Lecture 14

Recognition and kNN
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So far: General pinhole camera matrix

P = K[R|t] where t=—RC
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So far: The Pinhole Camera
Model cocribs

World
coordinate
y system

- ;0 P R —RC
g ~PXY  P=|0 f p |1 | 0|y 5 |=K[R|t]
0 0 1 / \
/
intrinsic parameters K (3 x 3): perspective projection (3 x 4): extrinsic parameters (4 x 4):
correspond to camera maps 3D to 2D points correspond to camera externals

internals (image-to-image (camera-to-image (world-to-camera

transformation) transformation) transformation)
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So far: Solving for camera matrix via total least squares

& = arg min ||Az||* subject to ||z|* =1

£
X 0 —xiXT
0 Xi —-»Xi Dy
A= : : : = | P2
XL 0 —xpX% | P3
0 XL —yuXL.

Equivalently, solution x is the
A = UXV ' Eigenvector corresponding to the
smallest Eigenvalue of A

Ranjay Krishna, Jieyu Zhang Lecture 14 - 4 May 9, 2024



So far: Decomposition of the Camera Matrix

_ D4
P = P ps | ~K[R|—R(C]

P12

P'P ~ K"K with K upper triangular p.d.

Obtain K by Cholesky decomposition of PP = LLT
K~LT

IR =1 =1=|K1P|~1/3

Once K is known, we can compute R = AK~1P

Finally, easy to know the camera center: C = —A"! RTK™1[p, pg p12]"
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PolX, v, Z)

So far: Estimating
depth

left camera

T

(b,0,0)

right camera

Pa(uns, va) X = b
bfx \\ iip = s - + 0,

S~

Z_u — U \"R=fz+0
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Today's agenda

Introduction to recognition

A object recognition pipeline
Choosing the right features

A training algorithm: KNN

Testing an algorithm

Challenges with kNN

Dimensionality reduction

Principal Component Analysis (PCA)
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Today's agenda

e [ntroduction to recognition
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Classification: Does this image contain a building? [yes/no]
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Is this an beach?
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Applications: Image Search & Organizing photo collections

Ranjay Krishna, Jieyu Zhang Lecture 14 - 12 May 9, 2024



1on

Detect

Does this image contain a car? [where?]
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Detection: Which object does this image contain? [where?]
A= e

.........
..........
........

....
.........
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10on

Detect

Accurate localization (segmentation)
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Detectlon Estlmatlng object semantic & geometric attributes

TN
o Object Buﬂdlng, 45° pose,

% 8-10 meters away |
It has brlcks B ——

Tt

W Object Person back
| 1-2 meters away

Object Police car-S|de 'V|ew 4-5m Aawa X

R

e —
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Applications of computer vision

L
canon

Assistive technologies

Computational photography

Seri Assistive driving
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http://www.scottcamazine.com/photos/SecurityXrays/images/briefcase7_jpg.jpg

Levels of recognition: Category-level vs instance-level

Does this image contain the Chicago Macy’s building?
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Categorization vs Single instance recognition

We have seen a form of single instance categorization
already: Where is the crunchy nut?
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Applications of computer vision

Recognizing landmarks
in mobile devices
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Visual Recognition

e Design algorithms that can:
oClassify images or videos
oDetect and localize objects
oEstimate semantic and geometrical attributes
oClassify human activities and events

Why is this challenging?
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Challenges: viewpoint variation

Michelangelo 1475-1564
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Challenges: illumination

image credit: J. Koenderink

Ranjay Krishna, Jieyu Zhang Lecture 14 - 25 May 9, 2024



Challenges: scale
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Challenges: deformation
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Challenges: occlusion

Magritte, 1957
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Art Segway - Magritte
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http://www.mattesonart.com/1961-1967-later-years.aspx

Challenges: background clutter

Kilmeny Niland. 1995
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Challenges: intra-class variation
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Today's agenda

e A object recognition pipeline
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Object recognition:
a classification framework

» Apply a prediction function to a feature representation of the image to get
the desired output:

i
i

“a pple”
“tomato”

1 b

COW
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A simple pipeline - Training

Training
Images
CENOOHN
REREXY X

Image
—_—
Features

<13 TR 4R R T A e

i o 9 2 0 e

s o = o
«.4'}7,‘?‘!’ g 74‘“ 2'1
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A simple pipeline - Training

Training
Training Labels
Images

CENOOHEN
bd4dhd b

Image .
— Training
Features

<1 5 % TR T 4 70

i o 9 2 0 e

I DR T e
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A simple pipeline - Training

