Lecture 15

Dimensionality reduction

Ranjay Krishna, Jieyu Zhang

Administrative

A4 is out

- Due May 23th

A5 out this week

Ranjay Krishna, Jieyu Zhang

Administrative

Recitation this friday

- Recognition review
- Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 3

So far: visual recognition

• Apply a prediction function to a feature representation of the image to get the desired output:

Ranjay Krishna, Jieyu Zhang

So far: A simple recognition pipeline

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 5

So far: (kNN) Nearest neighbor

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 6

So far: (kNN) Nearest neighbor

Slide credit: L. Lazebnik

Ranjay Krishna, Jieyu Zhang

So far: Image compression with SVD

- For this image, using **only the first 16** of 300 principal components produces a recognizable reconstruction
- Using the first 64 almost perfectly reconstructs the image

May 14, 2024

Ranjay Krishna, Jieyu Zhang

Today's agenda

- Principal Component Analysis (PCA)
- Using PCA for computer vision: Eigenfaces
- Linear Discriminant Analysis (LDA)
- Visual bag of words (BoW)
- Spatial pyramids

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 9

Today's agenda

- Principal Component Analysis (PCA)
- Using PCA for computer vision: Eigenfaces
- Linear Discriminant Analysis (LDA)
- Visual bag of words (BoW)
- Spatial pyramids

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 10

Intuition behind PCA: high dimensional data usually lives in some lower dimensional space

Covariance between the two dimensions of features is high. Can we reduce the number of dimensions to just 1?

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 11

Geometric interpretation of PCA

Ranjay Krishna, Jieyu Zhang

Geometric interpretation of PCA

- Let's say we have a set of 2D data points x. But we see that all the points lie on a line in 2D.
- So, 2 dimensions are redundant to express the data. We can express all the points with just one dimension.

Ranjay Krishna, Jieyu Zhang

PCA: Principal Component Analysis

- Given a dataset of images, can we compressed them like we can compress a single image?
 - Yes, the trick is to look into the correlation between the dimensions of the image
 - \circ The tool for doing this is called PCA

PCA can be used to compress image RGB pixel values or also be used to compress their features!

Ranjay Krishna, Jieyu Zhang

Toy example to explain covariance

- What is covariance between dimensions?
- Let's say we have a dataset of students

 each student is represented with 3 dimensions
 x: number of hours studied for a subject
 y: marks obtained in that subject
 z: number of lectures attended
- covariance value between x and y is say: 104.53
 what does this value mean?

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 15

Covariance interpretation

- \circ **x**: number of hours studied for a subject
- y: marks obtained in that subject
- covariance value between **x** and **y** is say: 104.53

 \circ what does this value mean?

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 16

Visualizing this covariance matrix

- We can represent these covariance correlation numbers in a matrix
- e.g. for 3 dimensions:

- Diagonal is the **variances** of x, y and z
- cov(x,y) = cov(y,x) hence C is symmetrical about the diagonal
- N-dimensional data will result in NxN covariance matrix

Ranjay Krishna, Jieyu Zhang

Covariance interpretation

- Exact value is not as important as it's sign.
- A **positive value** of covariance indicates both dimensions increase or decrease together e.g. as the number of hours studied increases, the marks in that subject increase.
- A **negative value** indicates while one increases the other decreases, or vice-versa e.g. active social life at PSU vs performance in CS dept.
- If covariance is zero: the two dimensions are independent of each other e.g. heights of students vs the marks obtained in a subject

• To relate this to PCA, we consider the <u>image (or feature) matrix</u>

$$X = \begin{bmatrix} 1 & 1 \\ x_1 & \dots & x_n \\ 1 & 1 \end{bmatrix}$$

 The sample mean of this dataset (or in plain english, the average image) is:

$$\mu = \frac{1}{n} \sum_{i} x_{i} = \frac{1}{n} \begin{bmatrix} 1 & 1 & 1 \\ x_{1} & \dots & x_{n} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \frac{1}{n} X 1$$

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 19

- Center the data by subtracting the mean to each column of X
- The <u>centered dataset matrix</u> is

$$X_{c} = \begin{bmatrix} 1 & 1 \\ x_{1} & \dots & x_{n} \\ 1 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ \mu & \dots & \mu \\ 1 & 1 \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

