## Lecture 13

## Camera calibration

## Administrative

A3 is out

- Due May 12th

A4 is out

- Due May 25th


## Administrative

Recitation this friday

- Ontologies
- Zihan Wang


## So far: 2D Transformations with homogeneous coordinates




Shear in x direction
$\left[\begin{array}{ccc}1 & \tan \phi & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$


Scale about origin
$\left[\begin{array}{ccc}W & 0 & 0 \\ 0 & H & 0 \\ 0 & 0 & 1\end{array}\right]$


Shear in y direction


Figure: Wikipedia

## So far: The pinhole camera



For this course, we focus on the pinhole model.

- Similar to thin lens model in

Physics: central rays are not deviated.

- Assumes lens camera in focus.
- Useful approximation but ignores important lens distortions.


## So far: General pinhole camera matrix

$$
\begin{aligned}
& \mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \quad \text { where } \quad \mathbf{t}=-\mathbf{R C} \\
& \mathbf{P}=\underset{\text { intrinsic }}{\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]} \underset{\text { extrinsic }}{\left[\begin{array}{lll:l}
r_{1} & r_{2} & r_{3} & t_{1} \\
r_{4} & r_{5} & r_{6} & t_{2} \\
r_{7} & r_{8} & r_{9} & t_{3}
\end{array}\right]} \\
& \begin{array}{c}
\text { intrinsic } \\
\text { parameters }
\end{array}
\end{aligned}
$$

## Today's agenda

- Properties of Perspective transformations
- Introduction to Camera Calibration
- Linear camera calibration method
- Calculating intrinsics and extrinsics
- Other methods


## Today's agenda

- Properties of Perspective transformations
- Introduction to Camera Calibration
- Linear camera calibration method
- Calculating intrinsics and extrinsics
- Other methods


## Similar illusion as last lecture



## The Ames room illusion



## Projective Geometry

Q. Who is taller?

The two blue lines are the same length


## Projective Geometry

What is not preserved?

- Length
- Angles



## Projective Geometry

What is preserved?

- Straight lines are still straight



## Projection of lines

Q. When is parallelism preserved?


Ranjay Krishna, Jieyu Zhang
Lecture 13-14
May 7, 2024

## Projection of lines

Q. When is parallelism preserved?
When the parallel lines are also parallel to the image plane


Ranjay Krishna, Jieyu Zhang
Lecture 13-15
May 7, 2024

## Projection of lines

Patterns on
non-fronto-parallel planes are distorted by a homography


Ranjay Krishna, Jieyu Zhang
Lecture 13-16
May 7, 2024

## Projection of planes

What about patterns on fronto-parallel planes?


## Vanishing Points \& Lines



Parallel lines in the world intersect in the image at a vanishing point Parallel planes in the world intersect in the image at a vanishing line

## Vanishing lines of planes

- The projection of parallel 3D planes intersect at a vanishing line
- How can we construct the vanishing line of a plane?



## Vanishing lines of planes

- The projection of parallel 3D planes intersect at a vanishing line
- How can we construct the vanishing line of a plane?



## Vanishing lines of planes

Horizon: vanishing line of the ground plane
Q. What can the horizon tell us about the relative height pixels with respect to the camera?


## Q. Are these assertions true or false?

1. All lines that intersect in 2 D are parallel in 3D
2. 2D lines always intersect each other in $P^{2}$
3. 3D planes always intersect each other in $P^{3}$
4. 3D lines always intersect each other in $P^{3}$
5. 3D lines always intersect each other in $P^{2}$
6. The projection of parallel lines in 3D meet at the same vanishing point
7. The projection of non-intersecting lines in 3D meet at the same vanishing point
8. If a set of parallel 3D lines are also parallel to a particular plane, their vanishing point will lie on the vanishing line of the plane
Q. Are these assertions true or false?
9. All lines that intersect in 2D are parallel in $3 \mathrm{D} \rightarrow \mathrm{NO}$ !
10. 2D lines always intersect each other in $P^{2} \rightarrow$ YES!
11. 3D planes always intersect each other in $P^{3} \rightarrow$ YES!
12. 3D lines always intersect each other in $P^{3} \rightarrow \mathrm{NO}$ !
13. 3D lines always intersect each other in $P^{2} \rightarrow$ YES!
14. The projection of parallel lines in 3D meet at the same vanishing point $\rightarrow$ YES!
15. The projection of non-intersecting lines in 3D meet at the same vanishing point $\rightarrow \mathrm{NO}$ !
16. If a set of parallel 3D lines are also parallel to a particular plane, their vanishing point will lie on the vanishing line of the plane $\rightarrow$ YES!