Training
Training Labels
Images

Y X
bd4dhd b

Image Learned
_a . .
Features Classifier

33 TR R T Lt N Y

o = o e

B Y e M 2
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A simple pipeline - Training

Training
Training Labels
Images

X LX)
bd4dnd b

e 8 & S e S

Image Learned
_q . .
Features Classifier

SR T R TR L R e
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Test Image

* Image
——>
Features
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A simple pipeline - Training

Training

Training Labels
Images

Y L
ad4ddd oo Image Learned
e N XL Features Classifier

SR T R TR L R e
bk ol o vl T

B, & Pl Tyt P -
‘:‘KT’ ‘a"" '/‘)' | h }':

Test Image

Image Learned
- Prediction
Features Classifier
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What we will learn today?

e Choosing the right features
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A simple pipeline - Training

Training
Images l
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Choices of features

Invariances
Translation Scale Rotation Rotation Occlusion Illumination Gaussian
(relative to (unconstrained) changes Noise

camera plane)

RGB-histogram ?
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Choices of features

Invariances
Translation Scale Rotation Rotation Occlusion Illumination Gaussian
(relative to (unconstrained) changes Noise

camera plane)

RGB-histogram v ?
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Choices of features

Invariances
Translation Scale Rotation Rotation Occlusion Illumination Gaussian
(relative to (unconstrained) changes Noise

camera plane)

RGB-histogram v ) ¢ ? ?
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Choices of features

Invariances
Translation Scale Rotation Rotation Occlusion Illumination Gaussian
(relative to (unconstrained) changes Noise
camera plane)
RGB-histogram v ) ¢ V| ) ¢ ?
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Choices of features

Invariances
Translation Scale Rotation Rotation Occlusion Illumination Gaussian
(relative to (unconstrained) changes Noise
camera plane)
RGB-histogram v ) ¢ V| ) ¢ X ? ?
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Choices of features

Invariances
Translation Scale Rotation Rotation Occlusion Illumination Gaussian
(relative to (unconstrained) changes Noise
camera plane)
RGB-histogram v ) ¢ V| ) ¢ X X ) ¢
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Choices of features

Invariances
Translation Scale Rotation Rotation Occlusion Illumination Gaussian
(relative to (unconstrained) changes Noise
camera plane)
RGB-histogram v ) ¢ V| ) ¢ X X ) ¢
HoG ? ? ? ?
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Choices of features

Invariances
Translation Scale Rotation Rotation Occlusion Illumination Gaussian
(relative to (unconstrained) changes Noise
camera plane)
RGB-histogram V| ) ¢ V| ) ¢ X X ) ¢
HoG V| ) ¢ ) ¢ ) ¢ ? ? ?
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Choices of features

Invariances
Translation Scale Rotation Rotation Occlusion Illumination Gaussian
(relative to (unconstrained) changes Noise
camera plane)
RGB-histogram V| ) ¢ V| ) ¢ X X ) ¢
HoG 4 X X X X 4 4
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Choices of features

Invariances
Translation Scale Rotation Rotation Occlusion Illumination Gaussian
(relative to (unconstrained) changes Noise
camera plane)
RGB-histogram V| ) ¢ V| ) ¢ X X ) ¢
HoG 4 X X X X 4 4
SIFT ? ? ? ?
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Choices of features

Invariances
Translation Scale Rotation Rotation Occlusion Illumination Gaussian
(relative to (unconstrained) changes Noise
camera plane)
RGB-histogram V| ) ¢ V| ) ¢ X X ) ¢
HoG 4 X X X X 4 4
SIFT 4 4 4 V| ? ? ?
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Choices of features

Invariances
Translation Scale Rotation Rotation Occlusion Illumination Gaussian
(relative to (unconstrained) changes Noise
camera plane)
RGB-histogram V| ) ¢ V| ) ¢ X X ) ¢
HoG 4 X X X X 4 4
SIFT 4 4 4 4 X 4 4

Deep learning
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Choices of features

Invariances
Translation Scale Rotation Rotation Occlusion lllumination Gaussian
(relative to (unconstrained) changes Noise
camera plane)
RGB-histogram V| ) ¢ V| ) ¢ X X ) ¢
HoG 4 X X X X 4 4
SIFT 4 4 4 4 X 4 v
Deep learning usually usually usually sometimes
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Choices of features

Invariances
Translation Scale Rotation Rotation Occlusion Illumination Gaussian
(relative to (unconstrained) changes Noise
camera plane)
RGB-histogram V| ) ¢ V| ) ¢ X X ) ¢
HoG 4 X X X X 4 4
SIFT 4 4 4 4 X 4 4
Deep learning usually usually usually sometimes X V| V|
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What we will learn today?

e A training algorithm: KNN
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A simple pipeline - Training

Training
Images

Y X
ErrrIEr .