• The sample <u>covariance</u> matrix is

$$C = \frac{1}{n} \sum_{i} (x_i - \mu) (x_i - \mu)^T = \frac{1}{n} \sum_{i} x_i^c (x_i^c)^T$$

where x_i^{c} is the ith column of X_c

• This can be written as

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 21

• The matrix

$$\boldsymbol{X}_{c}^{T} = \begin{bmatrix} - & \boldsymbol{X}_{1}^{c} & - \\ \vdots & \\ - & \boldsymbol{X}_{n}^{c} & - \end{bmatrix}$$

is real (n x d). Assuming n>d it has SVD decomposition

$$X_c^T = U\Sigma V^T \qquad \qquad U^T U = I \qquad \qquad V^T V = I$$

and

$$C = \frac{1}{n} X_c X_c^T$$

Ranjay Krishna, Jieyu Zhang

Calculating covariance matrix

$$C = \frac{1}{n} X_c X_c^T$$
$$= \frac{1}{n} U \Sigma V^T (U \Sigma V^T)^T$$
$$= \frac{1}{n} U \Sigma V^T V \Sigma U^T$$
$$= \frac{1}{n} U \Sigma^2 U^T$$

n

Ranjay Krishna, Jieyu Zhang

$$C = \frac{1}{n} U \Sigma^2 U^T$$

- Note that U is (d x d) and orthonormal, and Σ² is diagonal.
 This is just the eigenvalue decomposition of C
- This means that we can calculate the eigenvectors of C using the eigenvectors of X_c
- It follows that
 - $\circ\,$ The eigenvectors of C are the columns of U
 - \circ The eigenvalues of C are the diagonal entries of Σ^2 : λ_i^2

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 24

- In summary, computation of PCA by SVD
- Given X with one image (or feature) per column

Create the centered data matrix

$$\boldsymbol{X}_{c} = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{I} \\ \boldsymbol{X}_{1} & \boldsymbol{I} \\ \boldsymbol{I} & \boldsymbol{I} \end{bmatrix} - \begin{bmatrix} \boldsymbol{I} & \boldsymbol{I} \\ \boldsymbol{\mu} & \boldsymbol{I} \\ \boldsymbol{I} & \boldsymbol{I} \end{bmatrix}$$

• Compute its SVD

$$X_c^T = U\Sigma V^T$$

Principal components of the covariance matrix C are columns of U

Ranjay Krishna, Jieyu Zhang

To compress an image dataset, pick the largest eigenvalues and their corresponding eigenvectors

Pick the eigenvectors that explain p% of the image data variability
 Can be done by plotting the ratio r_k as a function of k

 \circ E.g. we need k=3 eigenvectors to cover 70% of the variability of this dataset

Ranjay Krishna, Jieyu Zhang

What exactly is the covariance

- Variance and Covariance are a measure of the "**spread**" of a set of points around their center of mass (mean)
- Variance measure of the deviation from the mean for points in one dimension e.g. heights
- **Covariance** as a measure of how much each of the dimensions vary from the mean with respect to each other.

Lecture 15 - 27

<u>May 14, 2024</u>

- Covariance is measured between 2 dimensions to see if there is a relationship between the 2 dimensions e.g. number of hours studied & marks obtained.
- The covariance between one dimension and itself is the variance

Ranjay Krishna, Jieyu Zhang

Covariance

covariance (X,Y) =
$$\sum_{i=1}^{n} (\overline{X_i} - X) (\overline{Y_i} - Y)$$

(n -1)

 So, if you had a 3-dimensional data set (x,y,z), then you could measure the covariance between the x and y dimensions, the y and z dimensions, and the x and z dimensions. Measuring the covariance between x and x, or y and y, or z and z would give you the variance of the x, y and z dimensions respectively

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 28

What happens with PCA during training?

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 29

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 30

PCA during training

Let's say that we choose k top eigenvalues and their corresponding eigenvectors: $[u_1, ..., u_k]$

Replace all image features x with:

$$\hat{x} = \begin{bmatrix} u_1^T x \\ u_2^T x \\ \dots \\ u_k^T x \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 32

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 33

Today's agenda

- Principal Component Analysis (PCA)
- Using PCA for computer vision: Eigenfaces
- Linear Discriminant Analysis (LDA)
- Visual bag of words (BoW)
- Spatial pyramids

Turk and Pentland, Eigenfaces for Recognition, Journal of Cognitive Neuroscience 3 (1): 71–86.