## Properties of Vanishing Points \& Lines

- The projections of parallel 3D lines intersect at a vanishing point
- The projection of parallel 3D planes intersect at a vanishing line
- Vanishing point <-> 3D direction of a line
- Vanishing line <-> 3D orientation of a surface


Vanishing Points are a key perspective tool: from making realistic drawings, to measuring 3D from 2D, and even for camera calibration!

## Today's agenda

- Properties of Perspective transformations
- Introduction to Camera Calibration
- Linear camera calibration method
- Calculating intrinsics and extrinsics
- Other methods


## Recap: The Pinhole Camera Model



$$
\begin{aligned}
& \tilde{\mathbf{x}}^{\mathrm{I}} \sim \mathbf{P} \widetilde{\mathbf{X}}^{\mathrm{W}} \quad \mathbf{P}=\xrightarrow{\left.\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right] \xrightarrow{\mathbf{I}} \mathbf{|} \mathbf{0}\right]}\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R C} \\
\mathbf{0} & 1
\end{array}\right]=\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& \text { perspective projection (3 x 4): } \\
& \text { maps 3D to 2D points } \\
& \text { (camera-to-image } \\
& \text { transformation) } \\
& \text { extrinsic parameters (4 x 4): } \\
& \text { correspond to camera externals } \\
& \text { (world-to-camera } \\
& \text { transformation) }
\end{aligned}
$$

Camera Calibration \& Pose Estimation


$$
\tilde{\mathbf{x}}^{1} \sim \mathbf{P} \widetilde{\mathbf{X}}^{w} \quad \mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathrm{t}]
$$

How can we estimate $\mathbf{P}$ and its components?
Camera Calibration: estimating intrinsics K Pose Estimation: estimating extrinsics [R|t]

## Camera calibration from 3D-2D correspondences

Given $n$ points with known 3D coordinates $\boldsymbol{X}_{i}$ and known image projections $\boldsymbol{x}_{i}$, estimate the camera parameters $\mathbf{P}$ such that $\widetilde{\mathbf{x}}_{i}^{I} \sim \mathbf{P} \widetilde{\mathbf{X}}_{i}^{W}$


## Camera calibration from 3D-2D correspondences

Given $n$ points with known 3D coordinates $\boldsymbol{X}_{i}$ and known image projections $\boldsymbol{x}_{i}$, estimate the camera parameters $\mathbf{P}$ such that $\widetilde{\mathbf{x}}_{i}^{I} \sim \mathbf{P} \widetilde{\mathbf{X}}_{i}^{W}$


Known 2D image
Known 3D locations coords

880214
43203 270197 886347 745302 943128 476590 419214 317335 783521 235427 665429 655362 427333 412415 746351 434415 525234
716308 602187
312.747309 .14030 .086 305.796311 .64930 .356 307.694312 .35830 .418 310.149307 .18629 .298 311.937310 .10529 .216 311.202307 .57230 .682 307.106306 .87628 .660 309.317312 .49030 .230 307.435310 .15129 .318 308.253306 .30028 .881 306.650309 .30128 .905 308.069306 .83129 .189 309.671308 .83429 .029 308.255309 .95529 .267 307.546308 .61328 .963 311.036309 .20628 .913 307.518308 .17529 .069 309.950311 .26229 .990 312.160310 .77229 .080 311.988312 .70930 .514

## Camera calibration from 3D-2D correspondences

Given $n$ points with known 3D coordinates $\boldsymbol{X}_{i}$ and known image projections $\boldsymbol{x}_{i}$, estimate the camera parameters $\mathbf{P}$ such that $\widetilde{\mathbf{x}}_{i}^{I} \sim \mathbf{P} \widetilde{\mathbf{X}}_{i}^{W}$

Many good solutions for accurate 3D position from good fiducial markers: ArUco, AprilTags, ...
 (c) Augmented scene without considering user's occlusion. (d) Augmented scene considering occlusion.

https://april.eecs.umich.edu/software/apriltag

Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F. J., \&
Marín-Jiménez, M. J. (2014). Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition

## Mapping between 3D point and image points

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{llll}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

What are the knowns and unknowns?

