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Administrative
A4 is out
- Due May 23th

A5 out this week
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Administrative
Recitation this friday
- Recognition review
- Jieyu Zhang
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So far: visual recognition

• Apply a prediction function to a feature representation of 
the image to get the desired output:

f(    ) = “apple”
f(    ) = “tomato”
f(    ) = “cow”

Slide credit: L. Lazebnik4
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Prediction

So far: A simple recognition pipeline
Training 
LabelsTraining 

Images

Training
Image 

Features

Image 
Features

Test Image

Learned 
Classifier

Learned 
Classifier
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So far: (kNN) Nearest neighbor

Training 
examples 

from class 1

Training 
examples 

from class 2
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So far: (kNN) Nearest neighbor

Test 
example

Training 
examples 

from class 1

Training 
examples 

from class 2

Slide credit: L. Lazebnik
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So far: Image compression with 
SVD
● For this image, using only the first 16 of 300 principal 

components produces a recognizable reconstruction
● Using the first 64 almost perfectly reconstructs the 

image
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Today’s agenda
● Principal Component Analysis (PCA)
● Using PCA for computer vision: Eigenfaces
● Linear Discriminant Analysis (LDA)
● Visual bag of words (BoW)
● Spatial pyramids
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Intuition behind PCA: high dimensional data usually lives 
in some lower dimensional space

Covariance between the two 
dimensions of features is high. 
Can we reduce the number of 
dimensions to just 1?
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Geometric interpretation of PCA

1212
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Geometric interpretation of PCA
● Let’s say we have a set of 2D data points x. But we 

see that all the points lie on a line in 2D. 
● So, 2 dimensions are redundant to express the data. 

We can express all the points with just one 
dimension.

1D subspace in 2D

1313



Ranjay Krishna, Jieyu Zhang May 14, 2024Lecture 15 -

PCA: Principal Component Analysis
● Given a dataset of images, can we compressed them like we can 

compress a single image? 
○ Yes, the trick is to look into the correlation between the dimensions of the 

image 
○ The tool for doing this is called PCA

PCA can be used to compress image RGB pixel values or also be used to 
compress their features!
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Toy example to explain covariance
● What is covariance between dimensions? 
● Let’s say we have a dataset of students

○ each student is represented with 3 dimensions
○ x: number of hours studied for a subject 
○ y: marks obtained in that subject 
○ z: number of lectures attended

● covariance value between x and y is say: 104.53 
○ what does this value mean?
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Covariance interpretation

16

○ x: number of hours studied for a subject 
○ y: marks obtained in that subject 

● covariance value between x and y is say: 104.53 
○ what does this value mean?
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● We can represent these covariance correlation numbers in a matrix
● e.g. for 3 dimensions:

● Diagonal is the variances of x, y and z 
● cov(x,y) = cov(y,x) hence C is symmetrical about the diagonal 
● N-dimensional data will result in NxN covariance matrix

Visualizing this covariance matrix
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Covariance interpretation
● Exact value is not as important as it’s sign. 
● A positive value of covariance indicates both dimensions increase or 

decrease together e.g. as the number of hours studied increases, the 
marks in that subject increase. 

● A negative value indicates while one increases the other decreases, or 
vice-versa e.g. active social life at PSU vs performance in CS dept. 

● If covariance is zero: the two dimensions are independent of each other 
e.g. heights of students vs the marks obtained in a subject
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PCA by SVD
● To relate this to PCA, we consider the image (or feature) matrix

● The sample mean of this dataset (or in plain english, the average image) 
is:
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PCA by SVD
● Center the data by subtracting the mean to each column of X
● The centered dataset matrix is
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PCA by SVD
● The sample covariance matrix is

where xi
c is the ith column of Xc

● This can be written as
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PCA by SVD
● The matrix

is real (n x d). Assuming n>d it has SVD decomposition

and
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Calculating covariance matrix

2323
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PCA by SVD

● Note that U is (d x d) and orthonormal, and Σ2 is diagonal. 
This is just the eigenvalue decomposition of C

● This means that we can calculate the eigenvectors of C 
using the eigenvectors of Xc

● It follows that
○ The eigenvectors of C are the columns of U
○ The eigenvalues of C are the diagonal entries of Σ2: 𝝀i

2
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PCA by SVD
● In summary, computation of PCA by SVD
● Given X with one image (or feature) per column

○ Create the centered data matrix

○ Compute its SVD

○ Principal components of the covariance matrix C are columns of U
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To compress an image dataset, pick the largest eigenvalues 
and their corresponding eigenvectors

● Pick the eigenvectors that explain p% of the image data variability
○ Can be done by plotting the ratio rk as a function of k

○ E.g. we need k=3 eigenvectors to cover 70% of the variability of this 
dataset
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What exactly is the covariance
● Variance and Covariance are a measure of the “spread” of a set of points 

around their center of mass (mean) 
● Variance – measure of the deviation from the mean for points in one 

dimension e.g. heights 
● Covariance as a measure of how much each of the dimensions vary from 

the mean with respect to each other. 
● Covariance is measured between 2 dimensions to see if there is a 

relationship between the 2 dimensions e.g. number of hours studied & 
marks obtained. 

