Lecture 10 & 11

Segmentation and clustering

Ranjay Krishna, Jieyu Zhang

Administrative

A2 is out

- Was Due April 28th
- Date moved back

A3 is out

- Due May 9th

Ranjay Krishna, Jieyu Zhang

Administrative

Recitation

- Xiaojuan Wang
- Panorama (part of your A2)
- detector, descriptor, RANSAC recap

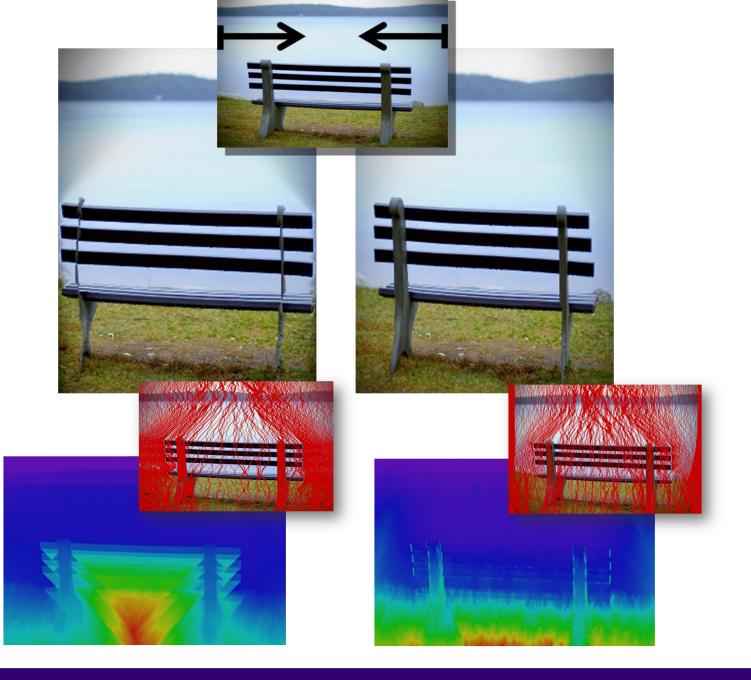
Content-aware Retargeting Operators

"Important" content

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 4

So far

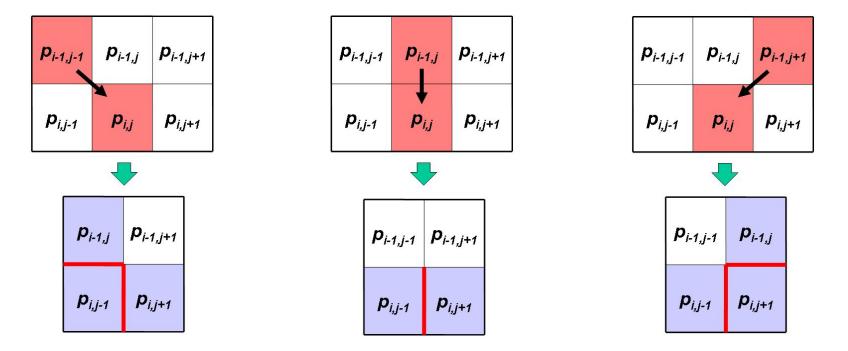


Ranjay Krishna, Jieyu Zhang

Lecture 10 - 5

So far: Seam carving with pixel energies

$$M(i,j) = E(i,j) + min egin{cases} M(i-1,j-1) + C_L(i,j) \ M(i-1,j) + C_V(i,j) \ M(i-1,j+1) + C_R(i,j) \end{cases}$$



Ranjay Krishna, Jieyu Zhang

Lecture 10 - 6

Retargeting in Both Dimensions

• Let T(r,c) denote a new cost matrix of obtaining an image of size (n-r)x(m-c).

Lecture 10 - 7

April 25, 2024

$$\mathbf{T}(r,c) = \min(\mathbf{T}(r-1,c) + E(\mathbf{s}^{\mathbf{x}}(\mathbf{I}_{\mathbf{n}-\mathbf{r}-1\times\mathbf{m}-\mathbf{c}})), \mathbf{T}(r,c-1) + E(\mathbf{s}^{\mathbf{y}}(\mathbf{I}_{\mathbf{n}-\mathbf{r}\times\mathbf{m}-\mathbf{c}-1})))$$

where $E(\mathbf{s}^{\mathbf{x}}(\mathbf{I}_{n-r-1\times m-c}))$ is the cost of removing a horizontal seam from the image $\mathbf{I}_{n-r-1\times m-c}$

Ranjay Krishna, Jieyu Zhang

Today's agenda

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering
- K-means
- Mean-shift

Reading: Szeliski, 2nd edition, Chapter 7.5

Ranjay Krishna, Jieyu Zhang

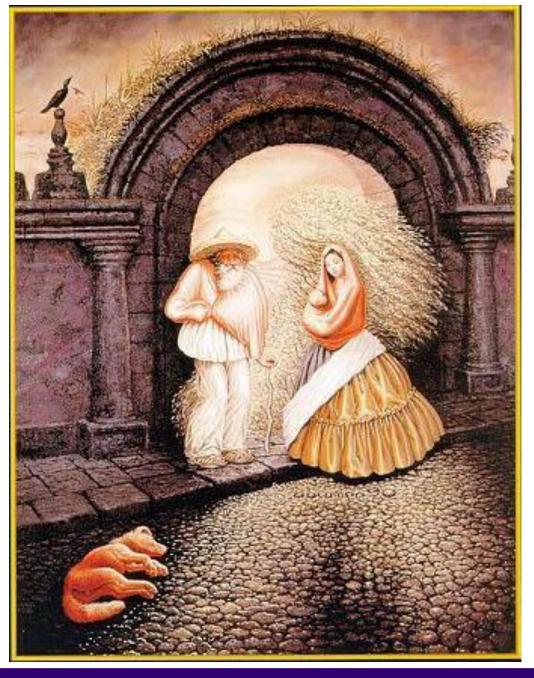
Today's agenda

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering
- K-means
- Mean-shift

Reading: Szeliski, 2nd edition, Chapter 7.5

Ranjay Krishna, Jieyu Zhang

Q. What do you see?

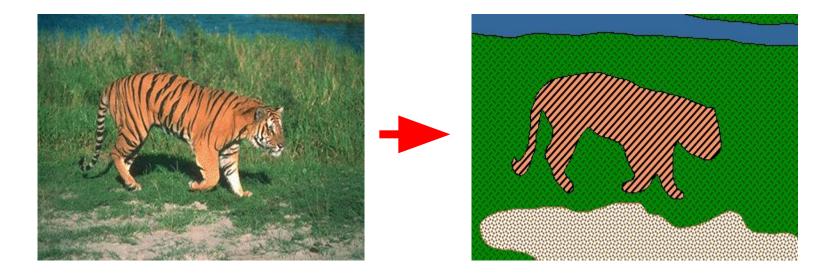


Ranjay Krishna, Jieyu Zhang

Lecture 10 - 10

Image Segmentation

• Goal: identify groups of pixels that go together

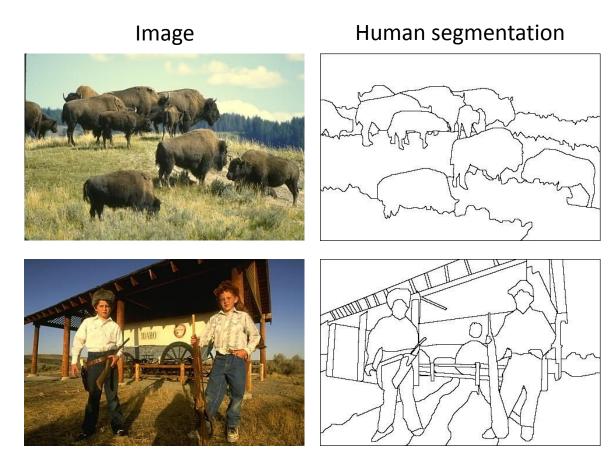


Ranjay Krishna, Jieyu Zhang

Lecture 10 - 11 Slide credit: Steve SeitzApril 25, 2024

The Goals of Segmentation

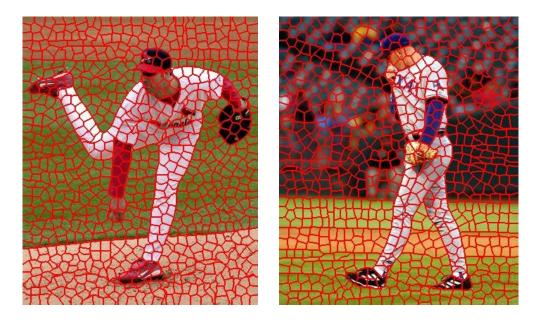
• Separate image into coherent "objects"



Ranjay Krishna, Jieyu Zhang

The Goals of Segmentation

- Separate image into coherent "objects"
- Group together similar-looking pixels for efficiency of further processing



Lecture 10 - 13

April 25, 2024

"superpixels"

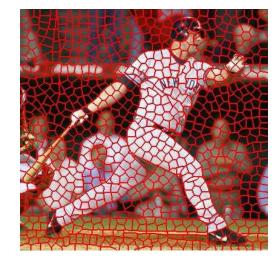
Ranjay Krishna, Jieyu Zhang

Segmentation for feature support

Ranjay Krishna, Jieyu Zhang

Segmentation for efficiency

[Felzenszwalb and Huttenlocher 2004]



[Hoiem et al. 2005, Mori 2005] [Shi and Malik 2001]

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 15

suAprilk25, 2024

Segmentation is used in Adobe photoshop to remove background

Rother et al. 2004

Ranjay Krishna, Jieyu Zhang

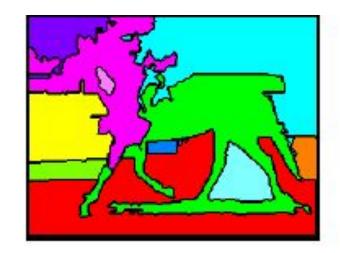
Segment Anything [2023]

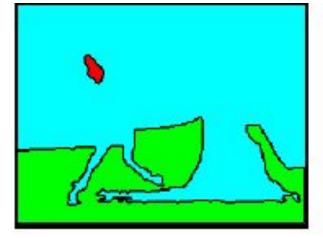
Ranjay Krishna, Jieyu Zhang

Lecture 10 - 17

Levels of segmentations

Over-segmentation





Under-segmentation

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 18

One way to think about "segmentation" is clustering

Clustering: group together similar data points and represent them with a single token

Key Challenges:

- 1) What makes two points/images/patches similar?
- 2) How do we compute an overall grouping from pairwise similarities?

Ranjay Krishna, Jieyu Zhang

Why do we cluster?