## Mapping between 3D point and image points

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ll}
- & \boldsymbol{p}_{1}^{\top}- \\
- & \boldsymbol{p}_{2}^{\top}- \\
- & \boldsymbol{p}_{3}^{\top}-
\end{array}\right]\left[\begin{array}{c}
\mid \\
\boldsymbol{X} \\
\mid
\end{array}\right]}
\end{aligned}
$$

Heterogeneous coordinates

$$
x^{\prime}=\frac{\boldsymbol{p}_{1}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}} \quad y^{\prime}=\frac{\boldsymbol{p}_{2}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}}
$$

(non-linear relationship between coordinates)

How can we make these relations linear?

## Today's agenda

- Properties of Perspective transformations
- Introduction to Camera Calibration
- Linear camera calibration method
- Calculating intrinsics and extrinsics
- Other methods

How can we make these relations linear?
$x^{\prime}=\frac{\boldsymbol{p}_{1}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}}$

$$
y^{\prime}=\frac{\boldsymbol{p}_{2}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}}
$$

Make them linear with algebraic manipulation...
$\boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0 \quad \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0$

Now we can setup a system of linear equations with multiple corresponding points

## Camera Calibration: Linear Method

$$
p_{i} \equiv M X_{i}
$$

Remember (from geometry): this implies MX \& $p_{i}$ are proportional/scaled copies of each other

$$
p_{i}=\lambda M X_{i}, \lambda \neq 0
$$

Remember (from homography fitting): this implies their cross product is $\mathbf{0}$

$$
p_{i} \times M X_{i}=\mathbf{0}
$$

$$
\boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0 \quad \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0
$$

In matrix form $\ldots\left[\begin{array}{ccc}\boldsymbol{X}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}^{\top} \\ \mathbf{0} & \boldsymbol{X}^{\top} & -y^{\prime} \boldsymbol{X}^{\top}\end{array}\right]\left[\begin{array}{l}\boldsymbol{p}_{1} \\ \boldsymbol{p}_{2} \\ \boldsymbol{p}_{3}\end{array}\right]=\mathbf{0}$

Q1. How many equations does each correspondence give us?
Q2. How many correspondences do we need to solve for P ?

$$
\boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0 \quad \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0
$$

$\begin{aligned} & \text { In matrix form for } 1 \\ & \text { corresponding point } \ldots\end{aligned} \quad\left[\begin{array}{ccc}\boldsymbol{X}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}^{\top} \\ \mathbf{0} & \boldsymbol{X}^{\top} & -y^{\prime} \boldsymbol{X}^{\top}\end{array}\right]\left[\begin{array}{l}\boldsymbol{p}_{1} \\ \boldsymbol{p}_{2} \\ \boldsymbol{p}_{3}\end{array}\right]=\mathbf{0}$

For N points $\ldots \quad\left[\begin{array}{ccc}\boldsymbol{X}_{1}^{T} & 0 & -x_{1}^{\prime} \boldsymbol{X}_{1}^{T} \\ \mathbf{0} & \boldsymbol{X}_{1}^{T} & -y_{1}^{\prime} \boldsymbol{X}_{1}^{T} \\ \vdots & \vdots & \vdots \\ \boldsymbol{X}_{N}^{T} & 0 & -x_{N}^{\prime} \boldsymbol{X}_{N}^{T} \\ \mathbf{0} & \boldsymbol{X}_{N}^{T} & -y_{N}^{\prime} \boldsymbol{X}_{N}^{T}\end{array}\right]\left[\begin{array}{l}\boldsymbol{p}_{1} \\ \boldsymbol{p}_{2} \\ \boldsymbol{p}_{\mathbf{3}}\end{array}\right]=0$
How do we solve this system?