33 TR R T Lt N Y

o = o e

B Y e M 2

Test Image
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Many classifiers to choose from

e K-nearest neighbor Which is the best one?
SVM

Neural networks

Naive Bayes

Bayesian network
Logistic regression
Randomized Forests
Boosted Decision Trees
RBMs

Etc.
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Learning a classifier to map inputs to outputs

y = 1(x)
LT N

output  prediction Image
function feature

e Training: given a fraining set of labeled examples {(x1,y ),
, (X YN )}, estimate the prediction function f by m|n|m|zmg
the predlctlon error on the training set

e Testing: apply f to a never before seen test example x and
output the predicted value y = f(x)
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An example training dataset

For KNN classifier,
Apples training simply
means to store all

Pear training data.

Tomatos

Cow

Dog

Horse

Training set (labels known)
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A stored training set

n . ¢
® Training
Training ® examples

examples [ from class 2
from class 1 ®
L]
= @
@
L]

Slide credit: L. Lazebnik
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During testing, we assign the label of the
nearest neighbot in feature space

o | ®
> O .
Training <> Test % Tralnlrlmg
examples L] example f examlp 982
from class 1 O rom class
]
[ ®
o ®

Slide credit: L. Lazebnik
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What we will learn today?

e TJesting an algorithm
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A simple pipeline - Training

Training
Images l
CENOOHEa

5444 4 4NN B —

<1 5 % TR T 4 70

i o 9 2 0 e

I DR T e

Test Image

Learned
Classifier
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Generalization

Training set (labels known) Test set (labels unknown)

e How well does a learned model generalize from the data it
was trained on to a new test set?
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Intuition for Nearest Neighbor Classifier

Given a training dataset, simply store each image’s features
and their corresponding label.

——————
-

\}l/«\/\«
Training N '

images N

S~a -

Ranjay Krishna, Jieyu Zhang Lecture 14 - 65 May 9, 2024



Intuition for Nearest Neighbor Classifier

Given a training dataset, simply store each image’s features
and their corresponding label.

——————
-

% ~_ Compute

// -
R~ " . Distance
ﬁw) \') \
i i \\\\
Training  \_ /= N ,
images N L) Choose k=1

“nearest” neighbor

S~a -
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Nearest Neighbor Classifier

e Assign label of majority of K=3 nearest neighbors

——————
-

% ~_ Compute

// v
R & . Distance
SP :
Sﬁ
Training ’ .
. N ) N R
images N I Choose k=3 “nearest”

neighbors

S~a -
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Classification

e Assign input vector to one of many classes (categories)

e Geometric interpretation of classifiers: A classifier divides input
space into decision regions separated by decision boundaries
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Nearest Neighbor Classifier

e Assign label of nearest training data point to each test data point

Partitioning of feature space
for two-category 2D and 3D data
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How do we find the nearest neighbors in feature space?

Distance measure (same as the ones X .
from segmentation) o
X . X X

Euclidean: * o X

D 2 0 X

. n my __ n__ ym o o

Dist(X",X") = \/Z(Xl X") .

i=l

X2 ©

Where X" and X™ are the n-th 1

and m-th data points
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1-nearest neighbor

Distance measure (same as the ones X .
from segmentation) o
X X X

Euclidean: @ o x

D 2 0 X

. n my __ n__ ym o o

Dist(X",X") = \/Z(Xl X") .

=1

X2 ©

Where X" and X™ are the n-th 1

and m-th data points
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3-nearest neighbor

Distance measure (same as the ones X
from segmentation)

X X X
Euclidean: X
2 X
(o

D
Dist(X", X™) = \/Z(Xf —X") ] 0
i=l

X2

Where X"and X" are the n-th
and m-th data points

x1
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5-nearest neighbor

Distance measure (same as the ones X .
from segmentation) o
X X

Euclidean: X

D 2 X

. n my __ n__ ym o

Dist(X", X )\/Z(Xl. X") .