Lecture 15 - 34

May 14, 2024

Ranjay Krishna, Jieyu Zhang

How PCA was originally used in vision: To identify celebrities using their faces

- An image is a point in a high dimensional space
 - \circ In grayscale, an N x M image is a point in R^{NM}
 - E.g. 100x100 images lives in a 10,000-dimensional space

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 35

100x100 images can contain many things other than faces!

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 36
The Space of Faces

- However, relatively few high dimensional vectors correspond to valid face images
- We want to effectively model the subspace of face images

This is where PCA comes in

Slide credit: Chuck Dyer, Steve Seitz, Nishino

Ranjay Krishna, Jieyu Zhang

Eigenfaces: an algorithm using PCA to reduce the space of faces

- Assume that most face images lie on a low-dimensional subspace determined by the first k (k<<d) eigenvectors of a dataset of faces
- To demonstrate the effectiveness of PCA for images, they called each eigenvector of a dataset "eigenfaces"
- Represent all face images in the dataset as linear combinations of eigenfaces

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 38

Training images: $\mathbf{x}_1, \dots, \mathbf{x}_N$

Each 100x100 image is going to be represented as a 10,000-dimensional vector

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 39

Top eigenvectors: U₁,...,U_k

Mean: µ

$$\mu = \frac{1}{n} \sum_{i} \mathbf{X}_{i}$$

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 40

Calculate its SVD and visualize its top eigenvectors

eigenface 1

eigenface 6

eigenface 7

eigenface 11

eigenface 9

Ranjay Krishna, Jieyu Zhang

Every image can be reconstructed as a linear combination of these eigenvectors

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 42

Error rate when reconstructing a face decreases as you use more eigenvectors

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 43

Reconstruction and Errors

• Fewer eigenfaces result in more information loss, and hence less discrimination between faces.

Ranjay Krishna, Jieyu Zhang

Using PCA for classifying faces

• Training

- 1. Place all training images $x_1, x_2, ..., x_N$ into a matrix
- 2. Compute average face
- 3. Compute the difference image (the <u>centered data matrix</u>)

4. Use SVD to find the eigenvectors of the covariance matrix

$$X_c^T = U\Sigma V^T$$

- 5. Keep the top-K eigenvalues and their eigenvectors
- 6. Compute each training image x_i 's new projected features:

$$=\begin{bmatrix} u_1^T x \\ u_2^T x \\ \dots \\ u_k^T x \end{bmatrix}$$

 \hat{x}

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 45

Using PCA for classifying faces

• Testing

- 1. Given a test image x_{test}
- 2. Project x into this new space into eigenface space:

- 3. Run your classifier on this new space.
 - For example, use k-NN using distance measures (Euclidean) in this new space

Ranjay Krishna, Jieyu Zhang

Shortcomings

- Requires carefully curated training data:
 - \circ All faces centered in frame
 - \circ All faces have to be the same size
 - Some sensitivity to angle (ideally all faces are facing front)
- Alternative:
 - "Learn" one set of PCA vectors for each angle
 Use the one with lowest error
- Method is completely knowledge free
 - o (sometimes this is good!)
 - \circ Doesn't know that faces 2D projections of 3D heads
 - But it also makes no effort to preserve what makes a "face" a "face"

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 47

Summary for Eigenface

Pros

• Non-iterative, globally optimal solution

Cons:

- PCA projection is **optimal for reconstruction** from a low dimensional basis, but **may NOT be optimal for recognition**
- Is there a better dimensionality reduction?

Ranjay Krishna, Jieyu Zhang

Today's agenda

- Principal Component Analysis (PCA)
- Using PCA for computer vision: Eigenfaces
- Linear Discriminant Analysis (LDA)
- Visual bag of words (BoW)
- Spatial pyramids

P. Belhumeur, J. Hespanha, and D. Kriegman. "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection". *IEEE Transactions on pattern analysis and machine intelligence* **19** (7): 711. 1997.

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 49

Let's say that we this hypothetical 2-dimensional feature space.

Here I am showing each image in this feature space. Red and Blue are the two classes.

