Lecture 17

Motion and Tracking
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Administrative

A4 is out
- Due May 23th

A5 is out
- Due May 30th
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Administrative

Recitation this friday

- Recognition review
- Jieyu Zhang
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Today's agenda

e Optical flow

e |ucas-Kanade method

e Pyramids for large motion
e Horn-Schunk method

e Segmentation from motion
e Tracking

e Applications

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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Today's agenda

e Optical flow

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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From images to videos

e Avideo is a sequence of frames captured over time
e Now our image data is a function of space (x, y) and time (t)

= I(X,)’J)
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Why is motion
useful?
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Why is motion
useful?
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Optical flow

e Definition: optical flow is the apparent motion of brightness
patterns in the image

e Note: apparent motion can be caused by lighting changes without
any actual motion

o Think of a uniform rotating sphere under fixed lighting (has
motion but no optical flow)

o vesus a stationary sphere under moving illumination (no motion
but has optical flow)

GOAL: Recover image motion at each pixel from optical flow
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Optical flow
without motion!
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Optical flow

of an image gives us
the apparent motion
of every pixel

It is a function of the
spatio-temporal
Image brightness
variations

Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT
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Formalizing optical flow A .
N o
o— O I © .
[(xayat_l) [(xayat)

e Given two subsequent frames,
e estimate the apparent motion field u(x,y), v(x,y) between them
e Uu(Xx, y) measuring the horizontal movement of the pixel at location

(X, ¥)-
e V(X,y) measures the vertical movement.

e Together, the pixel at (x, y, t-1) goes to (x+u, y+v, t)
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3 assumptions when estimating optical flow

1. small motions: points do not move very far
2. spatial coherence: points move like their neighbors

3. brightness constancy: projection of the same point looks the same in
every frame
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Key Assumptions: small motions

The small motions assumption:
Between consecutive frames the
change in pixel locations is small
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Key Assumptions: spatial coherence

The spatial coherence assumption:
Neighboring pixels typically move
together because they belong to the
same rigid object.
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Key Assumptions: brightness Constancy

The brightness constancy
assumption: Average brightness of
pixels in a patch stays the same across
consecutive frames, although their
location might change

I(x,y,t=1)=1(x+u(x,y),y+v(x,y),t)
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The brightness constancy constraint

(z,y)
O\‘dlsplacement = (u,v)

(2 + w5+ 0)
](xayat_l) ](xayat)
e Brightness Constancy Equation:

I(x,y,t=1)=I(x+u(x,y),y +v(x,y),t)
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The brightness constancy constraint

(z,y)
O\‘dlsplacement = (u,v)

(2 + u,y 4 0)
](xayat_l) ](xayat)
e Brightness Constancy Equation:

I(x,y,t=1)=1(x+u(x,y),y +v(x,y),t)

Linearizing the right side using Taylor expansion:

.. .Image derivative along x .. ..Image derivative along t

I(x+u,y+v,t) = I(x, y,t =11 ulx, p)+1-v(x, y)+1,

H(x+u,y+v,0) =106y, 1= 1) =1 -u(x, )+ 1, v(x,y)+1,

Hence, [ -u+I,-v+I =0 —)VI-[u V]T+It=0
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Filters used to find the derivatives

=L l—f ti [ _1_ﬁrstimage -1 -1 Bt 3
irst image
i @ g o B —IJ irst image
—1 1] , —1 —1] , 11 .
second image second image second image
= I 1 1 il @
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he brightness constancy constraint

Can we use this equation to recover image motion (u,v) at each
pixel? .
VI-luv| +1,=0
e Q. How many equations and unknowns per pixel?
eOne equation, two unknowns (u,v)

Problem: The component of the flow perpendicular to the gradient (i.e.,
parallel to the edge) cannot be measured gradient VI

If (u, v ) satisfies the equation,
so does (u+u’, v+v’) if

VI-[u'v'] =0
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The aperture problem
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The aperture problem
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The aperture problem

