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Administrative
A4 is out
- Due May 23th

A5 is out
- Due May 30th
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Administrative
Recitation this friday
- Recognition review
- Jieyu Zhang
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Prediction

So far: A simple recognition pipeline
Training 
LabelsTraining 

Images

Training
Image 

Features

Image 
Features

Test Image

Learned 
Classifier

Learned 
Classifier
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So far: PCA versus LDA

The ideal 
projection

PCA 
projectionBetween class scatter

Within class scatter

We want a projection that maximizes:
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So far: Bag of words features

…..

fre
qu

en
cy

codewords

● Every image now becomes a k-dimensional histogram representation.
● We can use these features for any recognition task.
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So far: Bag of words + pyramids
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Today’s agenda

● Object detection
○ Task and evaluation

● A simple detector
● Deformable parts model
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Today’s agenda

● Object detection
○ Task and evaluation

● A simple detector
● Deformable parts model

9



Ranjay Krishna, Jieyu Zhang May 16, 2024Lecture 16 -

Object Detection

● What do you see in the image?
Credit: Flickr user neilalderney123
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http://www.flickr.com/photos/neilsingapore/
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Object Detection

● Problem: Detecting and localizing generic objects from various categories, 
such as cars, people, etc. 

● Challenges: 
○ Illumination,
○ viewpoint, 
○ deformations, 
○ Intra-class 

variability
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Object Detection Benchmarks

● PASCAL VOC Challenge

● 20 categories
● Annual classification, detection, segmentation, … challenges

12



Ranjay Krishna, Jieyu Zhang May 16, 2024Lecture 16 -

Object Detection Benchmarks

● PASCAL VOC Challenge
● ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

○ 200 Categories for detection
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Object Detection Benchmarks
● PASCAL VOC Challenge
● ImageNet Large Scale Visual Recognition Challenge (ILSVR)
● Common Objects in Context (COCO)

○ 80 Object categories
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How do we evaluate object detection?

predictions
ground truth
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Defining what is a good versus bad detection

IoU is a metric used to 
decide good from bad 
predictions.

Given a predicted box and 
and ground truth box:

IoU = intersection between 
the two boxes over (divided 
by) the union of the two
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We say a prediction was 
good if it has IoU > 0.5 with 
any of the ground truth 
boxes

0.5 is a threshold that is 
generally accepted as a 
good heuristic.

Defining what is a good versus bad detection
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How do we evaluate object detection?

True positive:
- The overlap of the 
prediction with the 
ground truth is MORE 
than 0.5

predictions
ground truth
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How do we evaluate object detection?

True positive:
False positive:
- The overlap of the 
prediction with the 
ground truth is LESS 
than 0.5

predictions
ground truth
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How do we evaluate object detection?

True positive:
False positive:
False negative:
- The objects that our 
model doesn’t find

predictions
ground truth
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How do we evaluate object detection?

True positive:
False positive:
False negative:
- The objects that our model 
doesn’t find

What is a True Negative?

predictions

ground truth
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True positive: 1
False positive: 2
False negative: 1

Q. What is the precision?

How do we evaluate object detection?

predictions
ground truth
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True positive: 1
False positive: 2
False negative: 1

Q. What is the precision?

Q. What is the recall?

How do we evaluate object detection?

predictions
ground truth
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How to intuitively understand precision versus recall

● Precision:
○how many of the predicted detections are correct?

● Recall:
○how many of the ground truth objects are detected?
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In reality, our model makes a lot of predictions with 
varying scores between 0 and 1

Here are all the boxes that are 
predicted with score > 0. 

From this, we see that:
- Recall is perfect!
- But our precision is BAD!

predictions

ground truth
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How do we evaluate object detection?

Here are all the boxes that are 
predicted with score > 0.5

We are using a threshold of 0.5

Q. What happens to precision if 
threshold is high?

predictions

ground truth
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How do we evaluate object detection?

Here are all the boxes that are 
predicted with score > 0.5

We are using a threshold of 0.5

Q. What happens to recall if 
threshold is high?

predictions

ground truth
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Precision – recall curve (PR curve)
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Which model is the best?
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Which model is the best?
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True positives - detecting person
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False positives - detecting person
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Near misses: IoU falls short of 0.5
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True positives - detecting bicycle
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False positives - detecting bicycle
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Today’s agenda

● Object detection
○ Task and evaluation

● A simple detector
● Deformable parts model
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Dalal-Triggs method

sliding window
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At every patch as the window slides
1. Convert the image patch into your favorite feature representation

a. For example: 
i. HoG, 

ii. HoG with PCA, 
iii. RGB with LDA, 
iv. Bag of words on RGB
v. etc.

2. Use a trained classifier to determine if it is a specific class
a. e.g. kNN classifier

3. Accumulate the predictions over all the patches
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Sliding window + hog features
● Slide through the image 

and check if there is an 
object at every location

No person here

40



Ranjay Krishna, Jieyu Zhang May 16, 2024Lecture 16 -

Sliding window + hog features
● Slide through the image 

and check if there is an 
object at every location

YES!! Person match found
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Sliding window + hog features
● But what if we were 

looking for buses?

No bus found
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Sliding window + hog features
● But what if we were 

looking for buses?

No bus found
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Sliding window + hog features
● We will never find the object 

if we don’t choose our 
window size wisely!