● The covariance between one dimension and itself is the variance
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Covariance

● So, if you had a 3-dimensional data set (x,y,z), then you could 
measure the covariance between the x and y dimensions, the y and 
z dimensions, and the x and z dimensions. Measuring the 
covariance between x and x , or y and y , or z and z would give you 
the variance of the x , y and z dimensions respectively
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Prediction

What happens with PCA during training?
Training 
LabelsTraining 

Images

Training
Image 

Features

Image 
Features

Test Image

Learned 
Classifier

Learned 
Classifier
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Image 
Features
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Learned 
Classifier

PCA
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PCA during training
Let’s say that we choose k top eigenvalues and their corresponding 
eigenvectors: [u1, …, uk]

Replace all image features x with:

3131
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Prediction

What happens with PCA during testing?
Training 
LabelsTraining 

Images

Training
Image 

Features

Image 
Features

Test Image

Learned 
Classifier

Learned 
Classifier

PCA
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Prediction

What happens with PCA during testing?
Training 
LabelsTraining 

Images

Training
Image 

Features

Image 
Features

Test Image

Learned 
Classifier

Learned 
Classifier

PCA

PCA
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Today’s agenda
● Principal Component Analysis (PCA)
● Using PCA for computer vision: Eigenfaces
● Linear Discriminant Analysis (LDA)
● Visual bag of words (BoW)
● Spatial pyramids

Turk and Pentland, Eigenfaces for Recognition, Journal of Cognitive Neuroscience 3 (1): 71–86.
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How PCA was originally 
used in vision: 
To identify celebrities 
using their faces

● An image is a point in a high 
dimensional space
○ In grayscale, an N x M 

image is a point in RNM

○ E.g. 100x100 images lives in 
a 10,000-dimensional space
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100x100 images can contain many things other 
than faces!

36
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The Space of Faces

Slide credit: Chuck Dyer, Steve Seitz, Nishino

ɸ
1

● However, relatively few high 
dimensional vectors 
correspond to valid face 
images

● We want to effectively model 
the subspace of face images

This is where PCA comes in
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Eigenfaces: an algorithm using PCA to reduce 
the space of faces
● Assume that most face images lie on a low-dimensional subspace 

determined by the first k (k<<d) eigenvectors of a dataset of faces
● To demonstrate the effectiveness of PCA for images, they called each 

eigenvector of a dataset “eigenfaces”
● Represent all face images in the dataset as linear combinations of 

eigenfaces

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991

38
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Training images: x1,…,xN

Each 100x100 image is going to 
be represented as a 
10,000-dimensional vector

39
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Top eigenvectors: U1,…,Uk

Mean: μ
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Calculate its SVD and visualize its top eigenvectors
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Every image can be reconstructed as a linear combination 
of these eigenvectors
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Error rate when reconstructing a face decreases as you use 
more eigenvectors
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• Fewer eigenfaces result in more information loss, and hence less 
discrimination between faces.

Reconstruction and Errors

K = 4

K = 200

K = 400

44
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Using PCA for classifying faces
● Training

1. Place all training images x1, x2, …, xN into a matrix
2. Compute average face
3. Compute the difference image (the centered data matrix)

4. Use SVD to find the eigenvectors of the covariance matrix

5. Keep the top-K eigenvalues and their eigenvectors
6. Compute each training image xi ‘s new projected features:
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Using PCA for classifying faces

● Testing
1. Given a test image xtest
2. Project x into this new space into eigenface space:

3. Run your classifier on this new space.
■ For example, use k-NN using distance measures (Euclidean) in this new space

46
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Shortcomings

● Requires carefully curated training data:
○ All faces centered in frame
○ All faces have to be the same size
○ Some sensitivity to angle (ideally all faces are facing front)

● Alternative:
○ “Learn” one set of PCA vectors for each angle
○ Use the one with lowest error