• Summarizing data

- Look at large amounts of data
- \circ Find clusters of pixels
- \circ Represent each cluster of pixels with a HoG feature

• Counting

 \circ Histograms of texture, color, SIFT vectors

• Foreground-background separation

Separate the image into different regions

• Prediction

Images in the same cluster may have the same labels

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 20

slidApril 25, 2024

How do we cluster?

• Agglomerative clustering

 Start with each point as its own cluster and iteratively merge the closest clusters

• K-means

Iteratively re-assign points to the nearest cluster center

• Mean-shift clustering

 \circ Estimate modes of pdf

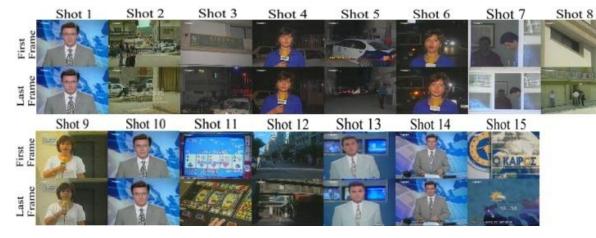
Ranjay Krishna, Jieyu Zhang

General ideas

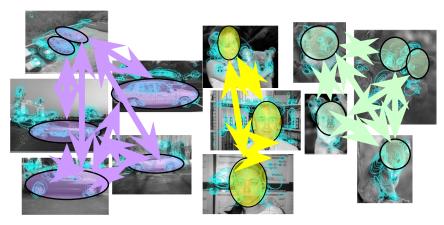
- Tokens
 - Things that can be grouped together
 - (e.g. pixels, points, surface elements, etc., etc.)
- Bottom up clustering
 - tokens belong together because they are locally coherent
- Top down clustering
 - tokens belong together because they lie on the same visual entity (object, scene...)
- > These two are not mutually exclusive

Ranjay Krishna, Jieyu Zhang

Examples of Grouping in Vision



Grouping video frames into shots



Object-level grouping

Figure-ground

Determining image regions

What things should be grouped? What cues indicate groups?

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 23

Slide credit: April 25, 2024

Similarity

Ranjay Krishna, Jieyu Zhang

Symmetry





Ranjay Krishna, Jieyu Zhang

Common Fate

April 25, 2024

Lecture 10 - 26

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 27

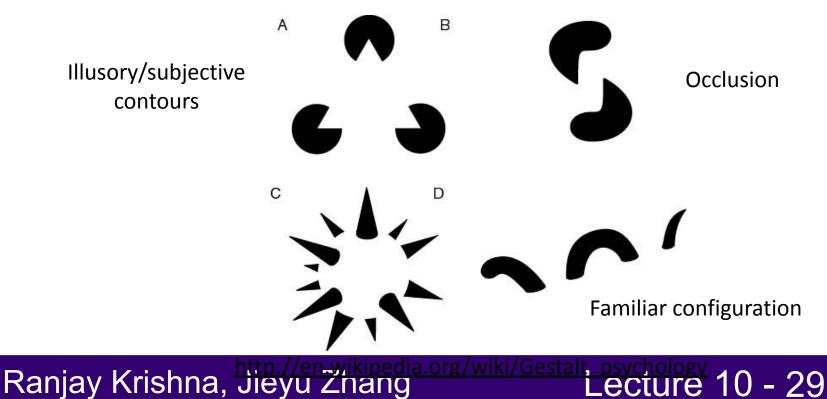
What will we learn today?

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering
- K-means
- Mean-shift

Ranjay Krishna, Jieyu Zhang

The Gestalt School

- Grouping is key to visual perception
- Elements in a collection can have properties that result from different relationships (space, affordance, etc.)
 - \circ "The whole is greater than the sum of its parts"

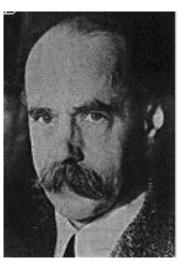


Gestalt Theory

- Gestalt: whole or group
 - $\circ\,$ Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/features
- Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

"I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of colour. Do I have "327"? No. I have sky, house, and trees."

> Max Wertheimer (1880-1943)



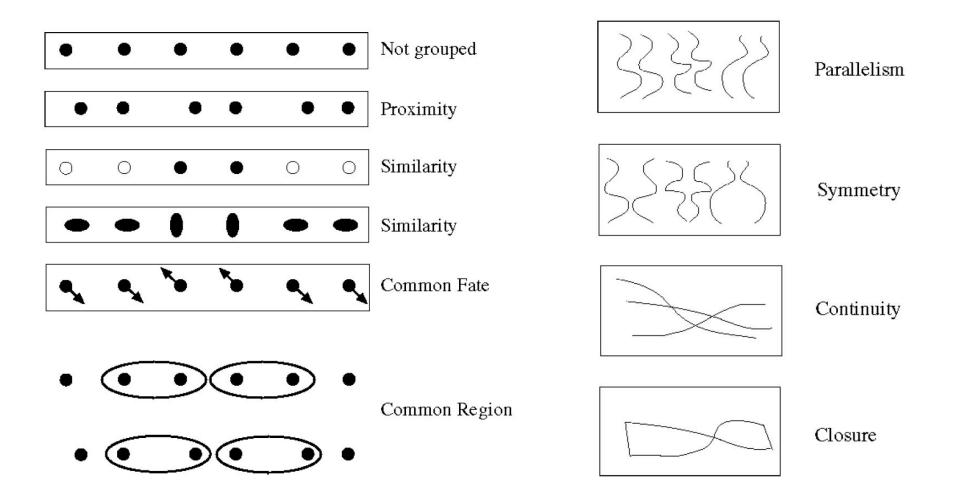
April 25, 2024

Untersuchungen zur Lehre von der Gestalt, *Psychologische Forschung*, Vol. 4, pp. 301-350, 1923 <u>http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm</u>

Ranjay Krishna, Jieyu Zhang

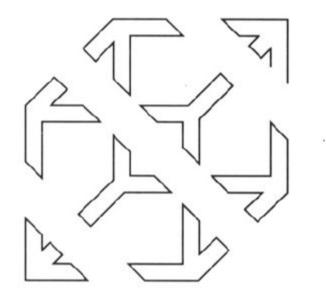
These factors make intuitive sense, but are very difficult to translate into algorithms.

Gestalt Factors

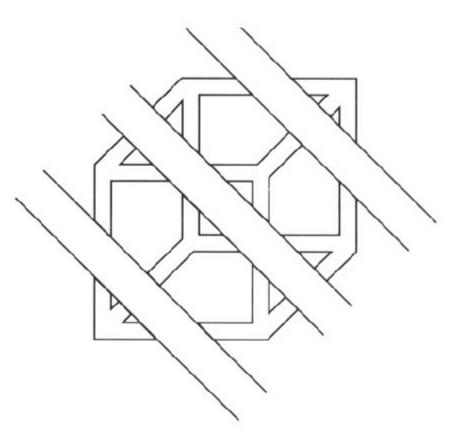


Ranjay Krishna, Jieyu Zhang

Lecture 10 - 31

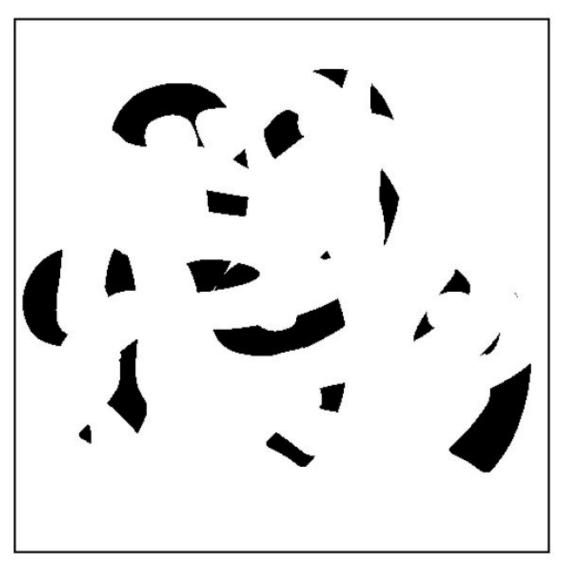


Ranjay Krishna, Jieyu Zhang



Continuity, explanation by occlusion

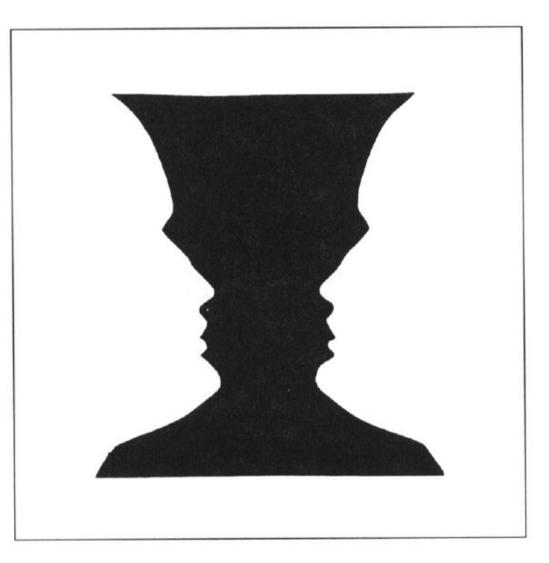
Ranjay Krishna, Jieyu Zhang



Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Figure-Ground Discrimination



Ranjay Krishna, Jieyu Zhang

The Ultimate Gestalt?

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 37

What will we learn today?

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering
- K-means
- Mean-shift

Ranjay Krishna, Jieyu Zhang

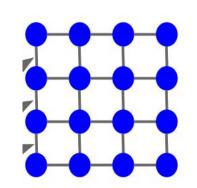
Over-segmenting images

- Graph-based clustering for Image Segmentation
 - Introduced by Felzenszwalb and Huttenlocher in the paper titled Efficient Graph-Based Image Segmentation.

Ranjay Krishna, Jieyu Zhang

Image as a Graph - Features and weights

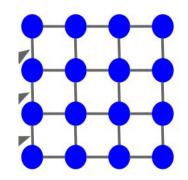
- Every pixel is connected to its 8 neighboring pixels
- The edges between neighbors have weights that are determined by the distance between them.
- Edge weights between pixels are determined using dist(x, x') distance in feature space.
 - $\circ~$ where p and p' are two neighboring pixels
- Q. What is a good feature space?



Ranjay Krishna, Jieyu Zhang

What are good pixel features?

- Use RGB values?
 - \circ v = [r, g, b]
 - It is 3-dimensional
- Use location?
 - \circ v = [x, y]
 - \circ 2-dim
- Use RGB + location?
 - $\circ v = [x, y, r, g, b]$
 - **5-dim**
- Use gradient magnitude?
 - \circ v = [df/dx, df/dy]
 - **2-d**



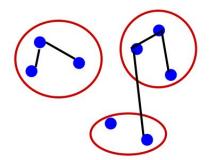
Ranjay Krishna, Jieyu Zhang

Problem Formulation

- Graph G = (V, E)
- V is set of nodes (i.e. pixels)

• dist(v_i , v_i) is the weight/distance of the edge between nodes v_i and v_i .