Q. Which direction will is the first principle component?

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 50

PCA can project the data such that it will become harder to separate the two classes

Ranjay Krishna, Jieyu Zhang

The ideal projection should make it easy to differentiate between images from two classes

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 52

Fischer's Linear Discriminant Analysis (LDA)

• Goal: find the best separation between two classes

Ranjay Krishna, Jieyu Zhang

Difference between PCA and LDA

• PCA preserves maximum variance

- PCA maximizes our ability to reconstruct each image
- Doesn't help us find the best projection for classification
- LDA preserves discrimination (difference between categories)
 Find projection that maximizes scatter between classes and minimizes scatter within classes

How LDA reduces dimentionality

• Using two classes as example:

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 55

Basic intuition: PCA vs. LDA

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 56

First, let's calculate the per category statistics

• We want to learn a dimension reduction **projection W** such that the projection converts all image features **x** to a lower dimensional space:

$$z = w^T x$$
 $z \in \mathbf{R}^m$ $x \in \mathbf{R}^n$

• First, let's calculate the **per class** means be:

$$\mu_i = E_{X|Y}[X|Y=i]$$

• And the **per class** covariance matrices are:

$$C_{i} = [(X_{i} - \mu_{i})(X_{i} - \mu_{i})^{T} | Y = i]$$

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 57

Using the per class means and covariance, we want to minimize the following objective:

We want a projection that maximizes: $J(w) = \max \frac{between \ class \ scatter}{within \ class \ scatter}$

Ranjay Krishna, Jieyu Zhang

What does J(w) look like when we only have 2 classes

The following objective function:

$$J(w) = \frac{between \ class \ scatter}{within \ class \ scatter}$$

Can be written as

$$J(w) = \frac{|E_{Z|Y}[Z|Y=1] - E_{Z|Y}[Z|Y=0]|^2}{\operatorname{var}[Z|Y=1] + \operatorname{var}[Z|Y=0]}$$

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 59

• Numerator: We can write the **between** class scatter as:

$$|E_{Z|Y}[Z|Y=1] - E_{Z|Y}[Z|Y=0]|^2 = |w^T(\mu_1 - \mu_0)|^2$$
$$= w^T(\mu_1 - \mu_0)(\mu_1 - \mu_0)^T w$$

• Each part of Denominator: Also, the within class scatter becomes:

$$var[Z|Y = i] = E_{Z|Y}[w^{T}(x - \mu_{i})^{2}|Y = i]$$

= $E_{Z|Y}[w^{T}(x - \mu_{i})(x - \mu_{i})^{T}w|Y = i]$
= $w^{T}C_{i}w$

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 60

<u>May 14, 2024</u>

• We can plug in these scatter values to our objective function:

$$J(w) = \frac{w^T (\mu_1 - \mu_0)(\mu_1 - \mu_0)^T w}{w^T C_1 w + w^T C_0 w}$$

Ranjay Krishna, Jieyu Zhang

• We can plug in these scatter values to our objective function:

$$J(w) = \frac{w^T (\mu_1 - \mu_0)(\mu_1 - \mu_0)^T w}{w^T C_1 w + w^T C_0 w}$$
$$= \frac{w^T (\mu_1 - \mu_0)(\mu_1 - \mu_0)^T w}{w^T (C_1 + C_0) w}$$

Ranjay Krishna, Jieyu Zhang

• We can plug in these scatter values to our objective function:

$$J(w) = \frac{w^T (\mu_1 - \mu_0)(\mu_1 - \mu_0)^T w}{w^T C_1 w + w^T C_0 w}$$
$$= \frac{w^T (\mu_1 - \mu_0)(\mu_1 - \mu_0)^T w}{w^T (C_1 + C_0) w}$$

$$S_B = (\mu_1 - \mu_0)(\mu_1 - \mu_0)^T$$

Between class scatter

May 14, 2024

$$S_W = (C_1 + C_0)$$

Inwithin class scatter

Ranjay Krishna, Jieyu Zhang

Visualizing $\rm S_w$ and $\rm S_B$

Between class scatter

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 64

• Maximizing the ratio

$$J(w) = \frac{w^T S_B w}{x^T S_W w}$$

Ranjay Krishna, Jieyu Zhang

• Maximizing the ratio

$$J(w) = \frac{w^T S_B w}{x^T S_W w}$$

• Is equivalent to maximizing the numerator while keeping the denominator constant, i.e.

