Lecture 13

Camera calibration
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Administrative

A3 is out
- Due May 12th

A4 is out
- Due May 25th
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Administrative

Recitation this friday

- Ontologies
- Zihan Wang
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So far: 2D Transformations with homogeneous coordinates
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Figure: Wikipedia
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So far: The pinhole camera

For this course, we focus on
the pinhole model.

e Similar to thin lens model in

Physics: central rays are not

deviated.

e Assumes lens camera in focus.
e Useful approximation but ignores

important lens distortions.

Ranja Krishna, Jieyu Zhang Lecture 13 -5 May 7, 2024



So far: General pinhole camera matrix

P = K[R|t] where t=—RC

f 0 pg L T2 T3l
P=|0 f py T4 Ts Te: L2
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Intrinsic extrinsic = mogorwe T
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Today’s agenda

Properties of Perspective transformations
ntroduction to Camera Calibration

_inear camera calibration method
Calculating intrinsics and extrinsics
Other methods
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Today’s agenda

e Properties of Perspective transformations
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Similar illusion as last lecture
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The Ames room illusion

Actual position of
Person A ——_ ||

Apparent position|
of person A — Actual and
apparent position

of person B

LK
h=1

Apparent / %ﬁg

shape of room peephole

Ranjay Krishna, Jieyu Zhang Lecture 13 - 10 May 7, 2024



Projective Geometry

Q. Who is taller?
The two blue lines are the same length

Which is closer?
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Projective Geometry

What is not preserved?

e Length
e Angles

~
Perpendicular SN

Ranjay Krishna, Jieyu Zhang Lecture 13 - 12



Projective Geometry

What is preserved?
e Straight lines are still straight
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Projection of lines

Q. When is parallelism
preserved?

Piero della Francesca, Flagellation of Christ, 1455-1460
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Projection of lines

Q. When is parallelism
preserved?

When the parallel lines are also
parallel to the image plane

Piero della Francesca, Flagellation of Christ, 1455-1460 — R
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Projection of lines

Patterns on
non-fronto-parallel planes
are distorted by a
homography
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Projection of planes

What about patterns on fronto-parallel planes?

A

(.2~ (f-.f3)

 All points on a fronto-parallel
plane are at a fixed depth z

 The pattern gets scaled by a
factor of f / z, but angles and
ratios of lengths/areas are
preserved
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Vanishing Points & Lines

image plane
\
vanishing point v
camera
center \
line in the scene
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Vanishing Points & Lines

image plane
\
vanishing point v

camera
center

line in the scene
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Vanishing Points & Lines
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Vanishing Points & Lines

I Vertical vanishing

point
(at infinity)
Vanishing
line
®
Vanishing Vanishing
point point

Parallel lines in the world intersect in the image at a vanishing point
Parallel planes in the world intersect in the image at a vanishing line
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Vanishing lines of planes

® The projection of parallel 3D planes intersect at a vanishing line

® How can we construct the vanishing line of a plane?
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Vanishing lines of planes

® The projection of parallel 3D planes intersect at a vanishing line

® How can we construct the vanishing line of a plane?

/ |
’

’

. 7

camera 4
center

4
/
/
Z
_________
plane in the scene
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Vanishing lines of planes

Horizon: vanishing line of the ground plane

Q. What can the horizon tell us about the relative height pixels with respect
to the camera?

camera -
center ’
Z
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Q. Are these assertions true or false?

All lines that intersect in 2D are parallel in 3D
2D lines always intersect each other in P?

3D planes always intersect each other in P3
3D lines always intersect each other in P3

3D lines always intersect each other in P?

The ﬁrojectipn of parallel lines in 3D meet at the same
vanisning point

The projection of non-intersecting lines in 3D meet at
the same vanishing point

If a set of parallel 3D lines are also parallel to a
particular plane, their vanishing point will lie on the
vanishing line of the plane

© N ook HE
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Q. Are these assertions true or false?

All lines that intersect in 2D are parallel in 3D = NO!
2D lines always intersect each other in P? = YES!
3D planes always intersect each other in P3 = YES!
3D lines always intersect each other in P3 = NO!

3D lines always intersect each other in P?2 = YES!

The ﬁijeCthn of paraIIeI lines In 3D meet at the same
vanishing point =2

The projection of non- mtersectlng lines In 3D meet at
the same vanishing point > NO!