\ Actual motion
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The aperture problem

Perceived motion
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The barber pole illusion

/.

http://en.wikipedia.org/wiki/Barberpole illusion
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http://en.wikipedia.org/wiki/Barberpole_illusion

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole illusion

Ranjay Krishna, Jieyu Zhang Lecture 17 - 26 May 21, 2024


http://en.wikipedia.org/wiki/Barberpole_illusion

Today’s agenda

e |lucas-Kanade method

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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How to get more equations for a pixel?

e Add in the Spatial coherence constraint:
e Assume the pixel’s neighbors have the same (u,v)
o If we use a 5x5 window, that gives us 25 equations per pixel

0 = Ii(p;) + VI(p;) - [w V]

- I:(p1) Iy(p1) | - Ii(p1) |
Iw(Pz) fy(Pz) { w } _ It(Pz)
i fa:(I.)25) fy(f>25) ) i It(I;25) |

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the International Joint
Conference on Attificial Intelligence, pp. 674—679, 1981.
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Lucas-Kanade flow

e Overconstrained linear system:

- I:(p1)  Iy(p1) | - Ii(p1)
I:(p2) Iy(p2) { u ] _ | L(p2) A d=b
: : v : 25x2 2x1 25x1
Iz(p2s) Iy(p2s) | Ii(p25)
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Lucas-Kanade flow

e Overconstrained linear system

" L(p1) Iy(p1) ] - Ii(p1)
I(p2)  Iy(p2) { u ] _ | 1i(p2) A d=b
: : v : 265x2 2x1 25x1
| Iz(p2s) Iy(p2s) | Ii(p2s5) |

Multiplying by A" to solve for d gives us: (ATA) d= Alb

D Axly Y Ixly w_ > Laly
S LI, SLI, || v| = | SLIL

AT A Alp

The summations are over all pixels in the 5 x 5 window
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Conditions for solving this Lucas-Kanade equation

Nl SELy | [u] _ [ S
/ SLly Sy || v |~ | Sy

AT A Al

When is This Solvable?
e A'A should be invertible
e A'A should not be too small, otherwise it is close to being non-invertible
— eigenvalues A_ and A | of ATA should not be too small
e A'A should be well-conditioned
— A/ A should not be too large (A | = larger eigenvalue)

N Q. Does this remind anything to you?
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M = A'A is the Harris corner detector!

Iply S IpI Iy
ATA = [%ley %Iylz] =2 [ I, ] (I I,) = Y- vI(vD)"

e Eigenvectors and eigenvalues of A'A relate to edge direction and
magnitude

e The eigenvector associated with the larger eigenvalue points in the
direction of fastest intensity change

e The other eigenvector is orthogonal to it
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Interpreting the eigenvalues

Classification of image points using eigenvalues of the second moment
matrix:

(4 ‘Flat, 9
region
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Edges are harder to track

All the points on an edge
look the same. It is hard to
estimate where each point
will move to.

S vi(vn?!

— gradients very large or very small
—large A, small A,
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Low-texture region

Low-texture regions have
small eigenvalues. The
matrix is harder to invert
and get accurate
estimates of optical flow

SNvi(viy?!
— gradients have small magnitude
— small 7‘1' small 7‘2
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High-texture region

These points are easier to
estimate optical flow for.

This makes sense
intuitively: You could say
that corners and blobs
(things that are easier to
detect) are easier to track
over time.

S vivn?t
— gradients are different, large magnitudes
—large A, large A,
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Errors in Lucas-Kanade

What are the potential causes of errors in this procedure?
o Suppose A'A is easily invertible
o Suppose there is not much noise in the image

 \When our assumptions are violated
— Brightness constancy is not satisfied
— The motion is not small
— A point does not move like its neighbors
« window size is too large
« what is the ideal window size?
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Improving accuracy

e Recall our small motion assumption

I,-u+l, -v+1I =0

* This is not exact
— To do better, we need to add higher order terms back in:
I -u+1,-v+higherorderterms +/, = 0

« This is a polynomial root finding problem

— Can solve using Newton’s method (which is out of scope for this class)
— Lukas-Kanade method does one iteration of Newton’s method
o Better results are obtained via more iterations
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lterative Lucas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp I(t-1) towards I(t) using the estimated flow field

Calculate I(t) using the calculated optical flow
3. Repeat until convergence
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When do the optical flow assumptions fail?