● Method is completely knowledge free
○ (sometimes this is good!)
○ Doesn’t know that faces 2D projections of 3D heads
○ But it also makes no effort to preserve what makes a “face” a “face”
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Summary for Eigenface

Pros

● Non-iterative, globally optimal solution

Cons:

● PCA projection is optimal for reconstruction from a low dimensional 
basis, but may NOT be optimal for recognition

● Is there a better dimensionality reduction?
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Today’s agenda
● Principal Component Analysis (PCA)
● Using PCA for computer vision: Eigenfaces
● Linear Discriminant Analysis (LDA)
● Visual bag of words (BoW)
● Spatial pyramids

P. Belhumeur, J. Hespanha, and D. Kriegman. "Eigenfaces vs. Fisherfaces: Recognition 
Using Class Specific Linear Projection". IEEE Transactions on pattern analysis and machine 
intelligence 19 (7): 711. 1997.
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Let’s say that we this hypothetical 
2-dimensional feature space.

Q. Which direction will is the first 
principle component?

Here I am showing each image in 
this feature space. Red and Blue 
are the two classes.

50
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PCA can project the data such that it will become 
harder to separate the two classes

PCA 
projection

51
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The ideal projection should make it easy to 
differentiate between images from two classes

The ideal 
projection

PCA 
projection

52
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The ideal 
projection

PCA 
projection

Fischer’s Linear Discriminant Analysis (LDA)

● Goal: find the best separation between two classes
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Difference between PCA and LDA

● PCA preserves maximum variance
○ PCA maximizes our ability to reconstruct each image
○ Doesn’t help us find the best projection for classification

● LDA preserves discrimination (difference between categories)
○ Find projection that maximizes scatter between classes and minimizes 

scatter within classes
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How LDA reduces dimentionality

        Poor Projection

x1

x2

x1

x2

• Using two classes as example:

Good
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Basic intuition: PCA vs. LDA
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First, let’s calculate the per category statistics

• We want to learn a dimension reduction projection W such that the 
projection converts all image features x to a lower dimensional space:

• First, let’s calculate the per class means be:

• And the per class covariance matrices are:
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The ideal 
projection

PCA 
projection

Using the per class means and covariance, we want to 
minimize the following objective:

Between class scatter

Within class scatter

We want a projection that maximizes:
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What does J(w) look like when we only have 2 
classes
The following objective function:

Can be written as
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LDA with 2 variables

● Numerator: We can write the between class scatter as:

● Each part of Denominator: Also, the within class scatter becomes:

60



Ranjay Krishna, Jieyu Zhang May 14, 2024Lecture 15 -

LDA with 2 variables

● We can plug in these scatter values to our objective function:
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LDA with 2 variables

● We can plug in these scatter values to our objective function:
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LDA with 2 variables

● We can plug in these scatter values to our objective function:

Between class scatter

Inwithin class scatter
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x
1

x
2 Within class scatter

Between class scatter

Visualizing S
w

 and S
B
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● Maximizing the ratio

● Is equivalent to maximizing the numerator while keeping the denominator 
constant, i.e. 

● And can be accomplished using Lagrange multipliers, where we define the 
Lagrangian as

● And maximize with respect to both w and λ

Linear Discriminant Analysis (LDA)
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● Is equivalent to maximizing the numerator while keeping the denominator 
constant, i.e. 

● And can be accomplished using Lagrange multipliers, where we define the 
Lagrangian as

● And maximize with respect to both w and λ

Linear Discriminant Analysis (LDA)
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● Maximizing the ratio

● Is equivalent to maximizing the numerator while keeping the denominator 
constant, i.e. 

● And can be accomplished using Lagrange multipliers, where we define the 
Lagrangian as

● And maximize with respect to both w and λ

Linear Discriminant Analysis (LDA)
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Linear Discriminant Analysis (LDA)

● Setting the gradient of

● Taking the derivative respect to w to find the maximum:
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Linear Discriminant Analysis (LDA)

● Setting the gradient of

● Taking the derivative respect to w to find the maximum:

● This is maximized when 
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Linear Discriminant Analysis (LDA)

● Setting the gradient of

● Taking the derivative respect to w to find the maximum:

● This is maximized when 

● The solution is easy when Sw has an inverse:
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Linear Discriminant Analysis (LDA)

If an inverse for SW exists:

We want to find the optimal w. 
Q. What does this look like?
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If an inverse for SW exists:

The solution is the eigenvector of            corresponding to the 
largest eigenvalue

Linear Discriminant Analysis (LDA)
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LDA with C classes

