Lecture 18

Linear classifiers and backpropagation

Ranjay Krishna, Jieyu Zhang

Administrative

A4 is out

- Due May 23th, Today

A5 is out

- Due May 30th

Exam

- Mon, Jun 3 10:30 12:20 PM
- Same room as lecture: G20

Ranjay Krishna, Jieyu Zhang

Administrative

Recitation this friday

- Exam preparation
- Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 3

Today's agenda

- Perceptron
- Linear classifier
- Loss function
- Gradient descent and backpropagation
- Neural networks

Ranjay Krishna, Jieyu Zhang

Today's agenda

- Perceptron
- Linear classifier
- Loss function
- Gradient descent and backpropagation
- Neural networks

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 5

1950s Age of the Perceptron

1957 The Perceptron (Rosenblatt)

1969 Perceptrons (Minsky, Papert)

1980s Age of the Neural Network

1986 Back propagation (Hinton)

May 23, 2024

1990s Age of the Graphical Model

2000s Age of the Support Vector Machine

2010s Age of the Deep Network

deep learning = known algorithms + computing power + big data

Ranjay Krishna, Jieyu Zhang

Perceptron

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 7

Aside: Inspiration from Biology

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Neural nets/perceptrons are loosely inspired by biology.

But they are NOT how the brain works, or even how neurons work.

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 8

Perceptron: for image classification

Ranjay Krishna, Jieyu Zhang

Let's revisit our simple recognition pipeline to explain where perceptrons fit in

Remember we can featurize images into a vector

Image

Vector

Lecture 18 - 11

May 23, 2024

Ranjay Krishna, Jieyu Zhang

Raw pixels Raw pixels + (x,y) PCA LDA BoW BoW + spatial pyramids

Recall: we can featurize images into a vector

		x
	:	x_{i}
	:	x_{i}
		••
		•••
Raw pixels		••
Raw pixels + (x.v)		•••
		••
DA		•••
BoW		•••
BoW + spatial pyramids		••
		•••

 x_n

Image

Vector

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 12

Perceptrons are a simple transformation that converts feature vectors into recognition scores

Ranjay Krishna, Jieyu Zhang

Perceptron: simplified view with one perceptron (produces 1 score for one category)

Ranjay Krishna, Jieyu Zhang

Perceptron: simplified view with two perceptrons (produces 2 scores with 2 categories)

Ranjay Krishna, Jieyu Zhang

Linear classifier is a set of perceptrons produces one score for every category

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 16

Today's agenda

- Perceptron
- Linear classifier
- Loss function
- Gradient descent and backpropagation
- Neural networks

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 17

Lecture 18 - 18

Lecture 18 - 19

Lecture 18 - 20

Lecture 18 - 22

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 26

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 27

Linear classifier: bias vector

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 28

Lecture 18 - 29

Linear classifier: Making a classification

Ranjay Krishna, Jieyu Zhang

Interpreting the weights

• Assume our weights are trained on the CIFAR 10 dataset with raw pixels:

airplane automobile bird cat deer dog frog horse ship truck

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 31

Interpreting the weights as templates

Let us look at each row of the weight matrix

Ranjay Krishna, Jieyu Zhang

Interpreting the weights as templates

We can reshape the vector back in to the shape of an image

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 33

Let's visualize what the templates look like

We can reshape the row back to the shape of an image

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 34

Interpreting the weights geometrically

 Assume the image vectors are in 2D space to make it easier to visualize.

Plot created using Wolfram Cloud

Ranjay Krishna, Jieyu Zhang

Today's agenda

- Perceptron
- Linear classifier
- Loss function
- Gradient descent and backpropagation
- Neural networks

Ranjay Krishna, Jieyu Zhang

Training linear classifiers

We need to learn how to pick the weights in the first place.

Formally, we need to find W such that

$\min_{\mathbf{W}} Loss(y, \hat{y})$

Where y is the true label, \hat{y} is the model's predicted label.

All we have to do is define a loss function!

Ranjay Krishna, Jieyu Zhang

Given training data:

What do you think is a good approximation weight parameter for this data point?

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 38

Given training data:

What do you think is a good approximation weight parameter for this data point?

Ranjay Krishna, Jieyu Zhang

Properties of a loss function

Given several training examples: $\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$

and a perceptron: $\hat{y} = wx$

where x is image and y is (integer) label (0 for dog, 1 for cat, etc) A loss function $L_i(y_i, \hat{y}_i)$ tells us how good our current classifier

- When the classifier predicts correctly, the loss should be low
- When the classifier makes mistakes, the loss should be high

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 40

Properties of a loss function

Given several training examples: $\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$

and a perceptron: $\hat{y} = wx$

where x is image and y is (integer) label (0 for dog, 1 for cat, etc) Loss over the entire dataset is an average of loss over examples

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i(\mathbf{y}_i, \hat{\mathbf{y}}_i)$$

Ranjay Krishna, Jieyu Zhang

How do we choose the loss function L_i ?