In other words, in what situations does the displacement of pixel patches
not represent physical movement of points in space?

1. Well, television (movies) screens appear to contain objects in motion
— Yet our TVs and monitors are actually stationary

2. Motion that doesn’t cause changes in pixels
— e.g. A uniform rotating sphere. Nothing seems to move, yet it is rotating

3. Lighting changes can make things seem to move
— for example, if a singular light source moves around a stationary sphere

4. Smaller motions might move in a direction opposite to motion
— E.g. a cheetah’s muscles move opposite direction of motion.
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Today's agenda

e Pyramids for large motion
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Key assumptions (Errors in Lucas-Kanade)

e Small motion: points do not move very far

e Brightness constancy: projection of the same point looks
the same in every frame

e Spatial coherence: points move like their neighbors
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Revisiting the small
motion assumption

e |s this motion small enough?
o Probably not—it's much larger
than one pixel (2" order terms
dominate)

o How might we solve this
problem?
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Reduce the
resolution so that
assumption
holds
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Coarse-to-fine.

1 \
1 A}

1

optical flow estimation

1
1
1
1
1
1
1

u=1.25 pixels

u=2.5
pixels

u=>5 pixels
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Coarse-to-fine optical flow estimation
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[Lucas-Kanade
without pyramids

Optical Flow
Results
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Optical Flow
Results
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e http://www.ces.clemson.edu/~stb/klt/
* OpenCV
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http://www.ces.clemson.edu/~stb/klt/

Today's agenda

e Horn-Schunk method

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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Key assumptions (Errors in Lucas-Kanade)

e Small motion: points do not move very far

e Brightness constancy: projection of the same point looks
the same in every frame

e Spatial coherence: points move like their neighbors
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Horn-Schunk method for optical flow

e The flow is formulated as a global energy function which is should be
minimized:

E— /f (L + L+ I,)? + (| Va? + |Vo|?)] dedy
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Horn-Schunk method for optical flow

e The flow is formulated as a global energy function which is should be
minimized:
e The first part of the function is the brightness constancy.

E= // Lu+Ly+ LE + (| Vul? + [ Vo|?)] dzdy

Ranjay Krishna, Jieyu Zhang Lecture 17 - 52 May 21, 2024



Horn-Schunk method for optical flow

e The flow is formulated as a global energy function which is should be
minimized:

e The second part is the smoothness constraint. It's trying to make sure that
the changes between pixels are small.

E:// (Low+ Ly + L) + a2 {|Vul? + | Vol 2]] dedy
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Horn-Schunk method for optical flow

e The flow is formulated as a global energy function which is should be
minimized:
e a is a regularization constant. Larger values of a lead to smoother flows

across time.
E = // [(Izu+ Iyv+ I)? ||Vu||2 + [|Vv||?)] dzdy
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Horn-Schunk method for optical flow

e The flow is formulated as a global energy function which is should be
minimized:

E— // (L + L+ I,)? + (| Va? + |Vo|?)] dedy

e This minimization can be solved by taking the derivative with respect to u
and v, we get the following 2 equations:

L(Lu+ Lv+ L) —a*Au=0
L(Lu+ILv+L)—a*Av=0
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Horn-Schunk method for optical flow

e By taking the derivative with respect to u and v, we get the following 2

equations: I, (Imu—f—va-l—It) —o2Au =0
L (Lu+ Lv+ 1) — o’ Av=0

2 2
e Where A=55+ §y2 s called the Lagrange operator. It is hard to
calculate. So we estimate it using Au(z,y) = u(z,y) — u(z,y)
Intuition: Lagrange is the second derivative. The estimation measures the
deviation from the average change.