$$\max_{w} w^T S_B w \quad \text{subject to} \quad w^T S_W w = K$$

Ranjay Krishna, Jieyu Zhang

• Maximizing the ratio

$$J(w) = \frac{w^T S_B w}{x^T S_W w}$$

• Is equivalent to maximizing the numerator while keeping the denominator constant, i.e.

$$\max_{w} w^T S_B w \quad \text{subject to} \quad w^T S_W w = K$$

Lecture 15 - 67

<u>May</u> 14, 2024

• And can be accomplished using Lagrange multipliers, where we define the Lagrangian as

$$L = w^T S_B w - \lambda \left(w^T S_W w - K \right)$$

 \bullet And maximize with respect to both w and λ

Ranjay Krishna, Jieyu Zhang

• Setting the gradient of $L = w^T (S_B - \lambda S_W) w + \lambda K$

• Taking the derivative respect to **w** to find the maximum:

$$\nabla_{w}L = 2(S_{B} - \lambda S_{W})w = 0$$

Ranjay Krishna, Jieyu Zhang

• Setting the gradient of $L = w^T (S_B - \lambda S_W) w + \lambda K$

• Taking the derivative respect to **w** to find the maximum:

$$\nabla_{w}L = 2(S_{B} - \lambda S_{W})w = 0$$

• This is maximized when

$$S_B w = \lambda S_W w$$

Ranjay Krishna, Jieyu Zhang

• Setting the gradient of $L = w^T (S_B - \lambda S_W) w + \lambda K$

• Taking the derivative respect to **w** to find the maximum:

$$\nabla_{w}L = 2(S_{B} - \lambda S_{W})w = 0$$

• This is maximized when

$$S_B w = \lambda S_W w$$

• The solution is easy when S_w has an inverse:

$$S_W^{-1} = (C_1 + C_0)^{-1}$$

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 70

$$S_B w = \lambda S_W w$$

If an inverse for S_w exists:

$$S_W^{-1}S_Bw = \lambda w$$

We want to find the optimal w. Q. What does this look like?

Ranjay Krishna, Jieyu Zhang

$$S_B w = \lambda S_W w$$

If an inverse for S_w exists:

$$S_W^{-1}S_Bw = \lambda w$$

The solution is the eigenvector of $\ S_W^{-1}S_B$ corresponding to the largest eigenvalue

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 72
LDA with C classes

Same as when C=2. Except S_w and S_B now include all classes.

$$S_W = \sum_i C_i$$
$$S_B = \sum_i \sum_{j \neq i} (\mu_i - \mu_j)^2$$

Ranjay Krishna, Jieyu Zhang

PCA vs. LDA

- PCA exploits the max scatter of the training images in face space
- LDA attempt to maximise the **between class scatter**, while minimising the **within class scatter**.

Ranjay Krishna, Jieyu Zhang

Today's agenda

- Principal Component Analysis (PCA)
- Using PCA for computer vision: Eigenfaces
- Linear Discriminant Analysis (LDA)
- Visual bag of words (BoW)
- Spatial pyramids

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 75

Main idea: create a vocabulary of filters that would be able to recognize patches of specific objects

The size of the vocabulary will determine the size of the feature dimension.

May 14, 2024

Ranjay Krishna, Jieyu Zhang

The idea originated from: Texture Recognition

Example textures (from Wikipedia)

Ranjay Krishna, Jieyu Zhang

The idea originated from: Texture Recognition

• Texture is characterized by the repetition of certain patches

Lecture 15 - 78

May 14, 2024

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Ranjay Krishna, Jieyu Zhang

Every image is represented as fixed sized histogram of the number of times a patch appears

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 79

Y

A similar idea is also used in natural language processing and called: Bag-of-words models

• Every word document is represented as the frequencies of words from a fixed vocabulary Salton & McGill (1983)

Ranjay Krishna, Jieyu Zhang

Visual bag of words for object recognition

face, flowers, building

May 14, 2024

 Works pretty well for recognition and for enabling image retrieval

RanjayaKrishna, Wieyuzzhangan & Darrell (2005), Sivide Octure 515 - 81

Bag of features

- First, take a bunch of images, extract features, and build up a "visual vocabulary" – a list of common features
- Given a new image, extract features and build a histogram of visual bag of words
 - for each patch in the image, find the closest visual word in the vocabulary and increment its corresponding value in the histogram