## A few things to look out for

- N points should not be co-planar. Otherwise, the rows will not be independent
- Usually any measurements you make in 3D space will be noisy. So you need more than the minimum number of points!
- $P$ has 12 values but we only need to find 11 since everything is scaled


Solve for camera matrix via total least squares

$$
\begin{aligned}
\hat{\boldsymbol{x}} & =\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1 \\
\mathbf{A}=\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{T} & 0 & -x_{1}^{\prime} \boldsymbol{X}_{1}^{T} \\
\mathbf{0} & \boldsymbol{X}_{1}^{T} & -y_{1}^{\prime} \boldsymbol{X}_{1}^{T} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{T} & 0 & -x_{N}^{\prime} \boldsymbol{X}_{N}^{T} \\
\mathbf{0} & \boldsymbol{X}_{N}^{T} & -y_{N}^{\prime} \boldsymbol{X}_{N}^{T}
\end{array}\right] & \boldsymbol{x}=\left[\begin{array}{c}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]
\end{aligned}
$$

## Singular Value Decomposition!

## Singular Value Decomposition (SVD)

- Represents any matrix $\mathbf{A}$ as a product of three matrices: $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\boldsymbol{\top}}$
- Python command:
- $[\mathrm{U}, \boldsymbol{\Sigma}, \mathrm{V}]=$ numpy.linalg.svd $(\mathrm{A})$

$$
\left[\right] \times\left[\begin{array}{cc}
5.39 & 0 \\
0 & 3.154
\end{array}\right] \times\left[\begin{array}{cc}
V^{T} & \left.\begin{array}{cc}
-.05 & .999 \\
.999 & .05
\end{array}\right]=\left[\begin{array}{cc}
3 & -2 \\
1 & 5
\end{array}\right]
\end{array}\right.
$$

## Singular Value Decomposition (SVD)

- Beyond $2 \times 2$ matrices:
- In general, if $\mathbf{A}$ is $m \times n$, then $\mathbf{U}$ will be $m \times m, \boldsymbol{\Sigma}$ will be $m \times n$, and $\mathbf{V}^{\top}$ will be $n \times n$.
- (Note the dimensions work out to produce $m \times n$ after multiplication)

$$
\left[\begin{array}{cc}
U & \Sigma \\
-.40 & .916 \\
.916 & .40
\end{array}\right] \times\left[\begin{array}{cc}
5.39 & 0 \\
0 & 3.154
\end{array}\right] \times\left[\begin{array}{cc}
-.05 & .999 \\
.999 & .05
\end{array}\right]=\left[\begin{array}{cc}
3 & -2 \\
1 & 5
\end{array}\right]
$$

## Singular Value Decomposition (SVD)

- $\mathbf{U}$ and $\mathbf{V}$ are always rotation matrices.
- Each column is a unit vector.
- $\boldsymbol{\Sigma}$ is a diagonal matrix
- The number of nonzero entries = rank of $\mathbf{A}$
- The algorithm always sorts the entries high to low

$$
\left[\begin{array}{cc}
U & \Sigma \\
-.40 & .916 \\
.916 & .40
\end{array}\right] \times\left[\begin{array}{cc}
5.39 & 0 \\
0 & 3.154
\end{array}\right] \times\left[\begin{array}{cc}
-.05 & .999 \\
.999 & .05
\end{array}\right]=\left[\begin{array}{cc}
3 & -2 \\
1 & 5
\end{array}\right]
$$

Solve for camera matrix via total least squares

$$
\begin{aligned}
& \hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1 \\
& \mathbf{A}=\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{T} & 0 & -x_{1}^{\prime} \boldsymbol{X}_{1}^{T} \\
\mathbf{0} & \boldsymbol{X}_{1}^{T} & -y_{1}^{\prime} \boldsymbol{X}_{1}^{T} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{T} & 0 & -x_{N}^{\prime} \boldsymbol{X}_{N}^{T} \\
\mathbf{0} & \boldsymbol{X}_{N}^{T} & -y_{N}^{\prime} \boldsymbol{X}_{N}^{T}
\end{array}\right] \\
& \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \begin{array}{l}
\text { Solution } \mathbf{x} \text { is the column of } \mathbf{V} \\
\text { corresponding to the smallest singular } \\
\text { value of } A
\end{array}
\end{aligned}
$$