i=l

X2 ©

Where X"and X" are the n-th
and m-th data points

x1
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Choosing the right features is

important but dataset-dependent

EIRICICIEY
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Color D,D, | Mag-Lap | PCA Masks | PCA Gray | Cont. Greedy | Cont. DynProg Avg.
apple 57.56% | 85.37% | 80.24% 78.78% 88.29% 77.07% 76.34% 77.66%
pear 66.10% | 90.00% | 85.37% 99.51% 99.76 % 90.73% 91.71% 89.03%
tomato | 98.54% | 94.63% | 97.07% 67.80% 76.59% 70.73% 70.24% 82.23%
cow 86.59% | 82.68% | 94.39% 75.12% 62.44% 86.83% 86.34% 82.06%
dog 34.63% | 62.44% | 74.39% 72.20% 66.34% 81.95% 82.93% 67.84%
horse 32.68% | 58.78% | 70.98% 77.80% 77.32% 84.63% 84.63 % 69.55%
cup 79.76% | 66.10% | 77.80% 96.10% 96.10% 99.76 % 99.02 % 87.81%
car 62.93% | 98.29% | 77.56% 100.0% 97.07 % 99.51% 100.0% 90.77%
total 64.85% | 79.79% | 82.23% 83.41% 82.99% 86.40% 86.40% 80.87%

Dataset: ETH-80, by B. Leibe, 2003
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Lecture 14 - 74

May 9, 2024



Results
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Category Primary feature(s) Secondary 1Catuics
apple PCA Gray Texture D, D,
pear PCA Gray / Masks

tomato Color Texture Mag-Lap
COW Texture Mag-Lap Contour / Color
dog Contour

horse Contour

cup Contour PCA Gray / Masks
car PCA Masks / Contour Texture D, D,

Ranjay Krishna, Jieyu Zhang
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Dataset: ETH-80, by B. Leibe, 2003
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K-NN: a very useful algorithm

® Simple, a good one to try first
® Very flexible decision boundaries

e With infinite examples, 1-NN has a strong theoretical guarantee (out of scope for
this class)
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What we will learn today?

e Challenges with kNN
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K-NN: issues to keep in mind

® Choosing the value of k:
o |f too small, sensitive to noise points

o If too large, neighborhood may include points from other
classes

.....
.......
.O L)
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K-NN: issues to keep in mind

® Choosing the value of k:
o |f too small, sensitive to noise points

o If too large, neighborhood may include points from other
classes
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K-NN: issues to keep in mind

® Choosing the value of k:
o |f too small, sensitive to noise points

o If too large, neighborhood may include points from other
classes

o Solution: Cross validate

Test error

il Godd N L — Train error

K=20 K=1

Model complexity
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Cross validation

All Data

Training data

Test data

Ranjay Krishna, Jieyu Zhang
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Cross validation

All Data

Training data Test data

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
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Cross validation

All Data

Training data Test data

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
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Cross validation

Split 1
Split 2
Split 3
Split 4

Split5

All Data
Training data Test data
Fold1l || Fold2 | Fold3 || Fold4 | Fold5 | \
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
| | > Finding Parameters
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold1 || Fold2 || Fold3 | Fold4 || Fold5

Final evaluation {

Test data

Ranjay Krishna, Jieyu Zhang
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K-NN: issues to keep in mind

® Choosing the value of k:
o |f too small, sensitive to noise points
o If too large, neighborhood may include points from other classes
o Solution: cross validate!

e Curse of Dimensionality
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Curse of dimensionality

e As the dimensionality increases, the number of data points required for

good performance increases exponentially.
e Let's say that for a model to perform well, we need at least 10 data points

for each combination of feature values.

Need for Data Points with Increase in Dimensions

21 x 10 = 20 data points

1 Binary feature D 2'unique values ——D

22 x 10 = 40 data points

2 Binary features D 22 unique values —
3 Binary features D  2%unique values —p 23 x 10 = 80 data points
k Binary features D 2Xunique values ——p 2% x 10 data points

May 9, 2024

Ranjay Krishna, Jieyu Zhang Lecture 14 - 86



K-NN: issues to keep in mind

® Choosing the value of k:
o |f too small, sensitive to noise points

o If too large, neighborhood may include points from other
classes

o Solution: cross validate!