Lecture 15 - 82

<u>May 14, 2024</u>

Step 1. Choose patches in a training dataset of images

• Regular grid

- Vogel & Schiele, 2003
- Fei-Fei & Perona, 2005

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 83

Step 1. Choose patches in a training dataset of images

- Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005
- Interest point detector
 - Csurka et al. 2004
 - Fei-Fei & Perona, 2005
 - $\circ~$ Sivic et al. 2005

Ranjay Krishna, Jieyu Zhang

Step 1. Choose patches in a training dataset of images

• Regular grid

Vogel & Schiele, 2003

○ Fei-Fei & Perona, 2005

• Interest point detector

- $\circ~$ Csurka et al. 2004
- Fei-Fei & Perona, 2005
- $\circ~$ Sivic et al. 2005

Ranjay Krishna, Jieyu Zhang

• Other methods

- Random sampling (Vidal-Naquet & Ullman, 2002)
- Segmentation-based patches (Barnard et al. 2003)

Lecture 15 - 85

Step 2. Cluster the patches using k-means

The k in k-means is the size of the vocabulary. It will determine the size of the features

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 86

Step 2. Cluster the patches using k-means

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 87

Step 2. Cluster the patches using k-means

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 88

Example visual vocabulary

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 89

Visual vocabularies: Issues

- How to choose vocabulary size?
 - Too small: Most patches are just noisy and not useful
 - Too large: overfits to training images and doesn't generalize
- Computational efficiency
 - Try to choose as small of a vocabulary size as possible to reduce curse of dimensionality

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 90

Step 3. Convert every image into a histogram

- Every image now becomes a k-dimensional histogram representation.
- We can use these features for any recognition task.

Image classification

- A histogram of bag-of-words features are very good at distinguishing between different categories.
- E.g., first image is a face, second is a bike, third is an instrument

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 92

Uses of BoW representation

- Treat as feature vector for standard classifier
 - \circ e.g k-nearest neighbors

Ranjay Krishna, Jieyu Zhang

Visual bag of words works quite well for a fixed set of categories

class	bag of features	bag of features I	Parts-and-shape model
	Zhang et al. (2005)	Willamowski et al. (2004)	Fergus et al. (2003)
airplanes	98.8	97.1	90.2
cars (rear)	98.3	98.6	90.3
cars (side)	95.0	87.3	88.5
faces	100	99.3	96.4
motorbikes	98.5	98.0	92.5
spotted cats	97.0		90.0

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 94

Bag of words can also enable search

top 6 results

• Cons:

 \circ performance degrades as the database grows

Ranjay Krishna, Jieyu Zhang

Example bag-of-words matches

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 96

Example bag-of-words matches

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 97

Bags of words in videos

May 14, 2024

Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words, IJCV 2008.

Ranjay Krishna, Jieyu Zhang

Today's agenda

- Principal Component Analysis (PCA)
- Using PCA for computer vision: Eigenfaces
- Linear Discriminant Analysis (LDA)
- Visual bag of words (BoW)
- Spatial pyramids

Ranjay Krishna, Jieyu Zhang

How do we choose the size of the patches?

- If the object is close to the camera, larger patches are better
- If the object is really far away, smaller patches are better for finding it.

May 14, 2024

Ranjay Krishna, Jieyu Zhang

Bag of words + pyramids

Locally orderless representation at several levels of spatial resolution

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 101

Bag of words + pyramids

Locally orderless representation at several levels of spatial resolution

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 102

Bag of words + pyramids

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 103

Pyramids are a general idea that is used in all vision models today (including swin transformers)

- Very useful for representing images.
- Pyramid is built by using multiple copies of image.
- Each level in the pyramid is 1/4 of the size of previous level.

Ranjay Krishna, Jieyu Zhang

Caltech101 dataset

Multi-class classification results (30 training images per class)

Level	Single-level	Pyramid	Single-level	Pyramid
0	15.5 ± 0.9		41.2 ± 1.2	
1	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	57.0 ± 0.8
2	47.2 ± 1.1	49.3 ± 1.4	63.6 ± 0.9	64.6 ±0.8
3	52.2 ± 0.8	$\textbf{54.0} \pm 1.1$	60.3 ± 0.9	$64.6\pm\!0.7$

Ranjay Krishna, Jieyu Zhang

Today's agenda

- Principal Component Analysis (PCA)
- Using PCA for computer vision: Eigenfaces

Lecture 15 - 106

May 14, 2024

- Linear Discriminant Analysis (LDA)
- Visual bag of words (BoW)
- Spatial pyramids