## Why is it the column of V with the smallest eigenvalue?

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1
$$

Is equivalent to:

$$
\mathbf{x}=\arg \min _{\mathbf{x}} \mathbf{x}^{T}\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{x} \quad \text { such that } \quad\|\mathbf{x}\|^{2}=1
$$

## Why is it the column of V with the smallest eigenvalue?

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1
$$

Is equivalent to:

$$
\mathbf{x}=\arg \min _{\mathbf{x}} \mathbf{x}^{T}\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{x} \quad \text { such that } \quad\|\mathbf{x}\|^{2}=1
$$

$$
\begin{aligned}
\mathrm{A}^{\top} \mathrm{A} & =(\mathrm{U} \Sigma \mathrm{~V})^{\top}(\mathrm{U} \Sigma \mathrm{~V}) \\
& =\left(\mathrm{V}^{\top} \Sigma \mathrm{U}^{\top}\right)(\mathrm{U} \Sigma \mathrm{~V}) \\
& =\mathrm{V}^{\top} \Sigma\left(\mathrm{U}^{\top} \mathrm{U}\right) \Sigma \mathrm{V} \\
& =\mathrm{V}^{\top} \Sigma I \Sigma \mathrm{~V} \\
& =\mathrm{V}^{\top} \Sigma^{2} \mathrm{~V}
\end{aligned}
$$

## Why is it the column of V with the smallest eigenvalue?

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1
$$

Is equivalent to:

$$
\mathbf{x}=\arg \min _{\mathbf{x}} \mathbf{x}^{T}\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{x} \quad \text { such that } \quad\|\mathbf{x}\|^{2}=1
$$

$$
\begin{aligned}
\mathrm{A}^{\top} \mathrm{A} & =(\mathrm{U} \Sigma \mathrm{~V})^{\top}(\mathrm{U} \Sigma \mathrm{~V}) \\
& =\left(\mathrm{V}^{\top} \Sigma \mathrm{U}^{\top}\right)(\mathrm{U} \Sigma \mathrm{~V}) \\
& =\mathrm{V}^{\top} \Sigma\left(\mathrm{U}^{\top} \mathrm{U}\right) \Sigma \mathrm{V} \\
& =\mathrm{V}^{\top} \Sigma I \Sigma \mathrm{~V} \\
& =\mathrm{V}^{\top} \Sigma^{2} \mathrm{~V}
\end{aligned}
$$

$$
\mathbf{A}^{T} \mathbf{A} \mathbf{v}_{k}=\sigma_{k}^{2} \mathbf{v}_{k}
$$

So, $A^{\top} A v_{k}$ is proportional to the vector's eigenvalue. So the vector corresponding to the smallest eigenvalue is what we want

Solve for camera matrix via total least squares

$$
\begin{aligned}
\hat{\boldsymbol{x}} & =\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1 \\
\mathbf{A}=\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{T} & 0 & -x_{1}^{\prime} \boldsymbol{X}_{1}^{T} \\
\mathbf{0} & \boldsymbol{X}_{1}^{T} & -y_{1}^{\prime} \boldsymbol{X}_{1}^{T} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{T} & 0 & -x_{N}^{\prime} \boldsymbol{X}_{N}^{T} \\
\mathbf{0} & \boldsymbol{X}_{N}^{T} & -y_{N}^{\prime} \boldsymbol{X}_{N}^{T}
\end{array}\right] & \boldsymbol{x}=\left[\begin{array}{c}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]
\end{aligned}
$$

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \begin{aligned}
& \text { Equivalently, solution } \boldsymbol{x} \text { is the } \\
& \text { Eigenvector corresponding to the } \\
& \text { smallest Eigenvalue of } \mathbf{A}
\end{aligned}
$$