e where u(z,y) is the weighted average of u measured at (x,y) over its
neighborhood of 5 x 5 pixels
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Horn-Schunk method for optical flow

e Now we substitute Au(z,y) = u(z,y) — u(z,y) in:

L(Lu+ Lv+ L) —a*Au =0
IL(Lu+ Lv+ 1) —o?Av=0

e To get:
(I2 +o®)u+ LIy = o®u — LI
LIu+ (I} +a®)v = o’v— I I;

e Which is linear in u and v and can be solved analytically for each pixel
individually.
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Horn-Schunk method for optical flow

e Analytical solution for:

(I2 +®)u+ LIy = o’u— LI
LIu+ (IZ +o)v=a’v— LI

® |S:
- L(I;u+ Lo+ 1)
u=1u
o + 17 + I
L,(l,u+ 1,0+ 1
s y( U+ 1yU + t)

o+ I+ 1%
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lterative Horn-Schunk

e Similar to iterative Lucas-Kanade, there is an iterative version of
Horn-Schunk algorithm.

e Since the solution depends on v and v, this calculation becomes more
accurate as we iteratively update the average flow.

e After each calculate, re-calculate v and v
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What we will learn today?

e Segmentation from motion
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Key assumptions

e Small motion: points do not move very far

e Brightness constancy: projection of the same point looks
the same in every frame

e Spatial coherence: points move like their neighbors
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Reminder: Gestalt — common fate

x \ \ ‘. \ \ Common Fate
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Segmentation using motion

e Use optical flow as the feature representation of each
pixel
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Segmentation using motion

e Use any of the segmentation algorithms: (k-means, Agglomerative clustering,
mean shift)

e

. r

= :
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Segmentation using motion

e Use any of the segmentation algorithms: (k-means, Agglomerative clustering,
mean shift)
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Segmentation using motion

e Use any of the segmentation algorithms: (k-means, Agglomerative clustering,
mean shift)

J. Wang and E. Adelson. Layered Representation for Motion
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Today’s agenda

e Tracking
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Single object tracking
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Multiple object tracking
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Tracking with a fixed camera
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Tracking with a fixed camera
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Tracking with a moving camera
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Challenges in Feature tracking

e Figure out which features can be tracked
o Efficiently track across frames
e Some points may change appearance over time
o e.g., due to rotation, moving into shadows, etc.
e Drift: small errors can accumulate over time
e Points may appear or disappear.
o need to be able to add/delete tracked points.
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What are good features to track?

e Intuitively, we want to avoid smooth regions and edges. But is there a more
IS principled way to define good features?

e \What kinds of image regions can we detect easily and consistently?
o SIFT blobs!
o Harris corners!
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Optical flow can help track features

Once we have the features we

want to track, lucas-kanade or

other optical flow algorithm can
help track those features
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Feature-tracking

Courtesy of Jean-Yves Bouguet — Vision Lab, California Institute of Technology
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Feature-tracking

o} )
60 -50 -40 -30 -20 -10 O
b

Courtesy of Jean-Yves Bouguet — Vision Lab, California Institute of Technology
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Simple KLT tracker

1. Find a good point to track (harris corner)
For each Harris corner compute optical flow (translation or affine)
between consecutive frames.