No bus found
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Sliding window + hog features

● We need to do multi-scale sliding windows with pyramids
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Computationally, we first resize the image to 
different sizes and then extract features at each 
size.
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Today’s agenda

● Object detection
○ Task and evaluation

● A simple detector
● Deformable parts model
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Recap – bag of words

●We can present images as a set of “words”
○Where each word represents a part of the image.

●Can we use the location of these patches to find objects 
within those images?
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Deformable Parts Model

● Represents an object as a 
“collection of parts” arranged in a 
“deformable configuration”

● Each part represents local 
appearances 

● Spring-like connections between 
certain pairs of parts

Fischler and Elschlager,  Pictoral Structures, 1973
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Deformable parts model

• The parts of an object form pairwise 
relationships. 

• We can model this using a “star model” 
• where every part is defined relative 

to a root.
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Detecting a person with their parts

• For example, a person can be modelled as having a head, 
left arm, right arm, etc.

• All parts can be modelled relative to the global person 
detector, which acts as the root.
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Deformable parts model

● Each model will have a global filter. And a set of part filters. Here 
is an example of a global person filter with it’s ‘head’ part filter:

Global/root 
filter

Part filter
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5-part bicycle model

“side view” bike 
model component

“frontal view” bike 
model component

Root filter Part filters
Allowable part 

locations
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Deformable parts model

● Mixture of deformable part models

● Each component has global 
component + deformable parts

● Part filters have finer details
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DPM for person model with 5 parts

If the head is here, 
the penalty is low

If the head is here, 
the penalty is high
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DPM for person model with 5 parts

If the arm is here, 
the penalty is low

If the arm is here, 
the penalty is high
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Multiple DPM for person model with 6 parts
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DPM for car with 6 parts

root filters (coarse) part filters (fine) deformation models

side view

frontal view
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How do we use the parts to make a detection?

Intuition:

1. First, use the sliding windows at 
different pyramid scales to detect 
each part (and the root).

2. Each part gives you a score for 
where the person might be

3. Accumulate the global and part 
scores and penalize the 
deformation of the parts.
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Example for detecting people

60

Image input

A feature 
template for 

person
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Image input

Features
Features at 2x 
resolution

A feature 
template for 

person

First extract features
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Features

Calculate scores for part templates

convolution

Global scores 
for where a 
person might be
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Features at 2x 
resolution
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Calculate scores for global template

convolution

Scores for 
head

convolution

Scores for 
right arm
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Global scores

64

After step 1, we have scores for all parts and 
global template

Scores for head Scores for right arm
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Allowing each part to deform and guess where 
the entire body is.

 

● Given the location for the 
detected head, we can guess 
where the body should be.

● The body should be in the 
direction (vi) predefined in the 
model

● Bodies can be of different sizes 
and shapes. So we allow it to 
deform by some variable di

● This deformation spreads the 
scores to potential locations of 
the body
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Each part is 
allowed to deform. 

So it deforms to 
where the person 

might be.

Global scores
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Scores for head Scores for right arm

Step 2: each part gives you a score for where 
the person might be

Intuition: If the 
head is here, 
where is the whole 
person likely to 
be?
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Step 3: Add up the scores for the final 
detections

Global scores
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Scores for head Scores for right arm

Add up final scores
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Formally, DPM is defined as:
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di can be defined in many ways. We will use a Gaussian 
filter to define it.

If the head is here, 
the penalty is low

If the head is here, 
the penalty is high
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Calculating the score for a detection
The score for a detection is defined as the sum of scores for the 
global and part detectors minus the sum of deformation costs for 
each part.

This means that if a detection’s
parts are really far away from
where they should be, it’s 
probably a false positive.
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Deformable Parts Model (DPM) - bicycle
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DPM with HoG features - person
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DPM - bottle
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Results – car detection
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Results – Person detection
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Results – horse detection
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● Approach 
○ Manually selected set of parts - Specific detector trained for each part 
○ Spatial model trained on part activations 
○ Evaluate joint likelihood of part activations 

● Pros 
○ Parts have intuitive meaning.
○ Standard detection approaches can be used for each part.
○ Works well for specific categories. 

● Disadvantages 
○ Parts need to be selected manually 
○ Some parts don’t have a simple appearance 
○ No guarantee that some important part hasn’t been missed 
○ When adding a new category, it takes a lot of manual effort

DPM - discussion
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Extensions - From star shaped model to 
constellation model
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Today’s agenda

● Object detection
○ Task and evaluation

● A simple detector
● Deformable parts model
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Next lecture

80

Motion and Tracking
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Calculating the score for a detection

 

The score for a detection is defined as the sum of scores for the 
global and part detectors minus the sum of deformation costs for 
each part.
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Calculating the score for a detection

Scores for each part filter + global 
filter (similar to Dalal and Triggs).
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Remember from Dalal and Triggs
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Deformable parts calculates a score for each part along with 
a global score
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Detection pipeline
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Detection pipeline
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Calculating the score for a detection
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Calculating the score for a detection
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What we will learn today

● Naïve Bayes
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Naïve Bayes
●  

Csurka Bray, Dance & Fan, 2004 
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Naïve Bayes - classification
●  
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Naïve Bayes – conditional independence
 

Csurka Bray, Dance & Fan, 2004 
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Naïve Bayes – prior 
 

Csurka Bray, Dance & Fan, 2004 
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Naïve Bayes - posterior
 

Bayes Theorem
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Naïve Bayes – posterior
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Let’s break down the posterior 
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Both their denominators are the same
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Both their denominators are the same
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For the general class c,
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For the general class c,
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Naïve Bayes - classification
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Naïve Bayes - classification
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