If a set of parallel 3D lines are also parallel to a
particular plane, their vanlshmg pomt will lie on the
vanishing line of the plane &> YES!

© N ook HE
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Properties of Vanishing Points & Lines

* The projections of parallel 3D lines intersect

1 Vertical vanishing
point

at a vanishing point I . (ot
Vanishing LN e S i e *
. . . line N
« The projection of parallel 3D planes intersect \
at a vanishing line ) L
» Vanishing point <-> 3D direction of a line Bmshmg il

Vanishing

ot point

 Vanishing line <-> 3D orientation of a surface

Vanishing Points are a key perspective tool:
from making realistic drawings, to measuring

3D from 2D, and even for camera calibration!
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Today’s agenda

e Introduction to Camera Calibration
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Recap: The Pinhole
Camera Model

- f
P=|0
0

/ -
intrinsic parameters K (3 x 3):
correspond to camera
internals (image-to-image
transformation)

perspective projection (3 x 4):

Camera
coordinate

World
coordinate

0 P R —RC
fopy 010 o 1 )=K[R|t

extrinsic parameters (4 x 4):
correspond to camera externals

(world-to-camera
transformation)

maps 3D to 2D points
(camera-to-image
transformation)

Ranjay Krishna, Jieyu Zhang
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Camera Calibration &
Pose Estimation cocrdims

' ~PX" P = K[R |t]
How can we estimate P and its components?

Camera Calibration: estimating intrinsics K
Pose Estimation: estimating extrinsics [R | t]
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Camera calibration from 3D-2D correspondences

Given n points with known 3D coordinates X; and known image
projections x;, estimate the camera parameters P such that %;~PX."

X
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Camera calibration from 3D-2D correspondences

Given n points with known 3D coordinates X; and known image
projections x;, estimate the camera parameters P such that %;~PX;"

Known 2D image Known 3D locations

coords

880 214 312.747 309.140 30.086

43 203 305.796 311.649 30.356
270 197 307.694 312.358 30.418
886 347 310.149 307.186 29.298
745 302 311.937 310.105 29.216
943 128 311.202 307.572 30.682
476 590 307.106 306.876 28.660
419 214 309.317 312.490 30.230
317 335 307.435 310.151 29.318
783 521 308.253 306.300 28.881
235 427 306.650 309.301 28.905
665 429 308.069 306.831 29.189
655 362 309.671 308.834 29.029
427 333 308.255 309.955 29.267
412 415 307.546 308.613 28.963
746 351 311.036 309.206 28.913
434 415 307.518 308.175 29.069
525 234 309.950 311.262 29.990
716 308 312.160 310.772 29.080
602 187 311.988 312.709 30.514
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Camera calibration from 3D-2D correspondences

Given n points with known 3D coordinates X; and known image
projections x;, estimate the camera parameters P such that %;~PX."

Many good solutions for accurate 3D position from good fiducial markers: ArUco, AprilTags, ...

Fig. 1. Example of augmented reality scene. (a) Input image containing a set of fiducial markers. (b) Markers automatically detected and used for camera pose estimation.
(c) Augmented scene without considering user’s occlusion. (d) Augmented scene considering occlusion.

Garrido-durado, S., Muhoz-Salinas, R., Madrid-Cuevas, F. J., &

Marin-Jiménez, M. J. (2014). Automatic generation and detection of highly https://april.eecs.umich.edu/software/apriltag
reliable fiducial markers under occlusion. Pattern Recognition
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https://april.eecs.umich.edu/software/apriltag

Mapping between 3D point and image points

- - - - X
X Pr P2 P3 P4 Y
Yy = | P5 DPe Pt D8 7

| < P9 Pio P11 P12 _ 1

What are the knowns and unknowns??
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Mapping between 3D point and image points

X -pl P2 D3

y | = | P55 DPe D7
| < | P9 P10 P11
z — pl —
) — —Pgr—
2 | —— P3 ——

P4
P8

P12 |

X

Y
Z
1

Heterogeneous coordinates
,_piX P X

(non-linear relationship between
coordinates)

How can we make these relations
linear?

Ranjay Krishna, Jieyu Zhang
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Today’s agenda

e Linear camera calibration method
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How can we make these relations linear?