® Curse of Dimensionality
o Solution: dimensionality reduction
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What we will learn today

e Dimensionality reduction
o
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Singular Value Decomposition (SVD)

UzVv'=A
e Where U and V are rotation matrices, and Z is a scaling matrix. For
example:
U ) Vek A

-.40 .916] [539 0 ] [-.05 .999] _[3 -2
916 .40 0 3154701999 05| |1 5
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Singular Value Decomposition (SVD)

e Beyond 2x2 matrices:

o In general, if Ais m x n, then U will be m x m, £ will be m x n, and
VT will be n x n.

o (Note the dimensions work out to produce m x n after
multiplication)

VT
o > [—.42 —.57 —.70]
{—.39 —.92]49.51 0 le ' N ' [1 9 3]

—92 39 0 77 0 i _'152 —58 =
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Singular Value Decomposition (SVD)

e U and V are always rotation matrices.

o Geometric rotation may not be an applicable concept, depending
on the matrix. So we call them “unitary” matrices — each column
IS a unit vector.

e 2 is a diagonal matrix
o The number of nonzero entries = rank of A
o The algorithm always sorts the entries high to low

VT
u 2 [—42 —57 —.70] [

~39 —92] [951 0 0] |
f x| 81 a1 —58|=
[—.92 .39}4 0 .77 o]x - iy |l
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SVD Applications

e We've discussed SVD in terms of geometric transformation
matrices

e But SVD of an image matrix can also be very useful

e To understand this, we’ll look at a less geometric interpretation of
what SVD is doing
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What is SVD actually doing for images?

A

U > -
-39 —92] [951 0 0] _52 i‘f _Zg [t 2 3
—.92 .39 0 77 07| ey a1 | 1456

e Look at how the multiplication works out, left to right:
e Column 1 of U gets scaled by the first value from .

SN
|
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What is SVD actually doing for images?

A

U > -
-39 —92] [951 0 0] _52 i‘f _Zg [t 2 3
—.92 .39 0 77 07| ey a1 | 1456

e Look at how the multiplication works out, left to right:
e Column 1 of U gets scaled by the first value from Z.

VT

R g [P
[- i o} «| 81 11 —.58
' 41 82 A4l
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What is SVD actually doing for images?

A

U > -
-39 —92] [951 0 0] _52 i‘f _Zg [t 2 3
—.92 .39 0 77 07| ey a1 | 1456

e Look at how the multiplication works out, left to right:
e Column 1 of U gets scaled by the first value from .

UXx partial
710 _é‘iz _ff _gg 16 2.1 2.6
30 0|~ = - 32 Bl e

e The resulting vector gets s y row 1 of VT fo produce a contribution
to the columns of A
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Ranjay Krishna, Jieyu Zhang

SVD is a type dimensionality reduction

VT

UX ApaTtial
{- _7 O]x{éﬁQ _i517 gg} [1.6 2.1 2.6}
30 oL e n 38 50 6.2

HiE —42 —57 —.70 Zanh
+ [-3.67 0], |t oeez| [l B B
~8.8 ol |- — N N e

' 41 —.82 41

. 1 2 3

- 4 5 6

e Each product of (column i of U)-(value i from %)-(row i of
V") produces a component of the final A.
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SVD is a type dimensionality reduction

UX partial
~71 0 _é‘f “1517 _gg 1.6 2.1 2.6
30 0| ' — 33 50l 62 A
4 5 6

T

Us ¥

. o1 [—42 —57 —70] o’
e o> |81 11 —58 N
' 41 —.82 41 ‘ '

e \We're building A as a linear combination of the columns of U
e Using all columns of U, we'll rebuild the original matrix perfectly

e But, in real-world data, often we can just use the first few columns
of U and we’ll get something close (e.g. the first Ap above)

artial’
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SVD is a type dimensionality reduction

VT
Apartial

Us
{IIIIII e 0})( "512 "127 "°gg {1.6 2.1 :Lﬁ]
. . " A
30 o e 3.8 5.0 6.2

VT
=2 —42 =57 -.70

[__35687- 8]>< 81 .11 —.58 [‘f _0'1 _‘42}
' 41 —82 41 ‘ '

e \We can call those first few columns of U the Principal
Components of the data

e They show the major patterns that can be added to produce the
columns of the original matrix

e The rows of VT show how the principal components are mixed
to produce the columns of the matrix
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SVD is a type dimensionality reduction

VT

U 3 ,. ] A
30 s st o 9. S L 88 12
—-.92 .39 0 a7 0 1 -8 41 4 5 6
We can look at \ |
Y to see that while the second
the first column column has a
has a large much smaller
effect effect in this
example
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Image compression