- S is a segmentation of a graph G such that G' = (V, E') where E' ⊂ E.
 That is, we keep all vertices, but select a subset E' from all initial edges E.
- S divides G into G' such that it contains distinct clusters C.



Ranjay Krishna, Jieyu Zhang

Weights of edges: distance measure

Clustering is an unsupervised learning method. Given items $v_1, v_2, \ldots, v_n \in \mathbb{R}^D$, the goal is to group them into clusters.

We need a pairwise distance/similarity function between items, and sometimes the desired number of clusters.

When data (e.g. images, objects, documents) are represented by feature vectors, commonly used measures are:

- Euclidean distance.
- Cosine similarity.

Ranjay Krishna, Jieyu Zhang

Defining Distance Measures

Let x and x' be two objects from the universe of possible objects. The distance (or similarity) between x and x' is a real number:

• The Euclidean distance is defined as di

$$dist(v_1, v_2) = \sqrt{\sum_i (v_{1i} - v_{2i})^2}$$

April 25, 2024

• In contrast, the cosine similarity measure would be

$$dist(v_1, v_2) = 1 - cos(v_1, v_2)$$
$$= 1 - \frac{v_1^T v_2}{||v_1|| \cdot ||v_2||}$$

Ranjay Krishna, Jieyu Zhang

What will we learn today?

• Introduction to segmentation and clustering

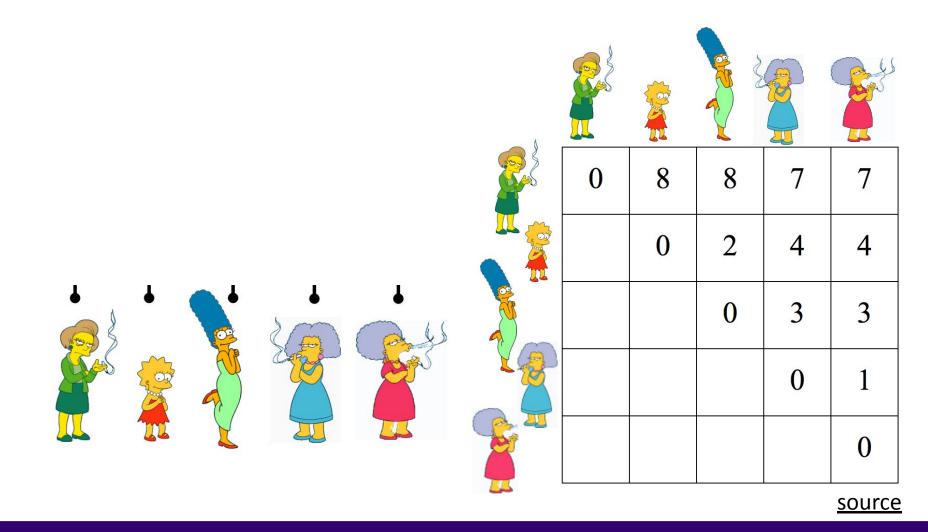
Lecture 10 - 45

April 25, 2024

- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering
- K-means
- Mean-shift

Ranjay Krishna, Jieyu Zhang

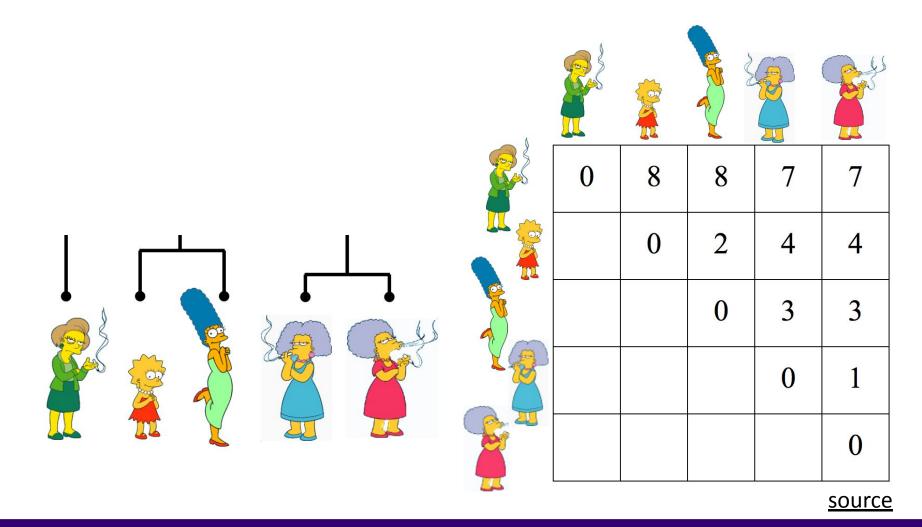
Animated example



Ranjay Krishna, Jieyu Zhang

Lecture 10 - 46

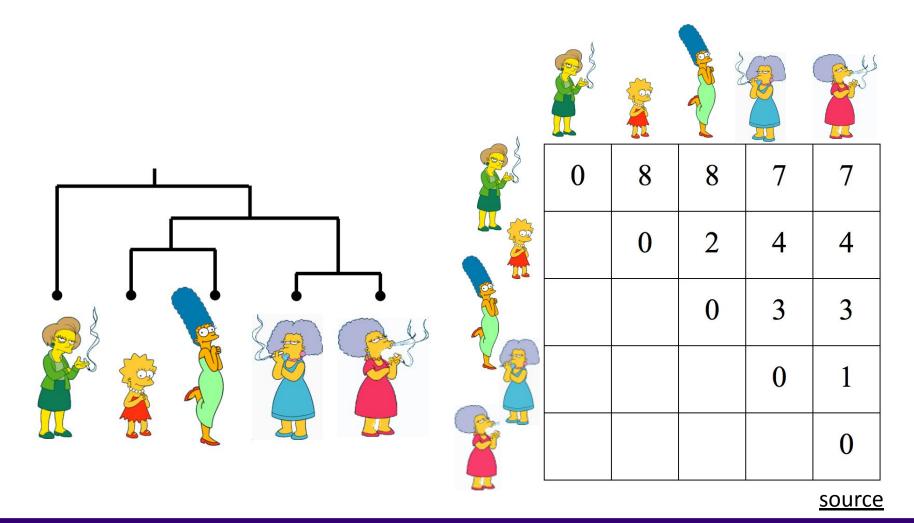
Animated example



Ranjay Krishna, Jieyu Zhang

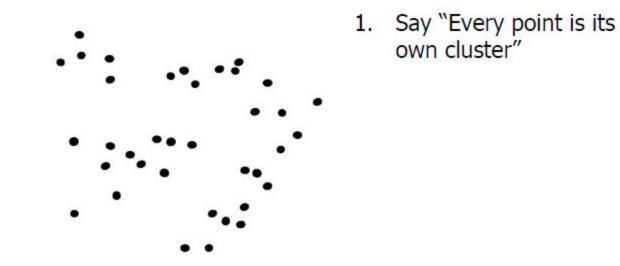
Lecture 10 - 47

Animated example



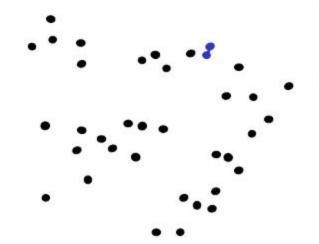
Ranjay Krishna, Jieyu Zhang

Lecture 10 - 48



Slide credit: Andrew Moore

Ranjay Krishna, Jieyu Zhang

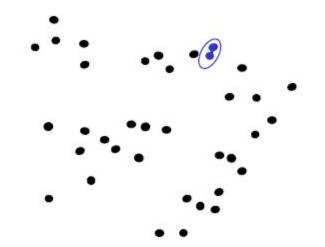


- 1. Say "Every point is its own cluster"
- 2. Find "most similar" pair of clusters

R

Slide credit: Andrew Moore

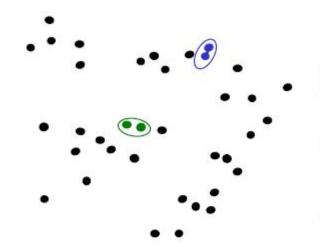
Ranjay Krishna, Jieyu Zhang



- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster

Slide credit: Andrew Moore

Ranjay Krishna, Jieyu Zhang

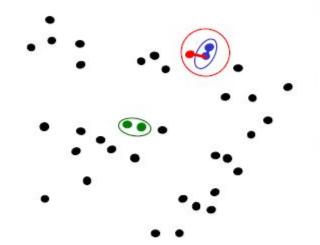


- Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat

RR

Slide credit: Andrew Moore

Ranjay Krishna, Jieyu Zhang



- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat

Slide credit: Andrew Moore

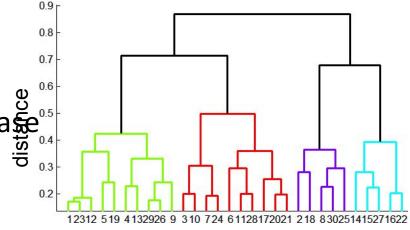
Ranjay Krishna, Jieyu Zhang

How to define cluster similarity?

- Average distance between all pixels between the two cluster?
- Maximum distance?
- Minimum distance?
- Distance between means?

How many clusters?

- Clustering creates a dendrogram (a tree)
- Threshold based on max number of clusters or base between merges



Ranjay Krishna, Jieyu Zhang

Agglomerative Hierarchical Clustering - Algorithm

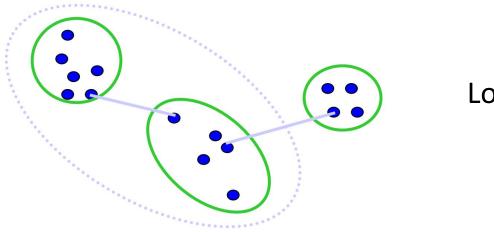
Inputs:

- An input image
- Feature representation for each pixel
- Distance metric dist(-,-)
- > Initially, each pixel $v_1, ..., v_n$ is its own cluster $C_1, ..., C_n$
- While True:
 - Find two nearest clusters according to dist(C_i, C_i)
 - Merge C = (C_i, C_j)
 - If only 1 cluster is left:
 - break

Ranjay Krishna, Jieyu Zhang

Single Linkage: $dist(C_i, C_j) = \min_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)$

Connects the clusters based on the distance of their closest pixels It produces "long" clusters.