YOU get to chose the loss function!

(some are better than others depending on what you want to do)

Ranjay Krishna, Jieyu Zhang

Squared Error (L2)

(a popular loss function) ((why?))

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 43

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 44

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 45

- It allows us to treat the outputs of a model as probabilities for each class
- common way of measuring distance between probability distributions is Kullback-Leibler (KL) divergence:

$$D_{KL} = \sum_{y} P(y) \log \frac{P(y)}{Q(y)}$$

Lecture 18 - 46

May 23, 2024

• where *P* is the ground truth distribution and *Q* is the model's output score distribution

Ranjay Krishna, Jieyu Zhang

KL divergence:
$$D_{KL} = \sum_{y} P(y) \log \frac{P(y)}{Q(y)}$$

In our case, *P* is only non-zero for correct class For example, consider the case we only have 3 classes:

May 23, 2024

correct outputs

Ranjay Krishna, Jieyu Zhang

KL divergence:

$$D_{KL} = \sum_{y} P(y) \log \frac{P(y)}{Q(y)}$$

 $= -\log Q(y)$ when y = dog

 $= -\log Prob[f(x_i, W) = y_i]$

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 48

$$L_i = -\log Prob[f(x_i, W) = = y_i]$$

Remember our linear classifier: $\hat{y} = wx$

There are no limitations on the output space. Meaning that the model can output <0 or >1

$$L_i = -\log Prob[f(x_i, W) == y_i]$$

We need a mechanism to convert or normalize the output into probability range [0, 1]

Solution: SOFTMAX: $Prob[f(x_i, W) == k] = \frac{e^{y_k}}{\sum_i e^{\hat{y}_j}}$

correct outputs

May 23, 2024

Ranjay Krishna, Jieyu Zhang

 $\begin{bmatrix} 3.2 \\ 5.1 \\ -1.7 \end{bmatrix}$

model outputs

$$L_i = -\log Prob[f(x_i, W) == y_i]$$

We need a mechanism to convert or normalize the output into probability range [0, 1]

$$L_i = -\log Prob[f(x_i, W) = = y_i]$$

In this case, what is the loss:

 $L_i = ??$

$$L_i = -\log Prob[f(x_i, W) = = y_i]$$

In this case, what is the loss:

 $L_i = -\log(0.13) = 2.04$

$$L_i = -\log Prob[f(x_i, W) = = y_i]$$

what is the minimum and maximum values that the loss can be?

 $L_i = -\log Prob[f(x_i, W) == y_i]$

At initialization, all the weights will be random. In this case, we can assume that the outputs will have the same probabilities, then what will the initial loss be?

$$L_i = -\log Prob[f(x_i, W) == y_i]$$

At initialization, all the weights will be random. In this case, we can assume that the outputs will have the same probabilities, then what will the initial loss be?

Today's agenda

- Perceptron
- Linear classifier
- Loss function
- Gradient descent and backpropagation
- Neural networks

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 57

How do we find the weights that minimize the loss?

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 59

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 60

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 61

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 62

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 63

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 64

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 65

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 66

Gradient Descent Pseudocode

for _____in {0,...,num_epochs}:

$$L = 0$$

for x_i , y_i in data:
 $\hat{y}_i = f(x_i, W)$
 $L += L_i(y_i, \hat{y}_i)$
 $\frac{dL}{dW} = ???$
 $W \coloneqq W - \alpha \frac{dL}{dW}$

Ranjay Krishna, Jieyu Zhang

Given training data point (x, y), the linear classifier formula is: $\hat{y} = Wx$ Let's assume that the correct label is class k, implying y=k

$$Loss = L(\hat{y}, y) = -\log \frac{e^{\hat{y}_k}}{\sum_j e^{\hat{y}_j}}$$
$$= -\hat{y}_k + \log \sum_j e^{\hat{y}_j}$$

Calculating the gradient is hard, but we can use the chain rule to make it

simpler

$$\frac{dL}{dW} = \frac{dL}{d\hat{y}}\frac{d\hat{y}}{dW}$$

Lecture 18 - 68

May 23, 2024

Ranjay Krishna, Jieyu Zhang

Given training data point (x, y), the linear classifier formula is: $\hat{y} = Wx$ Let's assume that the correct label is class k, implying y=k

$$Loss = -\hat{y}_k + log \sum_j e^{\hat{y}_j}$$

Now, we want to update the weights W by calculating the direction in which to change the weights to reduce the loss:

 $\frac{dL}{dW} = \frac{dL}{d\hat{y}}\frac{d\hat{y}}{dW}$

we know that $\frac{d\hat{y}}{dw} = x$, but what about $\frac{dL}{d\hat{y}}$?