= %

e For this image, using only the first 16 of 300 principal 8 2
components produces a recognizable reconstruction

e Using the first 64 almost perfectly reconstructs the

image
Compression: 74.9%
Info. Retained 67.2%
X32 X—X32
Compression: 49.8%
Info. Retained 80.4%
Xea X — Xea

Compression: -0.4%
Info. Retained 93.4%
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SVD for symmetric matrices

e |f Ais a symmetric matrix, it can be decomposed as the following:

T
e Compared to a traditional A — (I)Z(I) VT and is an orthogonal
matrix.
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What we will learn today

e Principal Component Analysis (PCA)
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Intuition behind PCA: high dimensional data usually lives
In some lower dimensional space

Covariance between the two
dimensions of features is high.
Can we reduce the number of
dimensions to just 1?

p <
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Geometric interpretation of PCA

find projection
that maximizes
variance
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Geometric interpretation of PCA

e Let’'s say we have a set of 2D data points x. Butwe 1D subspacein 2D
see that all the points lie on a line in 2D.

e S0, 2 dimensions are redundant to express the data. /
We can express all the points with just one
dimension.
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PCA: Principle Component Analysis

e Given a dataset of images, can we compressed them like we can
compress a single image?
o Yes, the trick is to look into the correlation between the points
o The tool for doing this is called PCA

PCA can be used to compress image RGB pixel values or also be used to
compress their features!
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PCA by SVD

e To relate this to PCA, we consider the image (or feature) matrix

X=|x .. x

IS:

1 1 g 1
=—F X, =—| X ... X,|:[=2—X1
i nz,-: 1 n
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PCA by SVD

e Center the data by subtracting the mean to each column of X
e The centered dataset matrix is
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PCA by SVD

e The sample covariance matrix is

0 = = - - = Tl

where x°is the it column of X
e This can be written as

C’=le i B : =—X X'
n
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PCA by SVD

e [he matrix T 7

c
S Xl g
X = :

C

C
— Xn —

Is real (n x d). Assuming n>d it has SVD decomposition
x'=vuxv?t U'U =1 Vv =1
and

1 1 1
C=-XX!'=-UuxvHuxvhH?! =
n n

n

UsVvIivyut = lUz:?UT
n
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PCA by SVD

1
n

C = _yux?u”r

e Note that U is (d x d) and orthonormal, and Z2 is diagonal.
This is just the eigenvalue decomposition of C

e |t follows that
o The eigenvectors of C are the columns of U

o The eigenvalues of C are the diagonal entries of 2 /'Liz
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PCA by SVD

e |In summary, computation of PCA by SVD

e Given X with one image (or feature) per column
o Create the centered data matrix

B 1] [ |

X=X, ... X,|—-|u ... u

l | | |

o Compute its SVD o i
xX'=vuxv?t

o Principal components are columns of its covariance is the squared
diagonal entries of 2
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To compress an image dataset, pick the largest

eigenvalues and their corresponding eigenvectors

e Pick the eigenvectors that explain p% of the image data
variability
o Can be done by plotting the ratio r_as a function of k

% of Variability of Data Captured vs. Number of Eigenvectors

r of Eigenvectors included

o E.g. we need k=3 eigenvectors to cover 70% of the variability of
this dataset
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What exactly is the covariance

e Variance and Covariance are a measure of the “spread” of a set of points
around their center of mass (mean)

e Variance — measure of the deviation from the mean for points in one
dimension e.g. heights

e Covariance as a measure of how much each of the dimensions vary from
the mean with respect to each other.

e Covariance is measured between 2 dimensions to see if there is a
relationship between the 2 dimensions e.g. number of hours studied &
marks obtained.

e The covariance between one dimension and itself is the variance
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Covariance

covariance (X,Y) = Z?zl (X - X)(Y;-Y)
(n-1)

e S0, if you had a 3-dimensional data set (x,y,z), then you could
measure the covariance between the x and y dimensions, the y and
z dimensions, and the x and z dimensions. Measuring the
covariance between x and x , ory and y , or z and z would give you
the variance of the x , y and z dimensions respectively
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Covariance

e \What is the interpretation of covariance calculations?
o e.g.: 3 dimensional data set
o X: number of hours studied for a subject
o Y. marks obtained in that subject
o z: number of lectures attended
o covariance value between x and y is say: 104.53
o what does this value mean?
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Visualizing this covariance matrix

e Representing Covariance between dimensions as a matrix e.g. for 3
dimensions

“\\Variances
i i

e Diagonal is the variances of x, y and z
e cov(Xx,y) = cov(y,x) hence matrix is symmetrical about the diagonal
e N-dimensional data will result in NxN covariance matrix
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Covariance interpretation

positive covariance

1
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Covariance interpretation

e Exact value is not as important as it’s sign.

e A positive value of covariance indicates both dimensions increase or
decrease together e.g. as the number of hours studied increases, the
marks in that subject increase.

e A negative value indicates while one increases the other decreases, or
vice-versa e.g. active social life at PSU vs performance in CS dept.

e If covariance is zero: the two dimensions are independent of each other
e.g. heights of students vs the marks obtained in a subject
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What happens with PCA during training?