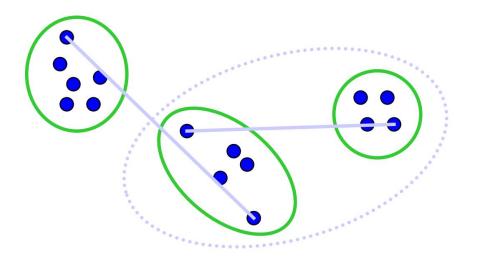


Long, skinny clusters

Ranjay Krishna, Jieyu Zhang

Complete Link: $dist(C_i, C_j) = \max_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)$

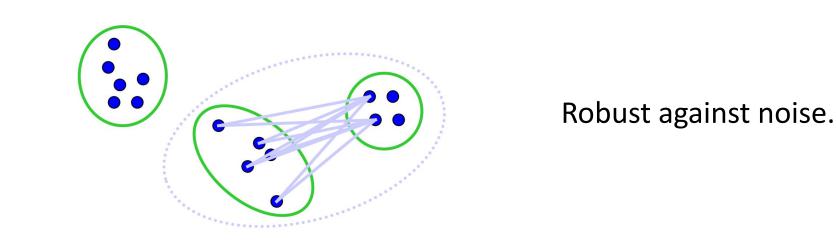
Produces compact clusters that are similar in diameter



Tight clusters

Ranjay Krishna, Jieyu Zhang

Average Link:
$$dist(C_i, C_j) = \frac{\sum_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)}{|C_i||C_j|}$$



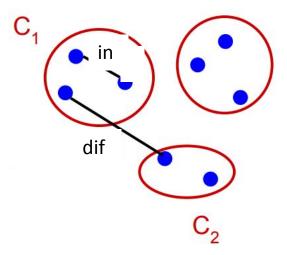
Ranjay Krishna, Jieyu Zhang

Inlier-outlier linkage:

$$Merge(C_1, C_2) = \begin{cases} True & if dif(C_1, C_2) < in(C_1, C_2) \\ False & otherwise \end{cases}$$

Where

- dif(C1, C2) is the difference between two clusters.
- in(C1, C2) is the internal difference in the clusters C1 and C2



Ranjay Krishna, Jieyu Zhang

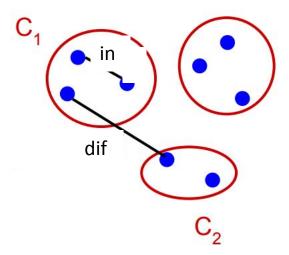
Lecture 10 - 59

Inlier-outlier linkage:

$$Merge(C_1, C_2) = \begin{cases} True & if dif(C_1, C_2) < in(C_1, C_2) \\ False & otherwise \end{cases}$$
$$dif(C_i, C_j) = \min_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)$$

Where

- dif(C1, C2) is the difference between two clusters.
- in(C1, C2) is the internal difference in the clusters C1 and C2



April 25, 2024

Ranjay Krishna, Jieyu Zhang

Inlier-outlier linkage:

$$Merge(C_1, C_2) = \begin{cases} True & if dif(C_1, C_2) < in(C_1, C_2) \\ False & otherwise \end{cases}$$
$$dif(C_i, C_j) = \min_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)$$
$$in(C_i, C_j) = \min_{C \in \{C_i, C_j\}} [\max_{v_i, v_j \in C} [dist(v_i, v_j) + \frac{k}{|C|}]]$$

dif

April 25, 2024

Where

- dif(C1, C2) is the difference between two clusters.
- in(C1, C2) is the internal difference in the clusters C1 and C2

Ranjay Krishna, Jieyu Zhang

inlier-outlier linkage for Segmentation

- k/|C| sets the threshold by which the clusters need to be different from the internal pixels in a cluster.
- Effect of k:
 - If k is large, it causes a preference for larger objects.

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 62

Results

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 63

Conclusions: Agglomerative Clustering

Pros:

- Simple to implement, widespread application.
- Clusters have adaptive shapes.
- Provides a hierarchy of clusters.
- No need to specify number of clusters in advance.

Cons:

- May have imbalanced clusters.
- Still have to choose number of clusters eventually for an application
- Does not scale well. Runtime of $O(n^3)$.
- Can get stuck at a local optima.

Ranjay Krishna, Jieyu Zhang

Today's agenda

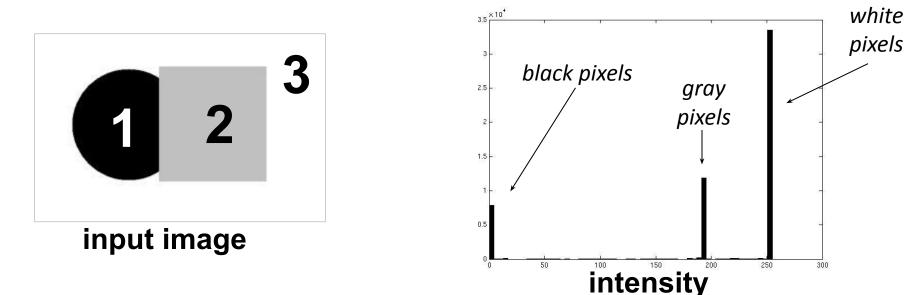
- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering
- K-means clustering
- Mean-shift clustering

Reading: Szeliski Chapters: 5.2.2, 7.5.2

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

Ranjay Krishna, Jieyu Zhang

Image Segmentation: Binary image Example

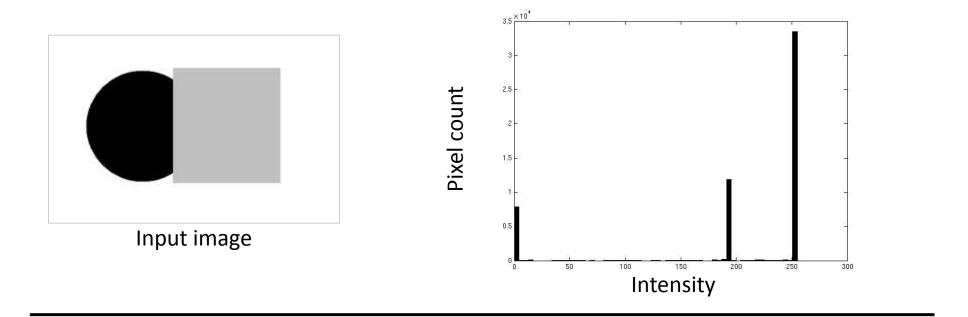


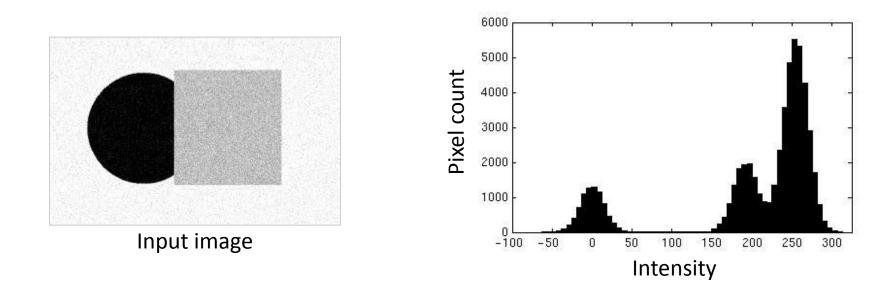
Lecture 10 - 66

April 25, 2024

- These pixel values show that there are three things in the image.
- We could label every pixel in the image according to which of these primary intensities it is.
 - \circ i.e., segment the image based on the intensity feature.
- What if the image isn't quite so simple?

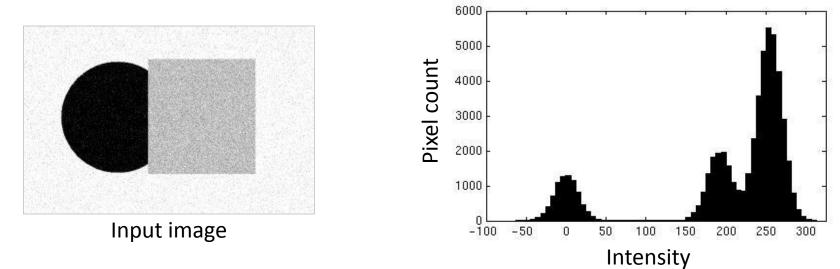
Ranjay Krishna, Jieyu Zhang





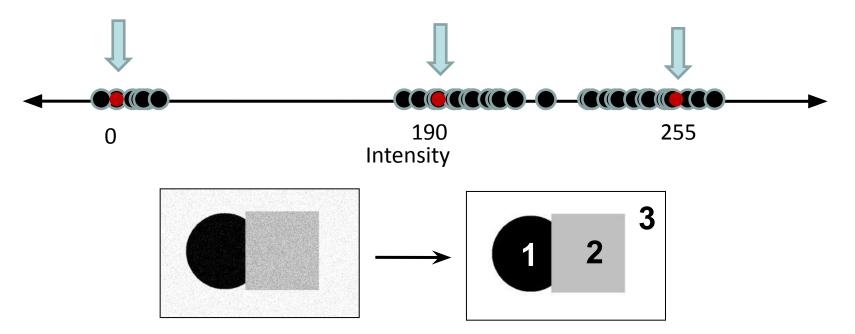
Ranjay Krishna, Jieyu Zhang

Lecture 10 - 67



- How do we determine the three main intensities that define our groups?
- Each cluster has a cluster center
 - A mean cluster value.

Ranjay Krishna, Jieyu Zhang



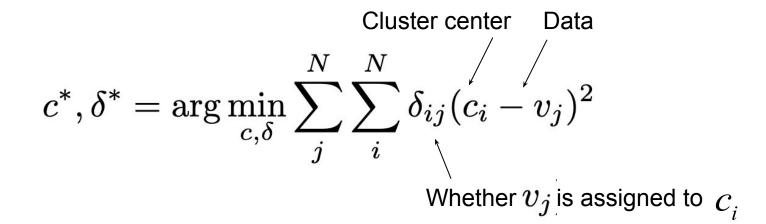
- Goal: choose three "centers" as the representative intensities and label every pixel according to which of these centers it is nearest to.
- Best cluster centers are those that minimize Sum of Square Distance (SSD) between all points and their nearest cluster center c_i:

$$SSD = \sum_{C} \sum_{v \in C} (v - c_i)^2$$

Ranjay Krishna, Jieyu Zhang

Clustering

Goal: cluster to minimize distance of pixels to their cluster centers



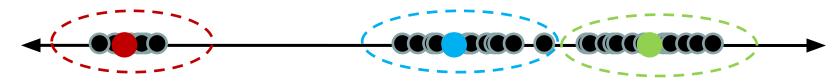
Lecture 10 - 70

Slide: Derek Hapfil 25, 2024

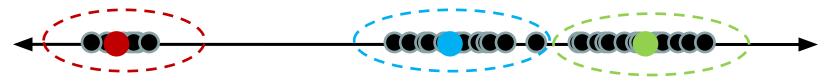
Ranjay Krishna, Jieyu Zhang

Clustering

- With this objective, it is a "chicken and egg" problem:
 - If we knew the *cluster centers*, we could allocate points to groups by assigning each to its closest center.