3. Link motion vectors in successive frames to get a track for each Harris
point

4. Introduce new Harris points by applying Harris detector at every m (10 or
15) frames

5. Track new and old Harris points using steps 1-3
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KLT tracker for fish
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Tracking cars
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Tracking movement
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What we will learn today?

e Applications
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Uses of motion

e Segmenting objects based on motion cues
e |earning dynamical models
e Improving video quality

o Motion stabilization

o Super resolution

e Tracking objects
e Recognizing events and activities
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Estimating 3D structure
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Segmenting objects based on motion cues

e Motion segmentation
o Segment the video into multiple coherently moving objects

//’é“\
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S. J. Pundlik and S. T. Birchfield, Motion Segmentation at Any Speed,
Proceedings of the British Machine Vision Conference (BMVC) 2006
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Tracking objects

Sphere

1]

ZYin and R.Collins, "On-the-fly Object Modeling while Tracking," IEEE Computer Vision and Pattern
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Recognizing events and activities

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their Appearance. PAMI 2007.
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http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html

Recognizing events and activities

Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, Unsupervised Learning of Human Action Categories Using
Spatial-Temporal Words, (BMVC), Edinburgh, 2006.
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http://www.macs.hw.ac.uk/bmvc2006/

Recognizing events and activities
Crossing — Talking — Queuing — Dancing — jogging

W. Choi & K. Shahid & S. Savarese WMC 2010
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W. Choi, K. Shahid, S. Savarese, "What are they doing? : Collective Activity Classification Using Spatio-Temporal Relationship Among
People", 9th International Workshop on Visual Surveillance (VSWS09) in conjuction with ICCV 09
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Today's agenda

e Optical flow

e Lucas-Kanade method

e Horn-Schunk method

e Pyramids for large motion
e Segmentation from motion
e [racking

e Applications

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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Lecture 18

Learning systems of filters
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What does the smoothness regularization doing?

e |[t’s a sum of squared terms (a Euclidian distance measure).
e We're putting it in the expression to be minimized.

e => |n texture free regions, there is no optical flow

e => On edges, points will flow to nearest points, solving the aperture problem.

Regularized flow

\ Optical flow
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Dense Optical Flow with Michael Black’s
method

e Michael Black took Horn-Schunk’s method one step further, starting from
the regularization constant:

e \Which looks like a quadratic:
IVul* + [[Vol|? \/
e And replaced it with this:

e \Why does this regularization work better?
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Affine motion

u(x,y)=a, +a,x+a,y
v(x,y)=a,+ax+a,y

e Substituting into the brightness constancy
equation:

I, ou+l v+, =0
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Affine motion

u(x,y)=a, +a,x+a,y
v(x,y)=a,+ax+a,y

e Substituting into the brightness constancy
equation:

I (a +a,x+a,y)+1 (a, +asx+azy)+1, =0

e Each pixel provides 1 linear constraint in 6 unknowns

e |east squares minimization:

X
Err(a) :Z[]x(al +a,x+asy)+1,(a, +a5x+a6y)+[t] 2
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How do we estimate the layers?

e 1. Obtain a set of initial affine motion hypotheses

o Divide the image into blocks and estimate affine motion parameters in each
block by least squares

m  Eliminate hypotheses with high residual error

e Map into motion parameter space
e Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain a smaller set of

hypotheses to describe all the motions in the scene
/'
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How do we estimate the layers?

e 1. Obtain a set of initial affine motion hypotheses

o Divide the image into blocks and estimate affine motion parameters in each
block by least squares
m  Eliminate hypotheses with high residual error

e Map into motion parameter space

e Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain a smaller set of
hypotheses to describe all the motions in the scene

g

o
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Synthesizing dynamic textures

Copyright (c) UCLA, G. Doretto and S. Soatto, 2002

Origilinal Syhthesized
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Segmenting objects based on motion cues

e Background subtraction
o A static camera is observing a scene
o Goal: separate the static background from the moving foreground
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Super-resolution
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qguality images
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Super-resolution

Each of these images looks %L ¢ thwe best dala o
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Super-resolution

he recovery resut Most of the test data c’j
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Problem statement

Image sequence

Slide credit: Yonsei Univ.
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Problem statement

Feature point detection

Slide credit: Yonsei Univ.
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Problem statement

Feature point tracking

Slide credit: Yonsei Univ.
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What we will learn today?

e lterative KLT tracker

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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Problem setting

® Given a video sequence, find all the features and track them across the video.
* First, use Harris corner detection to find features and their location x.