Training
Images

Y X
ErrrIEr .

33 TR R T Lt N Y

o = o e

=Y hmE &

Test Image
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What happens with PCA during training?

Training

Images l
CENOOHEN
RERNYER] .

33 TR R T Lt N Y

o = o

ErhoEvd
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PCA during training

Let's say that we choose k top eigenvalues and their corresponding
eigenvectors: [u,, ..., U, ]

Replace all image features x with:

k
T = E ul x
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What happens with PCA during testing?

Training

Images l
CENOOHEN
RERNYER] .

33 TR R T Lt N Y

o = o

Q‘l' ‘KT’ ?’ ":‘)' -?,.- h 2';,
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What happens with PCA during testing?

Training
Images l
CENOe D
EAERTYERY .

a8 & S e e
SR T R TR L R e
ko o Sl IR T
vl 2 T I Rl -
Test Image
—

__.
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What we have learned today?

Introduction to recognition

A simple Object Recognition pipeline
Choosing the right features

A training algorithm: KNN

Testing an algorithm

Challenges with kNN

Dimensionality reduction

Principal Component Analysis (PCA)
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Next lecture
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Extra slides (out of scope)

for those of you curious about how SVD is calculated
and what PCA is usually used for outside of computer vision

Ranjay Krishna, Jieyu Zhang Lecture 14 - 128 May 9, 2024



Principal Component Analysis

Uux partial
{- —j o]x o {1.6 2.1 2.6]
30 0"l s 38 50 6.2

e Remember, columns of U are the Principal Components of the data:
the major patterns that can be added to produce the columns of the
original matrix

e One use of this is to construct a matrix where each column is a
separate data sample

e Run SVD on that matrix, and look at the first few columns of U to see
patterns that are common among the columns

e This is called Principal Component Analysis (or PCA) of the data
samples
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Principal Component Analysis

VT 5
U ] {.42 = .70] { AL
X

—-.71 0 F6Y 280 F216

41 —82 41 38 9l 162
e Often, raw data samples have a lot of redundancy and patterns

e PCA can allow you to represent data samples as weights on the principal
components, rather than using the original raw form of the data

e By representing each sample as just those weights, you can represent just
the “meat” of what's different between samples.

e This minimal representation makes machine learning and other algorithms
much more efficient
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How is SVD computed?

e For this class: tell PYTHON to do it. Use the result.

e But, if you're interested, one computer algorithm to do it makes use of
Eigenvectors!
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Eigenvector definition

e Suppose we have a square matrix A. We can solve for vector x and scalar
A such that Ax= Ax

e |n other words, find vectors where, if we transform them with A, the only
effect is to scale them with no change in direction.

e These vectors are called eigenvectors (German for “self vector” of the
matrix), and the scaling factors A are called eigenvalues

e An m x m matrix will have < m eigenvectors where A is nonzero
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Finding eigenvectors

e Computers can find an x such that Ax= Ax using this iterative algorithm:

o X = random unit vector

o while(x hasn’t converged)
s X = AX
s normalize x

e x will quickly converge to an eigenvector
e Some simple modifications will let this algorithm find all eigenvectors
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Finding SVD

e Eigenvectors are for square matrices, but SVD is for all matrices
e To do svd(A), computers can do this:
o Take eigenvectors of AAT (matrix is always square).
= [hese eigenvectors are the columns of U.

= Square root of eigenvalues are the singular values (the
entries of ).

o Take eigenvectors of ATA (matrix is always square).
» These eigenvectors are columns of V (or rows of VT)
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Finding SVD

e Moral of the story: SVD is fast, even for large matrices
e |t's useful for a lot of stuff

e There are also other algorithms to compute SVD or part of the
SVD

o Python’s np.linalg.svd() command has options to efficiently
compute only what you need, if performance becomes an
issue

A detailed geometric explanation of SVD is here:
http://www.ams.org/samplings/feature-column/fcarc-svd
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Bias-Variance Trade-off

e Models with too few parameters
| are inaccurate because of a
T large bias (not enough
"N flexibility).