 If we knew the group memberships, we could get the centers by computing the mean per group.



Ranjay Krishna, Jieyu Zhang

K-means clustering

1. Initialize (t = 0): cluster centers $c_1, ..., c_K$

Ranjay Krishna, Jieyu Zhang

- 1. Initialize (t = 0): cluster centers $c_1, ..., c_K$
- 2. Compute δ^t : assign each point to the closest center
 - δ^t denotes the set of assignment for each v_j to cluster c_i at iteration t

$$\delta^{t} = \arg\min_{\delta} \frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \delta_{ij}^{t-1} (c_{i}^{t-1} - v_{j})^{2}$$

Ranjay Krishna, Jieyu Zhang

- 1. Initialize (t = 0): cluster centers $c_1, ..., c_K$
- 2. Compute δ^t : assign each point to the closest center
 - δ^t denotes the set of assignment for each v_j to cluster c_i at iteration t

$$\delta^{t} = \arg\min_{\delta} \frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \delta_{ij}^{t-1} (c_{i}^{t-1} - v_{j})^{2}$$

3. Computer C^{t} : update cluster centers as the mean of the points

$$c^{t} = \arg\min_{c} \frac{1}{N} \sum_{j}^{N} \sum_{i}^{K} \delta_{ij}^{t} (c_{i}^{t-1} - v_{j})^{2}$$

Ranjay Krishna, Jieyu Zhang

- 1. Initialize (t = 0): cluster centers $c_1, ..., c_K$
- 2. Compute δ^t : assign each point to the closest center
 - δ^t denotes the set of assignment for each v_j to cluster c_i at iteration t

$$\delta^{t} = \arg\min_{\delta} \frac{1}{N} \sum_{j} \sum_{i} \delta_{ij}^{t-1} (c_{i}^{t-1} - v_{j})^{2}$$

3. Computer C^{t} : update cluster centers as the mean of the points

$$c^{t} = \arg\min_{c} \frac{1}{N} \sum_{j}^{N} \sum_{i}^{K} \delta_{ij}^{t} (c_{i}^{t-1} - v_{j})^{2}$$

4. Update t = t + 1, Repeat Step 2-3 till stopped

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 75

Slide: Ameri H257, 2024

- 1. Initialize (t = 0): cluster centers $c_1, ..., c_K$
- 2. Compute δ^t : assign each point to the closest center
 - δ^t denotes the set of assignment for each v_j to cluster c_i at iteration t

$$\delta^{t} = \arg\min_{\delta} \frac{1}{N} \sum_{j} \sum_{i} \delta_{ij}^{t-1} (c_{i}^{t-1} - v_{j})^{2}$$

3. Computer C^{t} : update cluster centers as the mean of the points

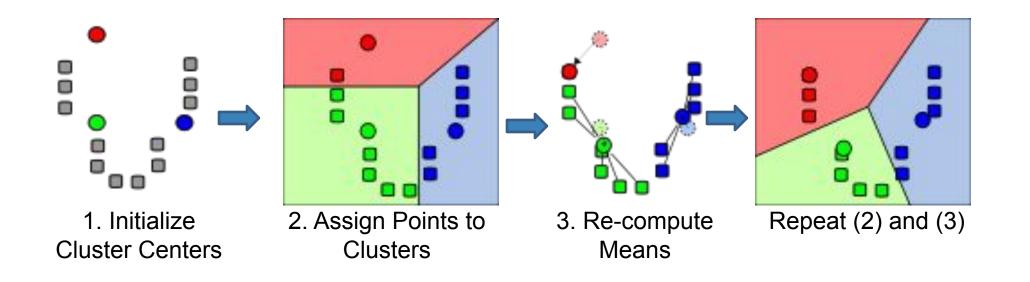
$$c^{t} = rgmin_{c} rac{1}{N} \sum_{j}^{N} \sum_{i}^{K} \delta_{ij}^{t} (c_{i}^{t-1} - v_{j})^{2}$$

4. Update t = t + 1, Repeat Step 2-3 till stopped

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 76

Slide: Ameri H257, 2024



Ranjay Krishna, Jieyu Zhang

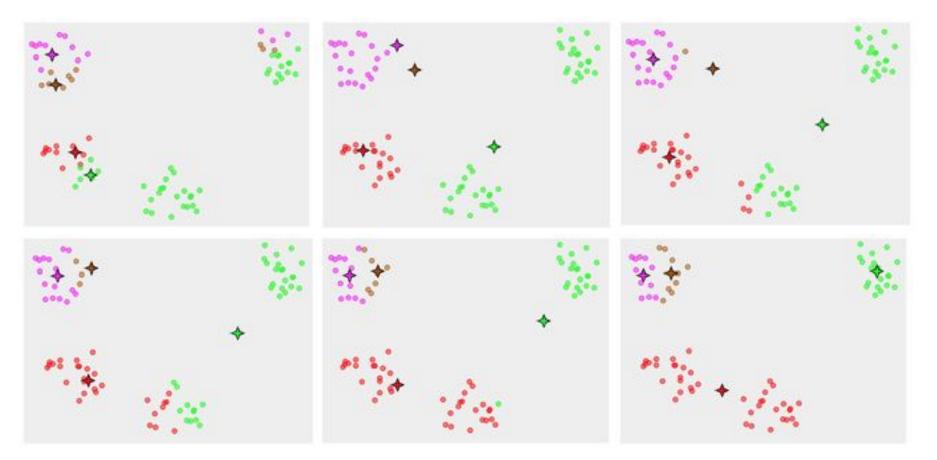
Initial cluster centers are randomly initialized

- Can lead to bad initializations
- Can cause bad clusters

Ranjay Krishna, Jieyu Zhang

K-means Converges to a local minimum solution

Initialize multiple runs!



Ranjay Krishna, Jieyu Zhang

K-Means++

Tries to prevent arbitrarily bad local minima?

- 1. Randomly choose first center.
- 2. Pick new center with prob. proportional to $(c_i v_j)^2$
 - a. Basically we want to find as good of an initialization as possible

Lecture 10 - 80

April 25, 2024

3. Repeat until K centers.

Initial cluster centers are randomly initialized

- Can lead to bad initializations
- Can cause bad clusters

Different distance measures can change K-Means clusters

- Euclidean distance of cosine distance.

Different feature space can lead to different cluster

Ranjay Krishna, Jieyu Zhang

Segmentation as Clustering

Original image

2 clusters

3 clusters

Ranjay Krishna, Jieyu Zhang

Feature Space: pixel value

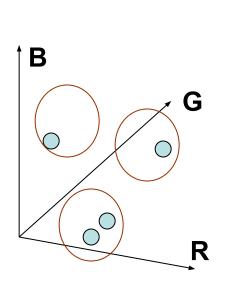
- Feature space: what measurements do we include in x_i ?
- Depending on what we choose as the *feature space*, we can group pixels in different ways.
- Grouping pixels based on intensity similarity

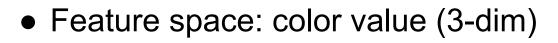
• Feature space: intensity value (1D)

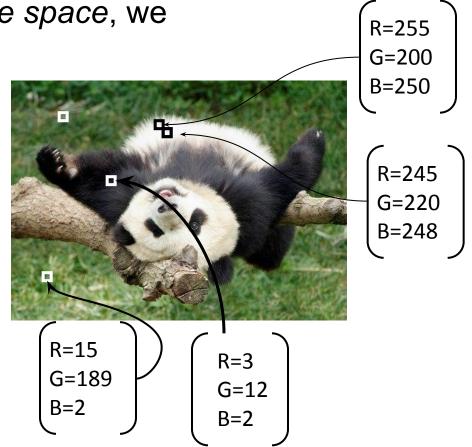
Ranjay Krishna, Jieyu Zhang

Feature Space: RGB

- Depending on what we choose as the *feature space*, we can group pixels in different ways.
- Grouping pixels based on color similarity





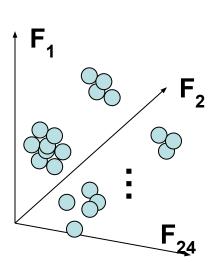


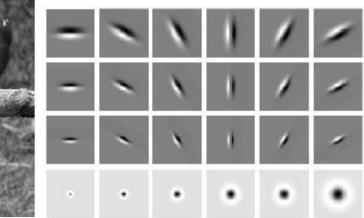
April 25, 2024

Ranjay Krishna, Jieyu Zhang

Feature Space: edges and blobs

- Depending on what we choose as the *feature space*, we can group pixels in different ways.
- Grouping pixels based on oriented gradient similarity





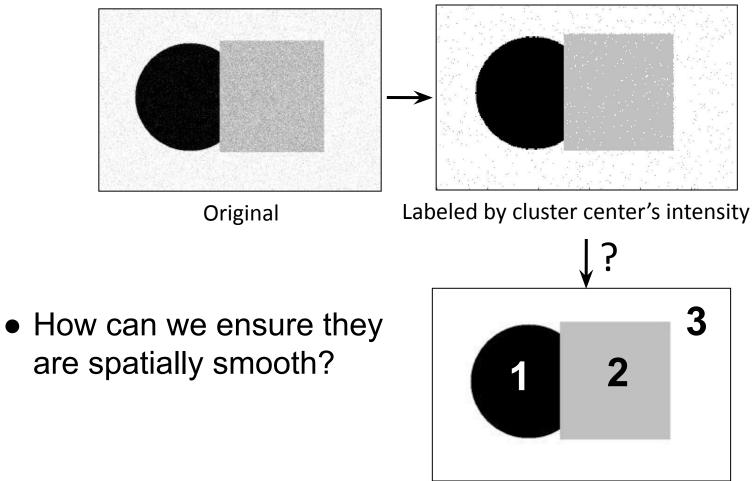
24 edge & blog filters

• Feature space: filter bank responses (e.g., 24D)

Ranjay Krishna, Jieyu Zhang

Smoothing Out Cluster Assignments

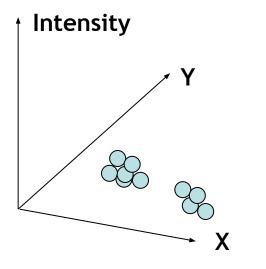
• Assigning a cluster label per pixel may yield outliers:

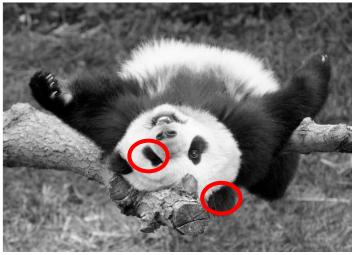


Ranjay Krishna, Jieyu Zhang

Feature Space: RGB + XY location

- Depending on what we choose as the *feature space*, we can group pixels in different ways.
- Grouping pixels based on *intensity+position* similarity



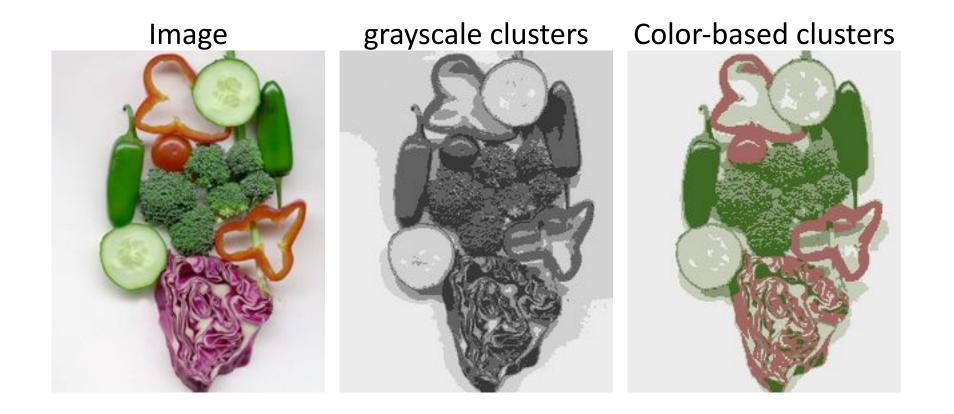


 \Rightarrow Way to encode both *similarity* and *proximity*.