Make them linear with algebraic manipulation...

p{ X —p3 X' =0 ps X —p3 Xy =0

Now we can setup a system of linear equations with multiple
corresponding points
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Camera Calibration: Linear Method

Pi — MXl

Remember (from geometry): this implies MX. &
p, are proportional/scaled copies of each other

Pi — AMXU/‘[ #* 0

Remember (from homography fitting): this
implies their cross product is 0

piXMXi =0
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| X —p3 Xz’ =0 ps X —p3 Xy =

In matrix form ...

D3

Q1. How many equations does each correspondence give us?

Q2. How many correspondences do we need to solve for P?
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pl X —p3 Xz' =0 p; X —p3 Xy =0

In matrix form for 1 X" o0 —zXxT P11 ;
corresponding point ... 0 X' X' 11;2 =
| P3 _

X' 0 —xiXi-

For N points ... 0 XI —y{XI P
: E : P2|=0
XL, 0 —xyXy|lps

0 X§ —ynNXi.

How do we solve this system?
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A few things to look out for

e N points should not be co-planar. Otherwise, the rows will not be

iIndependent

e Usually any measurements you make in 3D space will be noisy. So you
need more than the minimum number of points!

e P has 12 values but we only need to find 11 since everything is scaled

‘X 0 —xiXT7

For N points ... 0 X7 —y'XT |[pr
E E E P2|=0
X, 0 —x\yXy|lpsl

0 XL —yuXL

How do we solve this system?
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Solve for camera matrix via total least squares

& = arg min ||Az||* subject to ||z|* =1

£
X 0 —xiXT
0 XI -yiX] Dy
A= : : : T = | P
X, 0 —xuX% NZ
0 XL —yuXL.

Singular Value Decomposition!
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Singular Value Decomposition (SVD)

e Represents any matrix A as a product of three matrices: UZVT
e Python command:
o [U,X,V]= numpy.linalg.svd(A)

U ) V& A

-.40 .916] [539 0 ] [-.05 .999] _[3 -2
916 .40 0 3154701999 05| |1 5
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Singular Value Decomposition (SVD)

e Beyond 2x2 matrices:

o In general, if Ais m x n, then U will be m x m, £ will be m x n, and
VT will be n x n.

o (Note the dimensions work out to produce m x n after
multiplication)

U ) V& A

-.40 .916] [539 0 ] [-.05 .999] _[3 -2
916 .40 0 3154701999 05| |1 5
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Singular Value Decomposition (SVD)

e U and V are always rotation matrices.
o Each column is a unit vector.
e 2 is a diagonal matrix
o The number of nonzero entries = rank of A
o The algorithm always sorts the entries high to low

U ) V& A

-.40 .916] [539 0 ] [-.05 .999] _[3 -2
916 .40 0 3154701999 05| |1 5
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Solve for camera matrix via total least squares

& = arg min ||Az||* subject to ||z|* =1

£
X 0 —xiXT
0 XI -yiX] Dy
A= : : : T = | P
X, 0 —xuX% NZ
0 XL —yuXL.

Solution x is the column of V
A =UXV' corresponding to the smallest singular
value of A
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Why is it the column of V with the smallest eigenvalue?

& = arg min ||Az||* subject to ||z|* =1
X

Is equivalent to:

x = argminx’ (AT A)x  such that |x||? = 1.

X
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Why is it the column of V with the smallest eigenvalue?

& = arg min ||Az||* subject to ||z|* =1
X

Is equivalent to:

x = argminx’ (AT A)x  such that |x||? = 1.

X

ATA = (UZV)T(UZV)
= (VTEUT)(UZV)
= VTE(UTU)zV
= VTsIzV
= V52V
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Why is it the column of V with the smallest eigenvalue?

& = arg min ||Az||* subject to ||z|* =1
X

Is equivalent to:

X = arg m)jn xT (AT A)x such that |x||? = 1.
A'A = (UzV)'(UzV) ATAv, = olvy,
= (VTZUT)(UZV)
=VTZ(UTU)zV So, ATAvk IS proportional to the vector’s
= VTSIV eigenvalue. So the vector corresponding
= \Ts2y to the smallest eigenvalue is what we want
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Solve for camera matrix via total least squares

& = arg min ||Az||* subject to ||z|* =1

£
X 0 —xiXT
0 X; —-»Xi Dy
A=] : : : T = | P
XL 0 —xpX% | P3
0 XL —yuXL.