Ranjay Krishna, Jieyu Zhang

Next lecture

Object detection

Ranjay Krishna, Jieyu Zhang

"Faces" in the brain

Courtesy of Johannes M. Zanker

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 108
"Faces" in the brain fusiform face area

Ranjay Krishna, Jieyu Zhang

Detection versus Recognition

Detection finds the faces in images

Recognition recognizes WHO the person is

Ranjay Krishna, Jieyu Zhang

• Digital photography

Ranjay Krishna, Jieyu Zhang

Lecture 15 -

- Digital photography
- Surveillance

Ranjay Krishna, Jieyu Zhang

Lecture 15 -

- Digital photography
- Surveillance
- Album organization

Ranjay Krishna, Jieyu Zhang

- Digital photography
- Surveillance
- Album organization
- Person tracking/id.

Ranjay Krishna, Jieyu Zhang

Lecture 15 -

- Digital photography
- Surveillance
- Album organization
- Person tracking/id.
- Emotions and expressions

Ranjay Krishna, Jieyu Zhang

Lecture 15 -

- Digital photography
- Surveillance
- Album organization
- Person tracking/id.
- Emotions and expressions
- Security/warfare
- Tele-conferencing
- Etc.

Ranjay Krishna, Jieyu Zhang

Lecture 15 -

• Compute n-dim subspace such that the projection of the data points onto the subspace has the largest variance among all n-dim subspaces.

Lecture 15 - 117

May 14, 2024

Maximize the scatter of the training images in face space

Ranjay Krishna, Jieyu Zhang

Key Idea

• So, compress them to a low-dimensional subspace that captures key appearance characteristics of the visual DOFs.

• USE PCA for estimating the sub-space (dimensionality reduction)

•Compare two faces by projecting the images into the subspace and measuring the EUCLIDEAN distance between them.

Ranjay Krishna, Jieyu Zhang

Besides face recognitions, we can also do Facial expression recognition

Ranjay Krishna, Jieyu Zhang

Happiness subspace (method A)

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 120

Disgust subspace (method A)

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 121

Facial Expression Recognition Movies (method A)

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 122

Variables

• N Sample images:

$$\{x_1, \mathbb{X}, x_N\}$$

- C classes: $\{Y_1, Y_2, ..., Y_c\}$
- Average of each class:

$$\boldsymbol{\mu}_i = \frac{1}{N_i} \sum_{x_k \in Y_i} x_k$$

• Average of all data:

$$\mu = \frac{1}{N} \sum_{k=1}^{N} x_k$$

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 123

Scatter Matrices

- Scatter of class i: $S_i = \sum_{x_k \in V} (x_k \mu_i)(x_k \mu_i)^T$
- Within class scatter:

$$S_i = \sum_{k \in Y_i}^{c} S_i$$
$$S_W = \sum_{i=1}^{c} S_i$$

• Between class scatter: $S_B = \sum_{i=1}^{C} \sum_{i \neq i} (\mu_i - \mu_j) (\mu_i - \mu_j)^T$

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 124

Mathematical Formulation

 Recall that we want to learn a projection W such that the projection converts all the points from x to a new space z:

 $z = w^T x$ $z \in \mathbf{R}^m$ $x \in \mathbf{R}^n$

- After projection:
 - Between class scatter

$$\widetilde{\boldsymbol{S}}_{B} = \boldsymbol{W}^{T} \boldsymbol{S}_{B} \boldsymbol{W}$$
$$\widetilde{\boldsymbol{S}}_{W} = \boldsymbol{W}^{T} \boldsymbol{S}_{W} \boldsymbol{W}$$

• So, the objective becomes:

Within class scatter

$$W_{opt} = \arg\max_{W} \frac{\left|\widetilde{S}_{B}\right|}{\left|\widetilde{S}_{W}\right|} = \arg\max_{W} \frac{\left|W^{T}S_{B}W\right|}{\left|W^{T}S_{W}W\right|}$$

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 125

Mathematical Formulation

$$W_{opt} = \arg \max_{W} \frac{\left| W^{T} S_{B} W \right|}{\left| W^{T} S_{W} W \right|}$$