Ranjay Krishnäde, Jielyu Zhánghan

K-Means Clustering Results

• Clusters don't have to be spatially coherent



Ranjay Krishna, Jieyu Zhang

K-Means Clustering Results

 Clustering based on (r,g,b,x,y) values enforces more spatial coherence

Ranjay Krishna, Jieyu Zhang

How to evaluate clusters?

• Generative

How well are points reconstructed from the clusters?

• Discriminative

- How well do the clusters correspond to labels?
 - Can we correctly classify which pixels belong to the panda?
- Note: unsupervised clustering does not aim to be discriminative as we don't have the labels.

Lecture 10 - 90

Slide: Derek Hapfil 25, 2024

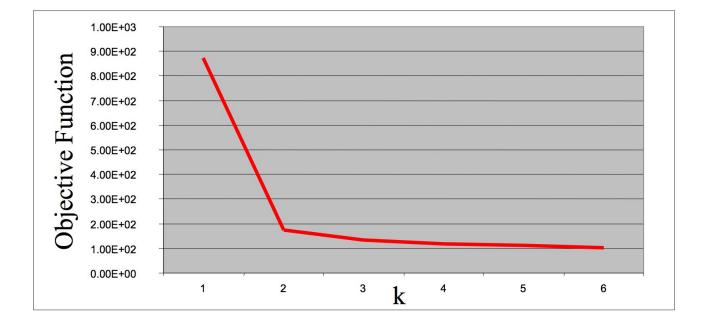
Ranjay Krishna, Jieyu Zhang

How to choose the number of clusters?

Try different numbers of clusters in a validation set and look at performance.

Plot of SSD versus values of k

abrupt change at k=2 is suggestive of two clusters in the data



Slide: Derek Hapfil 25, 2024

Ranjay Krishna, Jieyu Zhang

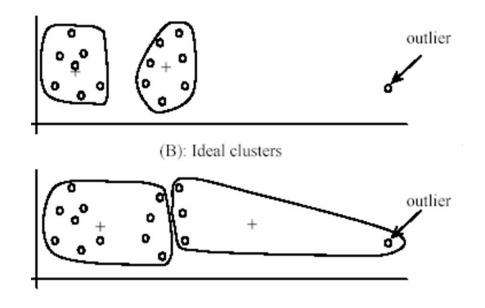
K-Means pros and cons

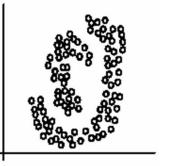
• Pros

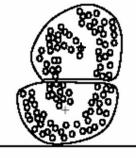
- Good representation of data
- Simple and fast, Easy to implement

• Cons

- Need to choose K
- Sensitive to outliers
- Prone to local minima
- All clusters have the same parameters (e.g., distance measure is non-adaptive)
- Can still be slow: each iteration is O(KNd) for N d-dimensional pixels







(A): Two natural clusters

(B): k-means clusters

Ranjay Krishna, Jieyu Zhang

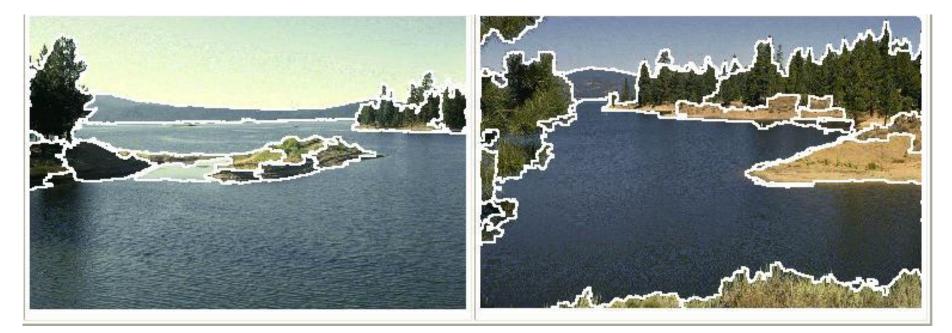
What will we learn today?

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering
- K-means clustering
- Mean-shift clustering

Ranjay Krishna, Jieyu Zhang

Mean-Shift Segmentation

An advanced and versatile technique for clustering-based segmentation



April 25, 2024

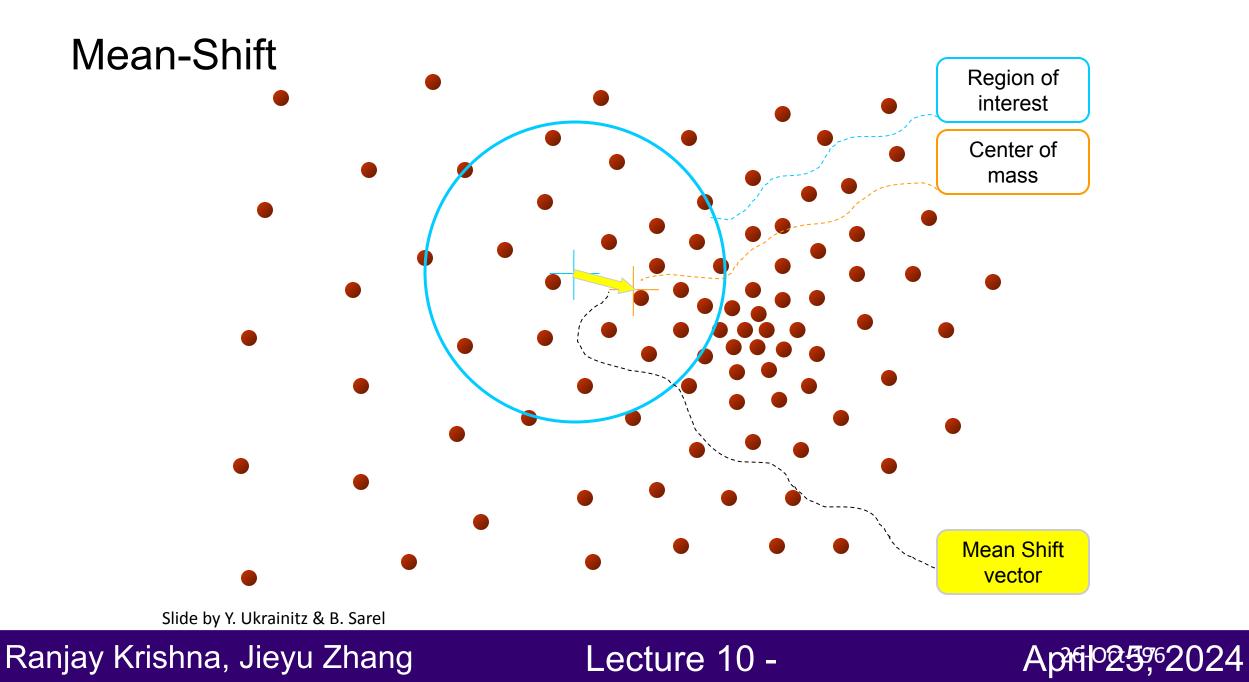
http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

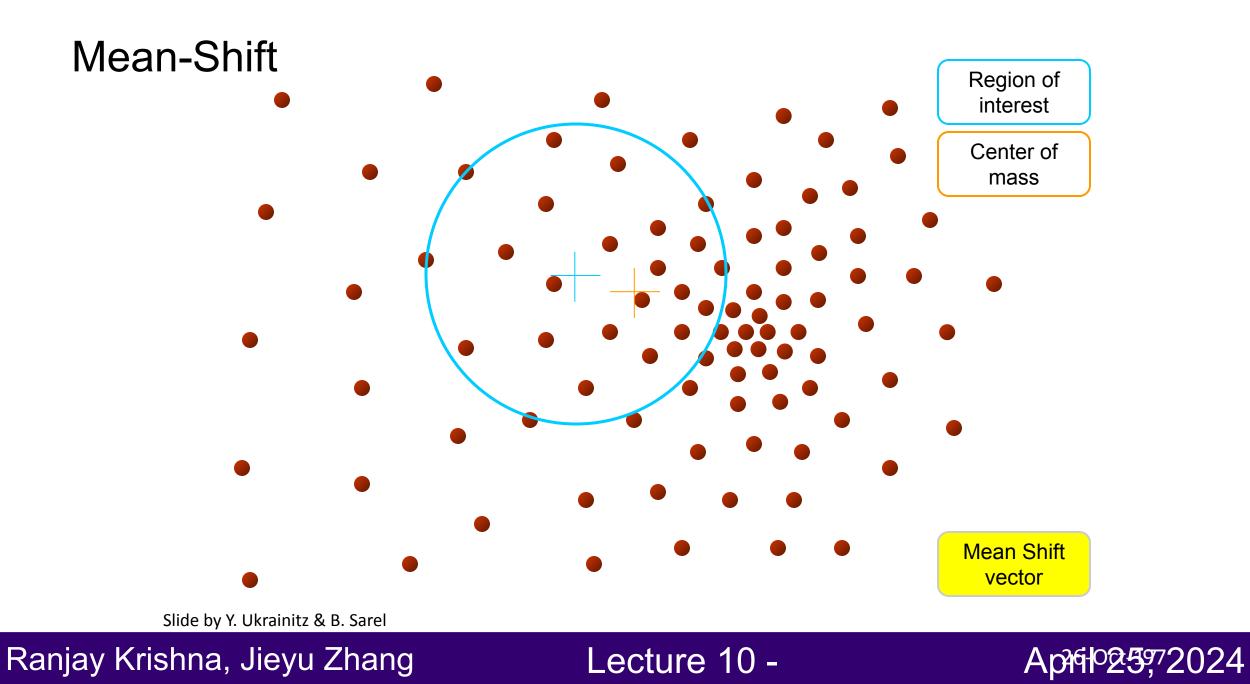
D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