## A.2.1 Total least squares

In some problems, e.g., when performing geometric line fitting in 2D images or 3D plane fitting to point cloud data, instead of having measurement error along one particular axis, the measured points have uncertainty in all directions, which is known as the errors-in-variables model (Van Huffel and Lemmerling 2002; Matei and Meer 2006). In this case, it makes more sense to minimize a set of homogeneous squared errors of the form

$$
\begin{equation*}
E_{\mathrm{TLS}}=\sum_{i}\left(\mathbf{a}_{i} \mathbf{x}\right)^{2}=\|\mathbf{A} \mathbf{x}\|^{2} \tag{A.35}
\end{equation*}
$$

which is known as total least squares (TLS) (Van Huffel and Vandewalle 1991; Björck 1996; Golub and Van Loan 1996; Van Huffel and Lemmerling 2002).

The above error metric has a trivial minimum solution at $\mathbf{x}=0$ and is, in fact, homogeneous in $\mathbf{x}$. For this reason, we augment this minimization problem with the requirement that $\|\mathbf{x}\|^{2}=1$. which results in the eigenvalue problem

$$
\begin{equation*}
\mathbf{x}=\arg \min _{\mathbf{x}} \mathbf{x}^{T}\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{x} \quad \text { such that } \quad\|\mathbf{x}\|^{2}=1 \tag{A.36}
\end{equation*}
$$

The value of $\mathbf{x}$ that minimizes this constrained problem is the eigenvector associated with the smallest eigenvalue of $\mathbf{A}^{T} \mathbf{A}$. This is the same as the last right singular vector of $\mathbf{A}$, because

$$
\begin{align*}
\mathbf{A} & =\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T},  \tag{A.37}\\
\mathbf{A}^{T} \mathbf{A} & =\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{T},  \tag{A.38}\\
\mathbf{A}^{T} \mathbf{A} \mathbf{v}_{k} & =\sigma_{k}^{2} \mathbf{v}_{k}, \tag{A.39}
\end{align*}
$$

which is minimized by selecting the smallest $\sigma_{k}$ value.

## We calculated the camera matrix!

$$
\text { Now we have: } \quad \mathbf{P}=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]
$$

## Today's agenda

- Properties of Perspective transformations
- Introduction to Camera Calibration
- Linear camera calibration method
- Calculating intrinsics and extrinsics
- Other methods


## Recap: The Pinhole Camera Model



$$
\left.\begin{array}{l}
\widetilde{\mathbf{X}}^{\mathrm{I}} \sim \mathbf{P} \widetilde{\mathbf{X}}^{\mathrm{W}} \quad \mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]
\end{array} \underset{\left.\begin{array}{ccc}
\mathbf{I} & \mid & \mathbf{0}
\end{array}\right]}{\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R C} \\
\mathbf{0} & 1
\end{array}\right]=\mathbf{K}[\mathbf{R} \mid \mathbf{t}]}\right]
$$

$$
\begin{aligned}
& \text { Almost there } \ldots \\
& \mathbf{P}=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \text { Want to get }
\end{aligned} \quad \mathbf{P}=\mathbf{K}[\mathbf{R} \mid-\mathbf{R C}] \quad \text {. }
$$

How can we calculate the intrinsic and extrinsic parameters from the projection matrix?

## Decomposition of the Camera Matrix

$$
\mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \sim \mathbf{K}[\mathbf{R} \mid-\mathbf{R C}]
$$

Q1. Is there a way we can get rid of $\mathbf{C}$ ?

## Decomposition of the Camera Matrix

$$
\begin{aligned}
\mathbf{P} & =\left[\begin{array}{lll|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \sim \mathbf{K}[\mathbf{R} \mid-\mathbf{R C}] \\
\overline{\mathbf{P}} & =\left[\begin{array}{ccc}
p_{1} & p_{2} & p_{3} \\
p_{5} & p_{6} & p_{7} \\
p_{9} & p_{10} & p_{11}
\end{array}\right] \sim \mathbf{K R}
\end{aligned}
$$

Q2. Is there a way we can get rid of $\mathbf{R}$ ?

## Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \sim \mathbf{K}[\mathbf{R} \mid-\mathbf{R C}] \\
& \overline{\mathbf{P}}=\left[\begin{array}{ccc}
p_{1} & p_{2} & p_{3} \\
p_{5} & p_{6} & p_{7} \\
p_{9} & p_{10} & p_{11}
\end{array}\right] \sim \mathbf{K R} \\
& \overline{\mathbf{P}} \overline{\mathbf{P}}^{\top} \sim \mathbf{K R R}^{\top} \mathbf{K}^{\top} \\
& \overline{\mathbf{P}} \overline{\mathbf{P}}^{\top} \sim \mathbf{K K}^{\top} \quad\left(\mathbf{R R}^{\top}=\mathbf{I}\right)
\end{aligned}
$$

Q. Do you remember a property of $\mathbf{K}$ that could help us solve this?

## Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{lll|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11}
\end{array}\left|\sim \mathbf{p _ { 1 2 }}[] \mathbf{R}\right|-\mathbf{R C}\right] \\
& \overline{\mathbf{P}}=\left[\begin{array}{ccc}
p_{1} & p_{2} & p_{3} \\
p_{5} & p_{6} & p_{7} \\
p_{9} & p_{10} & p_{11}
\end{array}\right] \sim \mathbf{K R} \\
& \overline{\mathbf{P}} \overline{\mathbf{P}}^{\top} \sim \mathbf{K R R}^{\top} \mathbf{K}^{\top} \\
& \overline{\mathbf{P}}^{\top} \sim \mathbf{K} \mathbf{K}^{\top} \quad\left(\mathbf{R R}^{\top}=\mathbf{I}\right)
\end{aligned}
$$

K is upper triangular and positive definite! $\mathbf{K}=\left[\begin{array}{ccc}f & 0 & p_{x} \\ 0 & f & p_{y} \\ 0 & 0 & 1\end{array}\right]$

## Decomposition of the Camera Matrix

$$
\mathbf{P}=\left[\begin{array}{ll|l}
\overline{\mathbf{P}} & \begin{array}{c}
p_{4} \\
p_{8} \\
p_{12}
\end{array}
\end{array}\right] \sim \mathbf{K}[\mathbf{R} \mid-\mathbf{R C}]
$$

$\overline{\mathbf{P}}^{\top} \overline{\mathbf{P}} \sim \mathbf{K}^{\top} \mathbf{K}$ with $\mathbf{K}$ upper triangular p.d.
Obtain $\mathbf{K}$ by Cholesky decomposition of $\overline{\mathbf{P}}^{\top} \overline{\mathbf{P}}=\mathbf{L L}^{\top}$ $\mathbf{K} \sim \mathbf{L}^{\top}$

Scalar factor: fixed to $1 / \mathrm{L}_{3,3}\left(\mathrm{~K}_{3,3}=1\right)$
Once $\mathbf{K}$ is known, we can compute $\mathbf{R} \sim \mathbf{K}^{\mathbf{- 1}} \overline{\mathbf{P}}$
Everything is calculated up to a scaling factor. So we need to rescale

Decomposition of the Camera Matrix

$$
\mathbf{P}=\left[\begin{array}{ll|l}
\overline{\mathbf{P}} & \begin{array}{c}
p_{4} \\
p_{8} \\
p_{12}
\end{array}
\end{array}\right] \sim \mathbf{K}[\mathbf{R} \mid-\mathbf{R C}]
$$

$\overline{\mathbf{P}}^{\top} \overline{\mathbf{P}} \sim \mathbf{K}^{\top} \mathbf{K}$ with $\mathbf{K}$ upper triangular p.d.
Obtain $\mathbf{K}$ by Cholesky decomposition of $\overline{\mathbf{P}}^{\top} \overline{\mathbf{P}}=\mathbf{L L}^{\top}$ $\mathbf{K} \sim \mathbf{L}^{\boldsymbol{\top}}$
Scalar factor: fixed to $1 / \mathrm{L}_{3,3}\left(\mathrm{~K}_{3,3}=1\right)$
Once $\mathbf{K}$ is known, we can compute $\mathbf{R} \sim \mathbf{K}^{\mathbf{- 1}} \overline{\mathbf{P}}$
$\mathbf{R}$ is a rotation matrix: $|\mathbf{R}|=1$ !