¥ i Sample 2

e Models with too many
Y parameters are inaccurate

- because of a large variance
(too much sensitivity to the
sample).
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Bias versus variance

e Components of generalization error

o Bias: how much the average model over all training sets differ from the true
model?

m Error due to inaccurate assumptions/simplifications made by the model
o Variance: how much models estimated from different training sets differ from each
other
e Underfitting: model is too “simple” to represent all the relevant class
characteristics
o High bias and low variance
o High training error and high test error

e Overfitting: model is too “complex” and fits irrelevant characteristics
(noise) in the data

o Low bias and high variance
o Low training error and high test error
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Bias versus variance trade off

Total Error

Optimum Model Complexity

Variance

Error

~ -
Model Complexity
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No Free Lunch Theorem

© Original Artist
Reproduction rights obtainable from

} —
——

VWYY, CartoonStock com_'___|__,.__—— : ,

,.l--\ o

In a supervised learning setting, we can’t tell
which classifier will have best generalization
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Remember...

e No classifier is inherently better than \ m /,‘_ﬁ
any other: you need to make

assumptions to generalize

e Three kinds of error
o Inherent: unavoidable
o Bias: due to over-simplifications

o Variance: due to inability to perfectly
estimate parameters from limited
data
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How to reduce variance?

® Choose a simpler classifier
® Regularize the parameters
® Get more training data

How do you reduce bias?
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Last remarks about applying machine learning
methods to object recognition

e There are machine learning algorithms to choose from
e Know your data:

o How much supervision do you have?

o How many training examples can you afford?

o How noisy?
e Know your goal (i.e. task):

o Affects your choices of representation

o Affects your choices of learning algorithms

o Affects your choices of evaluation metrics

e Understand the math behind each machine learning algorithm under
consideration!
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PCA by SVD

e An alternative manner to compute the principal
components, based on singular value decomposition

e Quick reminder; SVD

o Any real n x m matrix (n>m) can be decomposed as

™~ 7

A= MIIN

o Where M is an (n x m) column orthonormal matrix of left singular
vectors (columns of M)

o [Tis an (m x m) diagonal matrix of singular values

o NTis an (m x m) row orthonormal matrix of right singular vectors
(columns of N)

M M=171 N'N=7
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PCA Formulation

e Basic idea:

o If the images (or their features) live in a subspace, it is going to
look very flat when viewed from the full feature space, e.g.

1D subspace in 2D 2D subspace.in 3D

'
.
e
/,
.
e
7z
.,

Slide inspired by N. Vasconcelos
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Alternative PCA Formulation

e Assume images x is Gaussian with
covariance 2. X

e Recall that a gaussian is defined with it's P,
mean and variance:

XNN(“’E) 1

e Recall that y and X of a gaussian are
defined as:

p = E[X]
2 = E[(X — p)(X —p)'] = [Cov[X;, X;];1 < 4,5 < k]
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Alternative PCA formulation

e Since gaussians are symmetric, it's covariance matrix is also a symmetric
matrix. So we can express it as:

o £ = UAUT = UNT2(UA"2)T

X ~N(p,B) < X ~pu+UAY2N(0,1)

<— X ~u+UN(0,A).
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Alternative PCA Formulation

e If x is Gaussian with covariance 2,

o Principal components ¢. are the
eigenvectors of 2 ?,
o Principal lengths A, are the
eigenvalues of 2 1

e by computing the eigenvalues we know the data is
o Not flat if A, = A,
o Flatif A, >> A,
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Alternative PCA Algorithm (training)

Given sample D = {x1,...,xn}, z; € R%
e compute sample mean: i =1 (x;)
e compute sample covariance: £ = ¥ ;(x; — 2)(x; — )7

e compute eigenvalues and eigenvectors of >

> = dADP!, A =diag(c?,...,02) dTd =1
e order eigenvalues 07 > ... > 03

e if, for a certain k, 0. << o3 eliminate the eigenvalues and
eigenvectors above k.
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Alternative PCA Algorithm (testing)

Given principal compoenents ¢;,72 € 1,...,.k and a test sample
T — {t]_, 5 & 3 ,tn}, {2 - Rd

e subtract mean to each point tg =t;— i
e project onto eigenvector space y; = At; where

o1
A = :

bk

e use 7' = {y1,...yn} to estimate class conditional densities
and do all further processing on v.
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