Same as when C=2. Except SW and SB now include all classes.
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PCA vs. LDA

• PCA exploits the max scatter of the training images in face space
• LDA attempt to maximise the between class scatter, while 

minimising the within class scatter.
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Today’s agenda
● Principal Component Analysis (PCA)
● Using PCA for computer vision: Eigenfaces
● Linear Discriminant Analysis (LDA)
● Visual bag of words (BoW)
● Spatial pyramids
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Object Bag of 
‘words’

76

Main idea: create a vocabulary of filters that would be able 
to recognize patches of specific objects

The size of the vocabulary 
will determine the size of the 
feature dimension.
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The idea originated from: Texture Recognition

Example textures (from Wikipedia)

77
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Vocabulary:

● Texture is characterized by the repetition of certain patches

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, 
Schmid & Ponce, 2003

The idea originated from: Texture Recognition
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Every image is represented as fixed sized histogram of 
the number of times a patch appears

Universal texton dictionary

histogram

Universal texton dictionary
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A similar idea is also used in natural language processing 
and called: Bag-of-words models

● Every word document is represented as the frequencies of 
words from a fixed vocabulary  Salton & McGill (1983)
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Visual bag of words for object recognition

● Works pretty well for recognition and for enabling image 
retrieval

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)

face, flowers, building
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Bag of features

• First, take a bunch of images, extract features, and build up a “visual 
vocabulary” – a list of common features

• Given a new image, extract features and build a histogram of visual bag of 
words 
○ for each patch in the image, find the closest visual word in the 

vocabulary and increment its corresponding value in the histogram
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● Regular grid
○ Vogel & Schiele, 2003
○ Fei-Fei & Perona, 2005

Step 1. Choose patches in a training dataset of images
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Step 1. Choose patches in a training dataset of images

● Regular grid
○ Vogel & Schiele, 2003
○ Fei-Fei & Perona, 2005

● Interest point detector
○ Csurka et al. 2004
○ Fei-Fei & Perona, 2005
○ Sivic et al. 2005
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Step 1. Choose patches in a training dataset of images

● Regular grid
○ Vogel & Schiele, 2003
○ Fei-Fei & Perona, 2005

● Interest point detector
○ Csurka et al. 2004
○ Fei-Fei & Perona, 2005
○ Sivic et al. 2005

● Other methods
○ Random sampling (Vidal-Naquet & Ullman, 2002)
○ Segmentation-based patches (Barnard et al. 2003)
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Step 2. Cluster the patches using k-means

…

The k in k-means is the size 
of the vocabulary. It will 
determine the size of the 
features
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Clustering

…

Step 2. Cluster the patches using k-means
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Clustering

…
Visual vocabulary

Step 2. Cluster the patches using k-means
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Example visual vocabulary
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• How to choose vocabulary size?
○ Too small: Most patches are just noisy and 

not useful
○ Too large: overfits to training images and 

doesn’t generalize
• Computational efficiency

○ Try to choose as small of a vocabulary size 
as possible to reduce curse of 
dimensionality

Visual vocabularies: Issues
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Step 3. Convert every image into a histogram

…..

fre
qu

en
cy

codewords

● Every image now becomes a k-dimensional histogram representation.
● We can use these features for any recognition task.
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Image classification
• A histogram of bag-of-words features are very good at distinguishing 

between different categories.
• E.g., first image is a face, second is a bike, third is an instrument
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Uses of BoW representation
● Treat as feature vector for standard classifier

○ e.g k-nearest neighbors
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Visual bag of words works quite well for a fixed 
set of categories

Caltech6 dataset

bag of features bag of features Parts-and-shape model
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Bag of words can also enable search

query image top 6 results

● Cons: 
○ performance degrades as the database grows
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Example bag-of-words matches
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Example bag-of-words matches
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Bags of words in videos

Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words, IJCV 2008.

98

http://vision.stanford.edu/niebles/humanactions.htm
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Today’s agenda
● Principal Component Analysis (PCA)
● Using PCA for computer vision: Eigenfaces
● Linear Discriminant Analysis (LDA)
● Visual bag of words (BoW)
● Spatial pyramids
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How do we choose the size of the patches?