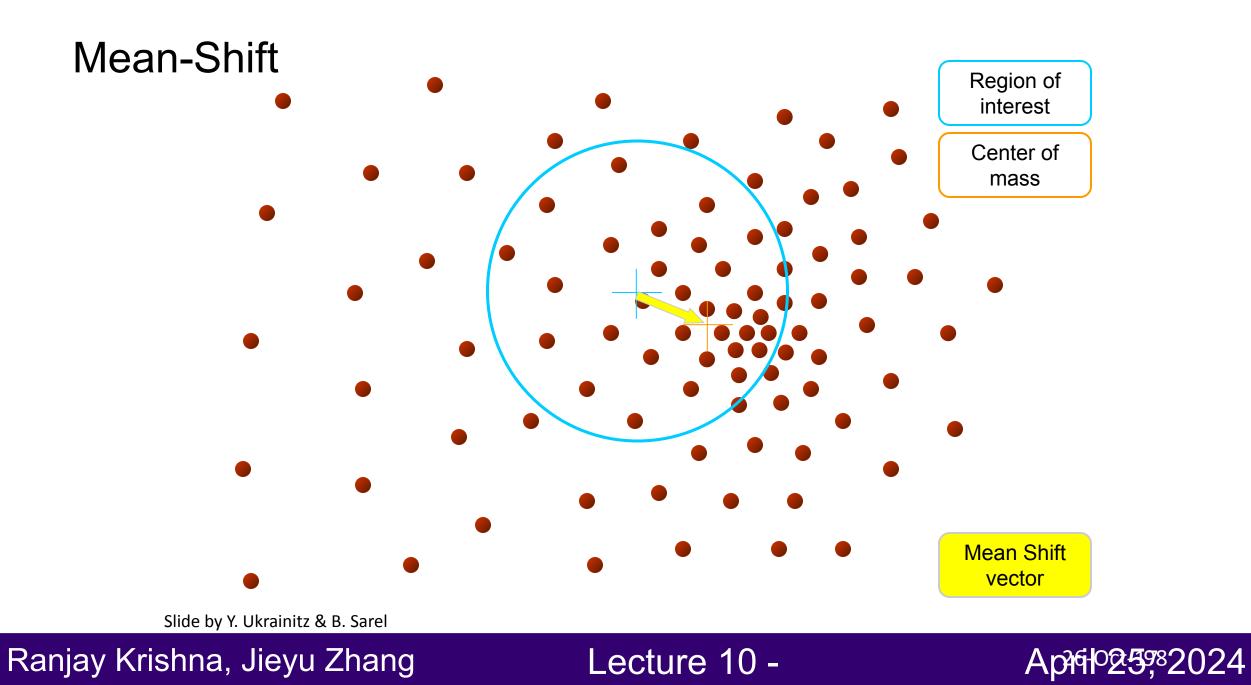
Ranjay Krishna, Jieyu Zhang

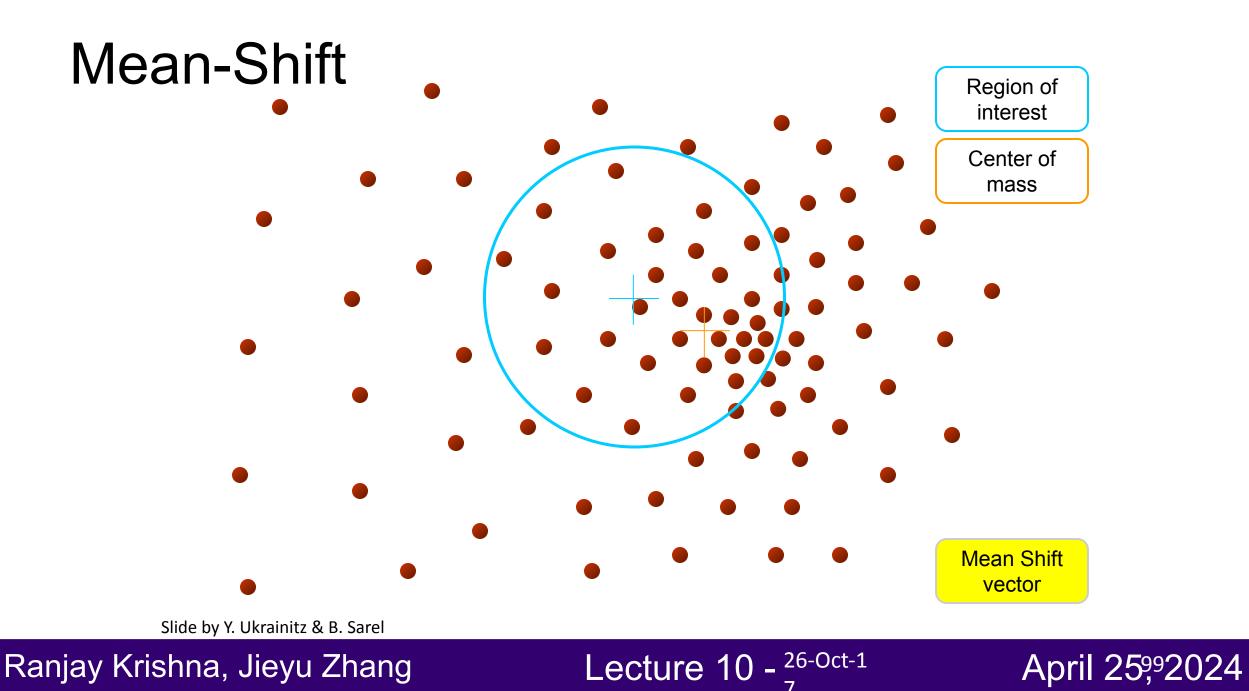
Mean-Shift Algorithm

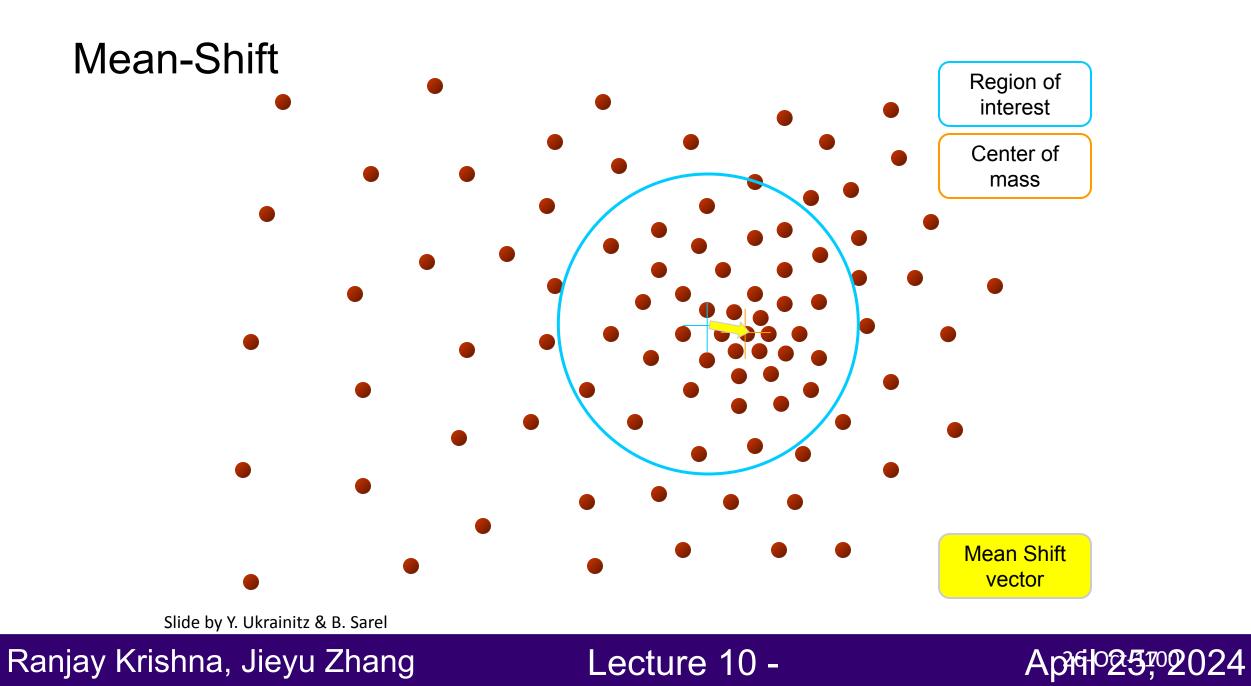
- 1. Represent each pixel *i* using some feature vector v_i
- 2. Generate a window **W** as a random pixel feature v_w
- 3. Identify all the pixels within a radius *r* of v_w
- 4. Calculate the mean ("center of gravity") amongst the neighbors of **W**
- 5. Translate the window **W** to the mean feature location
- 6. Repeat Step 2 until convergence