## Scaling $R$ and calculating $C$

$$
\begin{gathered}
|\mathbf{R}|=1 \Rightarrow \lambda=\left|\mathbf{K}^{-1} \overline{\mathbf{P}}\right|^{-1 / 3} \\
\mathbf{R}=\lambda \mathbf{K}^{-1} \overline{\mathbf{P}}
\end{gathered}
$$

Finally, easy to know the camera center: $\mathbf{C}=-\lambda^{-1} \mathbf{R}^{\top} \mathbf{K}^{-\mathbf{1}}\left[\begin{array}{lll}p_{4} & p_{8} & p_{12}\end{array}\right]^{\top}$

## Linear Camera Calibration

- Advantages:
- Simple to formulate
- Analytical solution
- Disadvantages:
- Doesn't model radial distortion (non-linear!)
- Hard to impose constraints (e.g., known f)
- Doesn't minimize the correct error function: the reprojection error in 2D is what we truly care about!
- Hence why non-linear methods are preferred in practice.
- They can reuse the linear method we just saw!


## Today's agenda

- Properties of Perspective transformations
- Introduction to Camera Calibration
- Linear camera calibration method
- Calculating intrinsics and extrinsics
- Other methods


## Non-Linear Camera Calibration

- Write down objective function in terms of intrinsic and extrinsic parameters, as sum of squared distances between measured 2D points $x_{i}$ and estimated projections of corresponding 3D points:

$$
\sum_{i}\left\|\operatorname{proj}\left(\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \mathbf{X}_{\mathbf{i}} ; \boldsymbol{\kappa}\right)-\boldsymbol{x}_{i}\right\|_{2}^{2}
$$

- Can include radial distortion (cf. Szeliski 2.1.5 \& 11.1.4) or other parameters $\boldsymbol{\kappa}$ in the projection model (non-linear in the parameters!)
- Can include constraints such as known focal length, orthogonality, visibility of points, or even known K ("extrinsics calibration")
- Minimize error using standard non-linear optimization techniques (traditionally Levenberg-Marquardt, cf. Szeliski A.3, 8.1.3, 11.1.4)
- Iterative non-linear optimization is sensitive to initialization: use the output of the linear method we just saw!


## Estimating depth

b is the translation from camera at location $L$ and camera at $R$


## Estimating depth

$$
\begin{aligned}
& u_{L}=f_{x} \frac{x}{z}+o_{x} \\
& v_{L}=f_{y} \frac{y}{z}+o_{y}
\end{aligned}
$$



## Estimating depth

$$
\begin{aligned}
& u_{L}=f_{x} \frac{x}{z}+o_{x} \\
& v_{L}=f_{y} \frac{y}{z}+o_{y}
\end{aligned}
$$



## Estimating depth

$$
z=\frac{b f_{x}}{u_{L}-u_{R}}
$$

right camera

## Estimating pose $[R \mid t]$ (extrinsics)

We have already done it together with estimating K!
What if we know K already?
Estimating $[R \mid t]$ only $=$ pose estimation, a.k.a. extrinsincs calibration (and previous linear method is called the "Direct Linear Transform")


## Estimating pose $[R \mid t]$ (extrinsics)

Other linear algorithm: PnP (Perspective-n-Point)
Commonly used solution available in standard libraries like OpenCV
Minimal form: P3P (3 noise-free non-colinear correspondences)
Main idea: same angle between rays of 2 2D points and 2 3D points In practice: use $n \geq 4$ correspondences + RANSAC More details:

## Estimating pose $[R \mid t]$ (extrinsics)

Non-linear method:

- Minimize reprojection error as function of $[R \mid t]$
- More accurate and flexible (e.g., using constraints)
- Can be robustified and easy to implement via transformation decomposition and backpropagation (yes, like in Deep Learning!)



## Today's agenda

- Properties of Perspective transformations
- Introduction to Camera Calibration
- Linear camera calibration method
- Calculating intrinsics and extrinsics
- Other methods


## Next lecture

## Recognition