Ranjay Krishna, Jieyu Zhang

$$L = - \boldsymbol{\hat{y}}_k + log \sum_j e^{\boldsymbol{\hat{y}}_j}$$

To calculate $\frac{dL}{d\hat{y}}$, we need to consider two cases:

Case 1:

$$\frac{\mathrm{dL}}{\mathrm{d}\hat{y}_{k}} = -1 + \frac{\mathrm{e}^{y_{k}}}{\sum_{j} \mathrm{e}^{\hat{y}_{j}}}$$

Case 2:

$$\frac{\mathrm{dL}}{\mathrm{d}\hat{y}_{l\neq k}} = \frac{\mathrm{e}^{\hat{y}_{l}}}{\sum_{j} \mathrm{e}^{\hat{y}_{j}}}$$

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 70

Putting it all together:

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 71

Gradient Descent Pseudocode

for in {0,...,num_epochs}:

$$\overline{L} = 0$$

for x_i , y_i in data:
 $\hat{y}_i = f(x_i, W)$
 $L += L_i(y_i, \hat{y}_i)$
 $\frac{dL}{dW} = We know how to calculate this now!$

$$W \coloneqq W - \alpha \frac{dL}{dW}$$

Ranjay Krishna, Jieyu Zhang

Backprop – another way of computing gradients

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 73

Backprop – another way of computing gradients

Key Insight:

- visualize the computation as a graph
- Compute the forward pass to calculate the loss.
- Compute all gradients for each computation backwards

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 74

Backprop example in 1D:

We know the chain rule

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 75

- Assume the image vectors are in 2D space to make it easier to visualize.
- Let's start with one class: dog.
- Initialize the weights randomly

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 76

- Assume the image vectors are in 2D space to make it easier to visualize.
- Let's start with one class: dog.
- Initialize the weights randomly
- Now let's add two data points

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 77

- Assume the image vectors are in 2D space to make it easier to visualize.
- Let's start with one class: dog.
- Initialize the weights randomly
- Now let's add two data points
- Update the weights

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 78

- Assume the image vectors are in 2D space to make it easier to visualize.
- Let's start with one class: dog.
- Initialize the weights randomly
- Now let's add two more data points
- Update the weights

Lecture 18 - 79

- Assume the image vectors are in 2D space to make it easier to visualize.
- Let's start with one class: dog.
- Initialize the weights randomly
- Now let's add two more data points
- Update the weights

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 80

Rahjay Krishna, Jie Volizmangoud

Lecture 18 - 81

Today's agenda

- Perceptron
- Linear classifier
- Loss function
- Gradient descent and backpropagation
- Neural networks

Ranjay Krishna, Jieyu Zhang

A simple recognition pipeline

Recall: we can featurize images into a vector

Raw pixels Raw pixels + (x,y) PCA LDA BoW BoW + spatial pyramids

Image Vector

Lecture 18 - 84

Features sometimes might not be linearly separable

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 85

Remember our linear classifier

Ranjay Krishna, Jieyu Zhang

Let's change the features by adding another layer

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 87

2-layer network: mathematical formula

- Linear classifier: y = Wx
- 2-layer network: $y = W_2 \max(0, W_1 x)$
- 3-layer network: $y = W_3 \max(0, W_2 \max(0, W_1 x))$

Lecture 18 - 88

May 23, 2024

The number of layers is a new hyperparameter!

Ranjay Krishna, Jieyu Zhang

2-layer network: mathematical formula

- Linear classifier: y = Wx
- 2-layer network: $y = W_2 \max(0, W_1 x)$

We know the size of $x = 1 \times 3072$ and $y = 10 \times 1$, so what are **W1** and **W2**

$$W_1 = h \times 3072 \qquad W_2 = 10 \times h$$

h is a new hyperparameter!

Ranjay Krishna, Jieyu Zhang

2-layer network: mathematical formula

- Linear classifier: y = Wx
- 2-layer network: $y = W_2 \max(0, W_1 x)$

Why is the max(0, _) necessary? Let's see what happen when we remove it:

 $y = W_2 W_1 x = W x$

Where: $W = W_2 W_1$

Ranjay Krishna, Jieyu Zhang

Activation function

The non-linear max function allows models to learn more complex transformations for features.

Choosing the right activation function is another new hyperparameter!

Ranjay Krishna, Jieyu Zhang

Lecture 18 - 91

2-layer neural network performance

- ~40% accuracy on CIFAR-10 test
 Best class: Truck (~60%)
 Worst class: Horse (~16%)
- Check out the model at: https://tinyurl.com/cifar10

Ranjay Krishna, Jieyu Zhang

Next lecture

Deep learning for CV

Ranjay Krishna, Jieyu Zhang