* For each feature at location x = [x y]’:
— Choose a descriptor create an initial template for that feature: T (x).
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KLT objective

® Qur aim is to find the p that minimizes the difference between the
template T'(x) and the description of the new location of x after
undergoing the transformation.

D UW @)~ TP

X

* For all the features x in the image I,

— I(W (x; p)) is the estimate of where the features move to in the next frame after
the transformation defined by W (x; p). Recall that p is our vector of parameters.

— Sum is over an image patch around x.
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KLT objective

® Since p may be large, minimizing this function may be difficult:

> W @p) - T

X

* We will instead break downp = p, + Ap
— Large + small/residual motion
— Where p, is going to be fixed and we will solve for Ap, which is a small value.

— We can initialize p, with our best guess of what the motion is and initialize Ap as
zero.
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A little bit of math: Taylor series

® Taylor series is defined as:

f(x+ Ax) = f(x)+Ax—f+Ax2 Zf

e Assuming that Ax is small.

* We can apply this expansion to the KLT tracker and only use the first two terms:
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Expanded KLT objective

D W @ipy +8p)) ~ T’

X

~ z [I(W(x; Po)) + VI %—I::Ap — T(x)]2

X

It’s a good thing we have already calculated what Z—V: would look like for affine,

translations and other transformations!
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Expanded KLT objective

® So our aim is to find the Ap that minimizes the following:
ow
argminz [I (W(x;po)) +VI—Ap —T (x)]
Ap po ap
* WhereVI = [I, )]
 Differentiate wrt Ap and setting it to zero:

Z [w Z—V:r [I(W(x; po)) + VI ZW Ap — T(x)] = 0

p
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Solving for Ap

¢ Solving for Ap in:

T

Z [\71 ‘;—Vg] [I(W(x; py)) + Vlaa—v;’/Ap _ T(x)] — 0

X

e we get:

Ap = H™1 Z [171 %—VZ]T [T Ce) — I (W (x;po))]

X
where H = )., [\71 %—V:]T [VI %—‘::
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Interpreting the H matrix for translation

transformations

[ ow ow
H = Z \71—] [VI op

Recall that

1. vi = [I, 1I,]and

. . aw _[1 O
2. for translation motion, op (x;p) = [ 1]

0
Therefore,
1 0
H = [[1 S1 s ] [[1 L1, ]]
z That’s the Harris corner
] 2 detector we learnt in

class!!!

May 21, 2024
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Interpreting the H matrix for affine
transformations

1> 11, x> yIl, xII, yLI, |
11, I, xI1, yI; Xl VI
HoY xI} yId, x’I7 yII, xyl I, yIl,
vII, yI; xyl I, yI; xyl; Y,
xl 1, — xI > X1 , ol f x*1 f xyl f

vId, yI; xyl I, yI, xl; Y,

Can you derive this yourself similarly to how we derived
the translation transformation?
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Overall KLT tracker algerithh:3,] e - e

given the features from Harris detector:

Initialize py and Ap .

Compute the initial templates T (x) for each feature.
Transform the features in the image I with W (x; p,).
Measure the error: I[(W (x; py)) — T (x).

Compute the image gradients VI = [I, Iy].

Evaluate the Jacobian %—2,

ow
Compute steepest descent V1 P

Compute Inverse Hessian H~1
Calculate the change in parameters Ap
10 Update parameters p, = p, + Ap

11. Repeat 2 to 10 until Ap is small.

O N O UAEWLNMPRE
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KLT over multiple frames

e Once you find a transformation for two frames, you will repeat this process
for every couple of frames.

e Run Harris detector every 15-20 frames to find new features.
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Challenges to consider

e Implementation issues
e \Window size

o Small window more sensitive to noise and may miss larger motions
(without pyramid)

o Large window more likely to cross an occlusion boundary (and it's
slower)

o 15x15 to 31x31 seems typical
e \Weighting the window

o Common to apply weights so that center matters more (e.g., with
Gaussian)
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