Equivalently, solution x is the
A = UXV ' Eigenvector corresponding to the
smallest Eigenvalue of A
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A.2.1 Total least squares

In some problems, e.g., when performing geometric line fitting in 2D images or 3D plane
fitting to point cloud data, instead of having measurement error along one particular axis, the
measured points have uncertainty in all directions, which is known as the errors-in-variables
model (Van Huffel and Lemmerling 2002; Matei and Meer 2006). In this case, it makes more
sense to minimize a set of homogeneous squared errors of the form

Bris =) (ax)? = ||Ax|?, (A.35)
which is known as fotal least squares (TLS) (Van Huffel and Vandewalle 1991; Bjorck 1996;
Golub and Van Loan 1996; Van Huffel and Lemmerling 2002).
The above error metric has a trivial minimum solution at x = 0 and is, in fact, homoge-
neous in x. For this reason, we augment this minimization problem with the requirement that
||x||? = 1. which results in the eigenvalue problem

x = argminx’ (AT A)x such that x| = 1. (A.36)

X

The value of x that minimizes this constrained problem is the eigenvector associated with the
smallest eigenvalue of AT A. This is the same as the last right singular vector of A, because

A =UxVT (A.37)
ATA =VvX2VT, (A.38)
ATAv, = aivk, (A.39)

which is minimized by selecting the smallest o, value.
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We calculated the camera matrix!

P1r P2 P3 P4
Now we have: P=|p5s ps6 pr Dps

P9 Pio P11 P12
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Today’s agenda

e (alculating intrinsics and extrinsics
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Recap: The Pinhole
Camera Model

- f
P=|0
0

/ -
intrinsic parameters K (3 x 3):
correspond to camera
internals (image-to-image
transformation)

perspective projection (3 x 4):

Camera
coordinate

World
coordinate

0 P R —RC
fop |10 o 1 )=K[R|t

extrinsic parameters (4 x 4):
correspond to camera externals

(world-to-camera
transformation)

maps 3D to 2D points
(camera-to-image
transformation)

Ranjay Krishna, Jieyu Zhang
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P1 P2  P3  DP4]
Almostthere ... P=|Ps DPe P7 Ds

P9 P10 P11 P12

Want to get P=K|[R|—R(C]

How can we calculate the intrinsic and extrinsic
parameters from the projection matrix?
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Decomposition of the Camera Matrix

P =

P1
Ps

' Po

P2
Pe
P1o

P3 | Psa]
P7 | Ps|~K|R|—RC(]
P11 ' D12

Q1. Is there a way we can get rid of C?

Ranjay Krishna, Jieyu Zhang

Lecture 13 - 56

May 7, 2024



Decomposition of the Camera Matrix

P

-]

P1

Ps

' Po
D1

Ps

| Po

P2
Pe
P1o

P2
Pe
P1o

P3 | Pa

P7 | Ps|~K|R|—RC(]
P11 ' P12

P3

P7 | ~KR

P11.

Q2. Is there a way we can get rid of R?

Ranjay Krishna, Jieyu Zhang
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Decomposition of the Camera Matrix

P

-]

P1 P2 P3| Pa]

Ps Ps D7 | Ps|~K|[R|—R(C]
P9 Pio P11' P12

P1 P2 P3]

Ps DPe DP7|~KR

P9 Pio P11

PPT~ KRRTKT
PP"~ KKT (RRT = 1)

Q. Do you remember a property of K that could help us solve this?

Ranjay Krishna, Jieyu Zhang
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Decomposition of the Camera Matrix
P11 P2 P3| Pa
P=|Ps DPe D7 | Ps|~K|[R|—R(C]
P9 DPio Pi1' P12

~ [Pr P2 P3]
P=|Ps Ps DP7|~KR
P9 Pio D11
PP"~ KRRTK'
PP’ ~ KKT™ (RR" =1)
K'is upper triangular and positive definite!| g — o f oy
0 0 1
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Decomposition of the Camera Matrix

_ D4
P = P ps | ~K|[R|—R(C]

P12

P"P ~ K"K with K upper triangular p.d.

