time taken to build model: 0.14 seconds

Correctly Classified Instances 292 76.4398 % (81.4 with AdaBoost)
Incorrectly Classified Instances 90 23.5602 %
Kappa statistic 0.5272
Mean absolute error 0.344
Root mean squared error 0.4069
Relative absolute error 68.9062 %
Root relative squared error 81.2679 %
Total Number of Instances 382

<table>
<thead>
<tr>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>ROC Area</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.69</td>
<td>0.164</td>
<td>0.801</td>
<td>0.69</td>
<td>0.741</td>
<td>0.848</td>
<td>cal</td>
</tr>
<tr>
<td>0.836</td>
<td>0.31</td>
<td>0.738</td>
<td>0.836</td>
<td>0.784</td>
<td>0.848</td>
<td>dor</td>
</tr>
<tr>
<td>WAvg.</td>
<td>0.764</td>
<td>0.239</td>
<td>0.769</td>
<td>0.764</td>
<td>0.763</td>
<td>0.848</td>
</tr>
</tbody>
</table>

a b <-- classified as
129 58 | a = cal
32 163 | b = dor