?
● If the object is close to the camera, larger patches are better
● If the object is really far away, smaller patches are better for finding 

it.
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Bag of words + pyramids
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Bag of words + pyramids
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Bag of words + pyramids
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Pyramids are a general idea that is used in all vision 
models today (including swin transformers)

● Very useful for representing images. 
● Pyramid is built by using multiple copies of image. 
● Each level in the pyramid is 1/4 of the size of previous level. 
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Caltech101 dataset
Multi-class classification 

results (30 training 
images per class)
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Today’s agenda
● Principal Component Analysis (PCA)
● Using PCA for computer vision: Eigenfaces
● Linear Discriminant Analysis (LDA)
● Visual bag of words (BoW)
● Spatial pyramids
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Next lecture

107

Object detection
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Courtesy of Johannes M. Zanker

“Faces” in the brain

108



Ranjay Krishna, Jieyu Zhang May 14, 2024Lecture 15 -

“Faces” in the brain fusiform face area

Kanwisher, et al. 1997109
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Detection versus Recognition

Detection finds the faces in images Recognition recognizes WHO the 
person is
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Face Recognition

• Digital photography
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Face Recognition

• Digital photography

• Surveillance

• Album organization

• Person tracking/id.

• Emotions and expressions
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Face Recognition

● Digital photography
● Surveillance
● Album organization
● Person tracking/id.
● Emotions and expressions
● Security/warfare
● Tele-conferencing
● Etc.
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Image space Face space

• Maximize the scatter of the training images in face space

• Compute n-dim subspace such that the projection of the data points onto the 
subspace has the largest variance among all n-dim subspaces.    
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• So, compress them to a low-dimensional subspace that
  captures key appearance characteristics of the visual DOFs.

Key Idea

• USE PCA for estimating the sub-space 
   (dimensionality reduction)

•Compare two faces by projecting the images into the subspace 
and measuring the EUCLIDEAN distance between them.
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Besides face recognitions, we can also do
Facial expression recognition
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Happiness subspace (method A)
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Disgust subspace (method A)
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Facial Expression Recognition Movies 
(method A)
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Variables
• N Sample images: 

• C classes:

• Average of each class: 

• Average of all data:
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Scatter Matrices

• Scatter of class i:

• Within class scatter:

• Between class scatter:
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Mathematical Formulation
• Recall that we want to learn a projection W 

such that the projection converts all the points 
from x to a new space z:

• After projection:
– Between class scatter
– Within class scatter

• So, the objective becomes:
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Mathematical Formulation

● Solve generalized eigenvector problem:
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Mathematical Formulation

• Solution: Generalized Eigenvectors

• Rank of Wopt is limited
– Rank(SB) <= |C|-1
– Rank(SW) <= N-C
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Origin 2: Bag-of-words models

US Presidential Speeches Tag Cloud
http://chir.ag/phernalia/preztags/

● Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)
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● Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)
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Origin 2: Bag-of-words models

US Presidential Speeches Tag Cloud
http://chir.ag/phernalia/preztags/

● Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)
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Large-scale image matching
● Bag-of-words models have been useful 

in matching an image to a large 
database of object instances

11,400 images of game covers
(Caltech games dataset)

how do I find this image in the database?
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Large-scale image search
Build the database:

○ Extract features from the 
database images

○ Learn a vocabulary using 
k-means (typical k: 100,000)

○ Compute weights for each word
○ Create an inverted file mapping 

words 🡪 images
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Weighting the words
● Just as with text, some visual words are more discriminative than 

others

● the bigger fraction of the documents a word appears in, the less 
useful it is for matching
○ e.g., a word that appears in all documents is not helping us

the, and, or      vs.     cow, AT&T, Cher
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TF-IDF weighting
● Instead of computing a regular histogram distance, we’ll 

weight each word by it’s   inverse document frequency

● inverse document frequency (IDF) of word j = 

log number of documents

number of documents in which j appears
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TF-IDF weighting

● To compute the value of bin j in image I:

term frequency of j in I x inverse document frequency of j
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Inverted file
● Each image has ~1,000 features
● We have ~100,000 visual words
� each histogram is extremely sparse (mostly zeros)

● Inverted file
○ mapping from words to documents
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Inverted file
● Can quickly use the inverted file to compute similarity 

between a new image and all the images in the database
○ Only consider database images whose bins overlap the 

query image
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Image patch examples of  visual words

Sivic et al. 2005139
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Bag of features: outline
1. Extract features
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Bag of features: outline
1. Extract features
2. Learn “visual vocabulary”
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Bag of features: outline
1. Extract features
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary 
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Bag of features: outline
1. Extract features
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary 
4. Represent images by frequencies of 

“visual words” 
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Bags of features for action recognition

Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, Unsupervised Learning of Human Action 
Categories Using Spatial-Temporal Words, IJCV 2008.
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Scene category dataset Multi-class classification results
(100 training images per class)

Slide credit: Svetlana Lazebnik145