• Solve generalized eigenvector problem:

$$S_B W_i = \lambda_i S_W W_i$$
 $i = 1, \emptyset, m$

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 126

Mathematical Formulation

Solution: Generalized Eigenvectors

$$S_B w_i = \lambda_i S_W w_i$$
 $i = 1, \mathbb{Z}, m$

- Rank of *W*_{opt} is limited
 - $\operatorname{Rank}(S_B) \le |C|-1$
 - $\operatorname{Rank}(S_w) \le N-C$

Ranjay Krishna, Jieyu Zhang

Origin 2: Bag-of-words models

Orderless document representation: frequencies of words
 from a dictionary Salton & McGill (1983)

US Presidential Speeches Tag Cloud http://chir.ag/phernalia/preztags/

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 128

Origin 2: Bag-of-words models

Orderless document representation: frequencies of words
 from a dictionary Salton & McGill (1983)

US Presidential Speeches Tag Cloud http://chir.ag/phernalia/preztags/

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 129

Origin 2: Bag-of-words models

Orderless document representation: frequencies of words
 from a dictionary Salton & McGill (1983)

US Presidential Speeches Tag Cloud http://chir.ag/phernalia/preztags/

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 130

Large-scale image matching

11,400 images of game covers (Caltech games dataset)

Ranjay Krishna, Jieyu Zhang

 Bag-of-words models have been useful in matching an image to a large database of object *instances*

how do I find this image in the database?

Lecture 15 - 131

Large-scale image search

Build the database:

- Extract features from the database images
- Learn a vocabulary using k-means (typical k: 100,000)
- Compute weights for each word
- Create an inverted file mapping words □ images

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 132

Weighting the words

 Just as with text, some visual words are more discriminative than others

the, and, or vs. cow, AT&T, Cher

Lecture 15 - 133

<u>May</u> 14, 2024

- the bigger fraction of the documents a word appears in, the less useful it is for matching
 - o e.g., a word that appears in *all* documents is not helping us

Ranjay Krishna, Jieyu Zhang

TF-IDF weighting

- Instead of computing a regular histogram distance, we'll weight each word by it's *inverse document frequency*
- inverse document frequency (IDF) of word *j* =

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 134

TF-IDF weighting

• To compute the value of bin *j* in image *I*:

term frequency of *j* in *I* **X** *inverse document frequency* of *j*

Ranjay Krishna, Jieyu Zhang

Inverted file

- Each image has ~1,000 features
- We have ~100,000 visual words
 □ each histogram is extremely sparse (mostly zeros)
- Inverted file

 \circ mapping from words to documents

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 136

Inverted file

 Can quickly use the inverted file to compute similarity between a new image and all the images in the database
 Only consider database images whose bins overlap the query image

Matching Statistics

Dataset	Size	Matches possible	Matches Tried	Matches Found	Time
Dubrovnik	58K	1.6 Billion	2.6M	0.5M	5 hrs
Rome	150K	11.2 Billion	8.8M	2.7M	13 hrs
Venice	250K	31.2 Billion	35.5M	6.2M	27 hrs

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 138

Image patch examples of visual words

Ranjay Krishna, Jieyu Zhang

1. Extract features

Ranjay Krishna, Jieyu Zhang

- 1. Extract features
- 2. Learn "visual vocabulary"

Ranjay Krishna, Jieyu Zhang

- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary

Ranjay Krishna, Jieyu Zhang

- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 143

Bags of features for action recognition

Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, Unsupervised Learning of Human Action

Ranjay Krishna, Jieyu Zhang

Lecture 15 - 144_
Scene category dataset

Multi-class classification results (100 training images per class)

	(vocabulary size: 16)		(vocabulary size: 200)	
Level	Single-level	Pyramid	Single-level	Pyramid
$0(1 \times 1)$	45.3 ± 0.5		72.2 ± 0.6	
$1(2 \times 2)$	53.6 ± 0.3	56.2 ± 0.6	77.9 ± 0.6	79.0 ± 0.5
$2(4 \times 4)$	61.7 ± 0.6	64.7 ± 0.7	79.4 ± 0.3	81.1 ±0.3
$3(8 \times 8)$	63.3 ± 0.8	66.8 ±0.6	77.2 ± 0.4	80.7 ± 0.3

Ranjay Krishna, Jieyun Zhang Ponce (CVPR 2006) Lecture 15 - s1:45 edit: Svetlana Laze May 14, 2024