Obtain K by Cholesky decomposition of PTP = LLT
K~LT

Scalar factor: fixed to 1/L3 3 (K33 = 1)

Once K is known, we can compute R~K~1P

Everything is calculated up to a scaling factor. So
we need to rescale
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Decomposition of the Camera Matrix

_ D4
P = P ps | ~K[R|—R(C]

P12

P'P ~ K"K with K upper triangular p.d.

Obtain K by Cholesky decomposition of PP = LLT
K~LT

Scalar factor: fixed to 1/L3 3 (K33 = 1)

Once K is known, we can compute R~K~1P

R is a rotation matrix: |R| = 1|
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Scaling R and calculating C

IRl =1 =21 =|K1p|"1/3

R =AK"1P

Finally, easy to know the camera center: C = —A" RTK™1[p, pg p12]"
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Linear Camera Calibration

e Advantages:
o Simple to formulate
o Analytical solution
e Disadvantages:
o Doesn’t model radial distortion (non-linear!)
o Hard to impose constraints (e.g., known f)
o Doesn’t minimize the correct error function: the
reprojection error in 2D is what we truly care about!
e Hence why non-linear methods are preferred in practice.
® They can reuse the linear method we just saw!
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Today’s agenda

e Other methods
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Non-Linear Camera Calibration

* Write down objective function in terms of intrinsic and extrinsic
parameters, as sum of squared distances between measured 2D
points x; and estimated projections of corresponding 3D points:

D lIproj(KIR | €1%;; k) — 1
l
 Can include radial distortion (cf. Szeliski 2.1.5 & 11.1.4) or other

parameters Kk in the projection model (non-linear in the parameters!)

* Can include constraints such as known focal length, orthogonality,
visibility of points, or even known K ("extrinsics calibration”)

 Minimize error using standard non-linear optimization techniques
(traditionally Levenberg-Marquardt, cf. Szeliski A.3, 8.1.3, 11.1.4)

* |[terative non-linear optimization i1s sensitive to Initialization: use the
output of the linear method we just saw!
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PolX, v, Z)

Estimating depth

left camera

T

b is the translation from camera
at location L and camera at R

(b,0,0)

right camera

\\ Palus, va)
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PolX, v, Z)

Estimating depth

left camera

T

(b,0,0)

right camera

Pa(uns, va) X = b
UR = fx 7 + Oy

S~

\ ; :fyf il
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PolX, v, Z)

Estimating depth

T

(b,0,0)

right camera

Pa(uns, va) X = b
bf \\ uR — fx -I— Ox
x &

S~

Z_u — i ok =y +0
L — UR g T 2
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PolX, y, Z)

Estimating depth

¥ (b,0,0)
\\

right camera
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Estimating pose [R|t] (extrinsics)

We have already done it together with estimating K!
What if we know K already?

Estimating [R]|t] only = pose estimation, a.k.a. extrinsincs calibration (and
previous linear method is called the “Direct Linear Transform”)

pi = ()(v Y;)Zi: W;)
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Estimating pose [R|t] (extrinsics)

Other linear algorithm: PnP (Perspective-n-Point)

Commonly used solution available in standard libraries like OpenCV
Minimal form: P3P (3 noise-free non-colinear correspondences)
Main idea: same angle between rays of 2 2D points and 2 3D points

In practice: use n = 4 correspondences + RANSAC

More details: pi= G Z W)

Pj

Quan, Long; Lan, Zhong-Dan (1999). "Linear N-Point Camera Pose Determination” (PDF). IEEE TPAMI.
Lepetit, V.; Moreno-Noguer, M.; Fua, P. (2009). "EPnP: An Accurate O(n) Solution to the PnP Problem". [/JCV
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https://hal.inria.fr/docs/00/59/01/05/PDF/Quan-pami99.pdf

Estimating pose [R|t] (extrinsics)

Non-linear method:
- Minimize reprojection error as function of [R|{]
- More accurate and flexible (e.g., using constraints)

- Can be robustified and easy to implement via transformation decomposition
and backpropagation (yes, like in Deep Learning!)

(3) ) (1)
x| fo®) =Kx [*I—] fit0)=ps [<—| =Ry [*T| fi0)=xc < p
| | |
| | |
Ty i Ty
k q; ¢
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Today’s agenda

Properties of Perspective transformations
ntroduction to Camera Calibration

_inear camera calibration method
Calculating intrinsics and extrinsics
Other methods
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Next lecture

Recognition
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