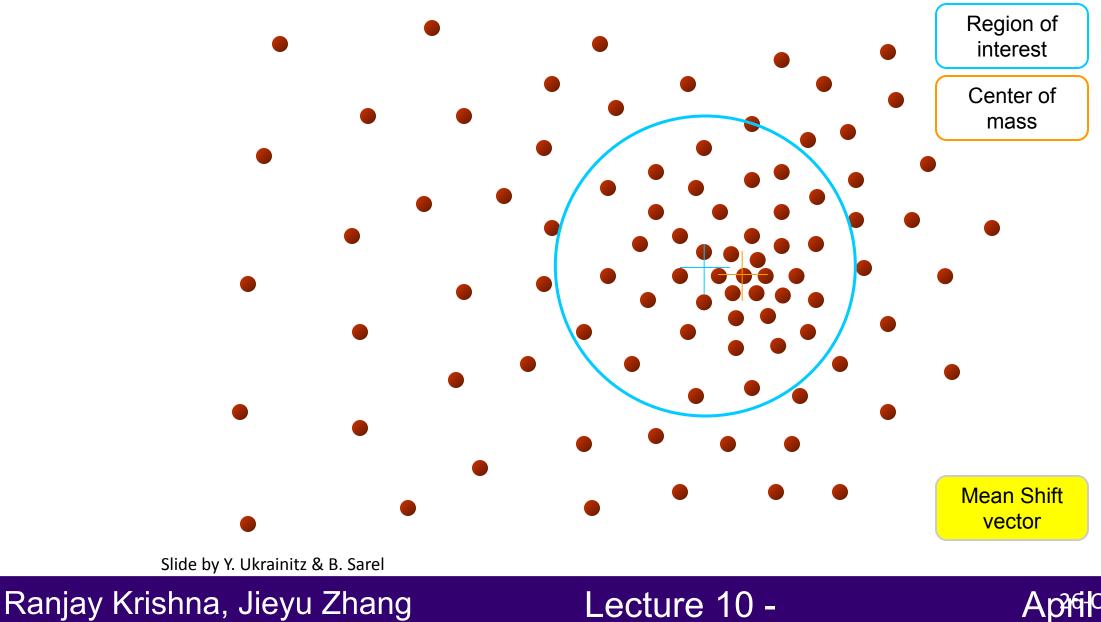






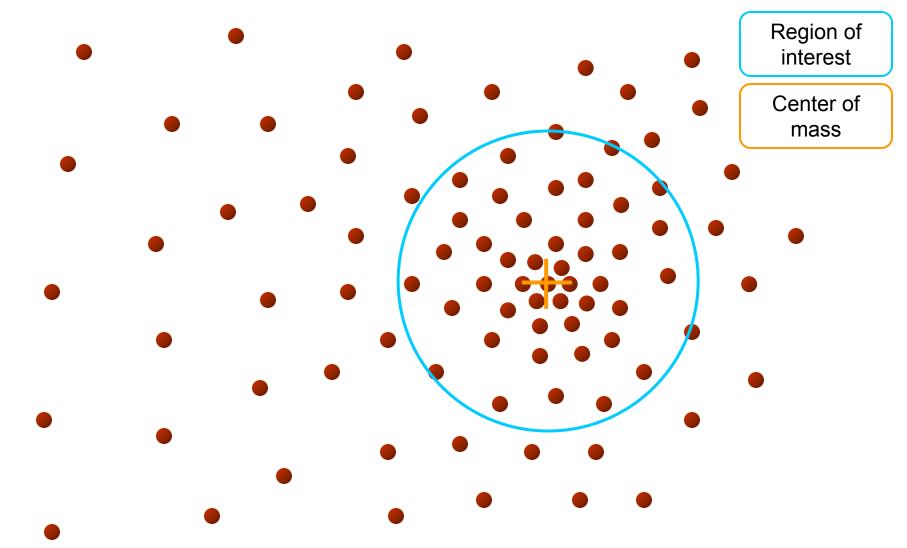


Mean-Shift



Apia1025702024

Mean-Shift

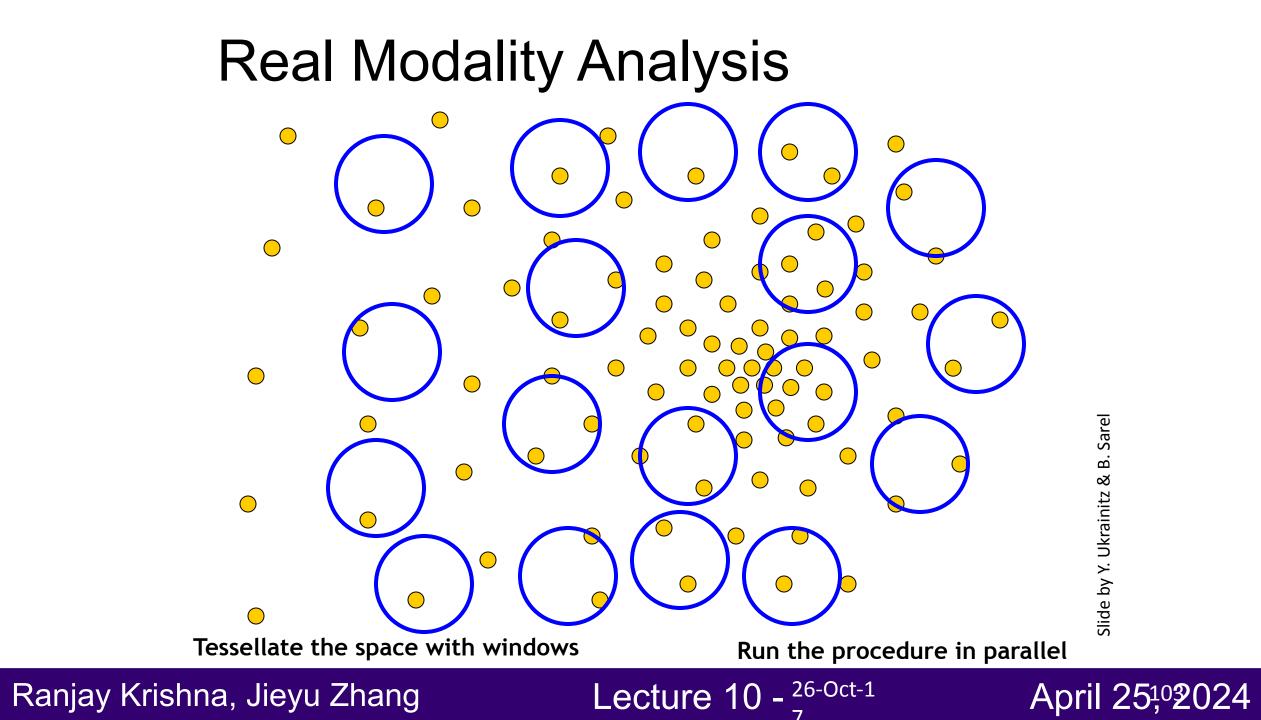


Slide by Y. Ukrainitz & B. Sarel

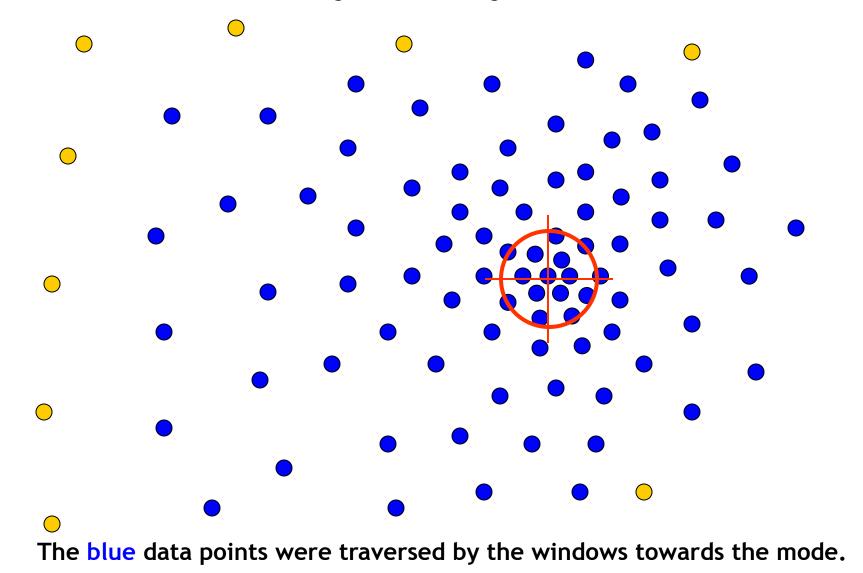
Ranjay Krishna, Jieyu Zhang

Lecture 10 -

Apra 25,02024



Real Modality Analysis

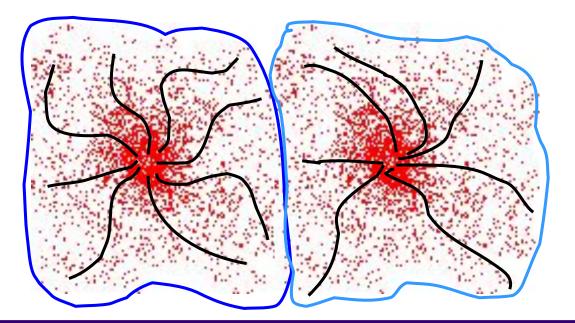


Ranjay Krishna, Jieyu Zhang

Lecture 10 - 26-Oct-1

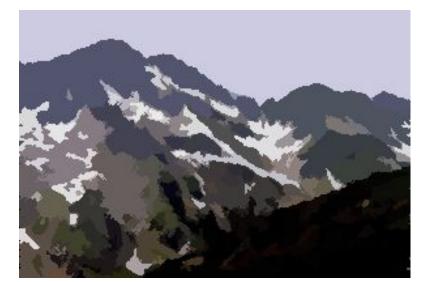
Mean-Shift Clustering

- Initialize not just 1 window but a multiple windows at random
- All pixels that end up in the same location belong to the same cluster
- Attraction basin: the feature region for which all windows end up in the same location



Ranjay Krishna, Jieyu Zhang

Mean-Shift Segmentation Results

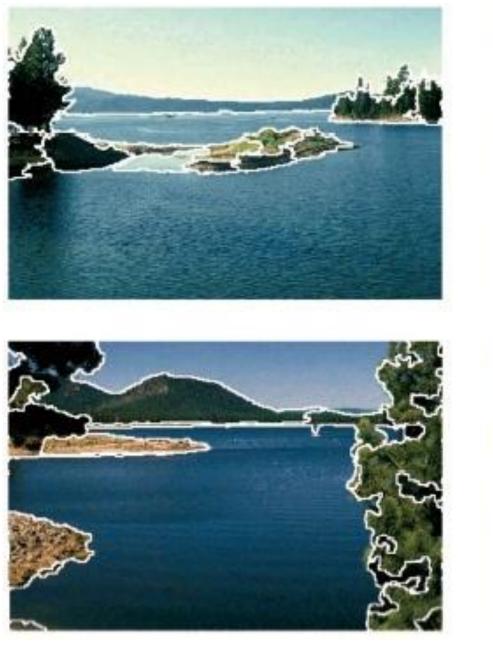


http://www.caip.rutgers.edu/~comanici/MSPAM I/msPamiResults.html

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 26-Oct-1

More Results



Ranjay Krishna, Jieyu Zhang

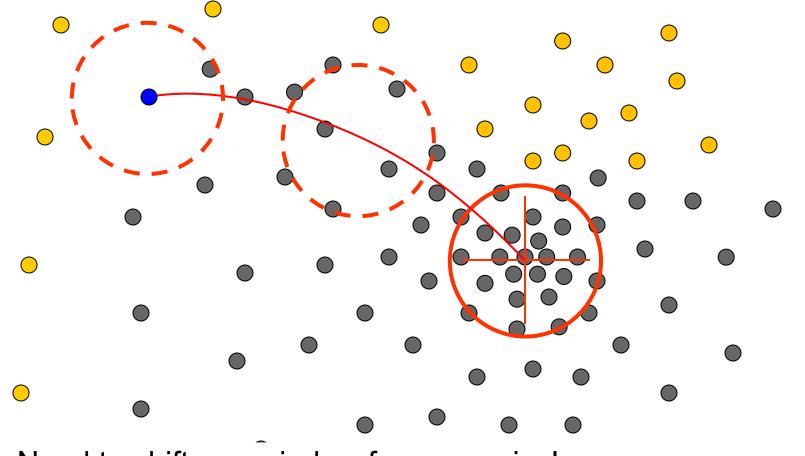
Lecture 10 - 26-Oct-1

More Results

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 26-Oct-1

Problem: Computational Complexity



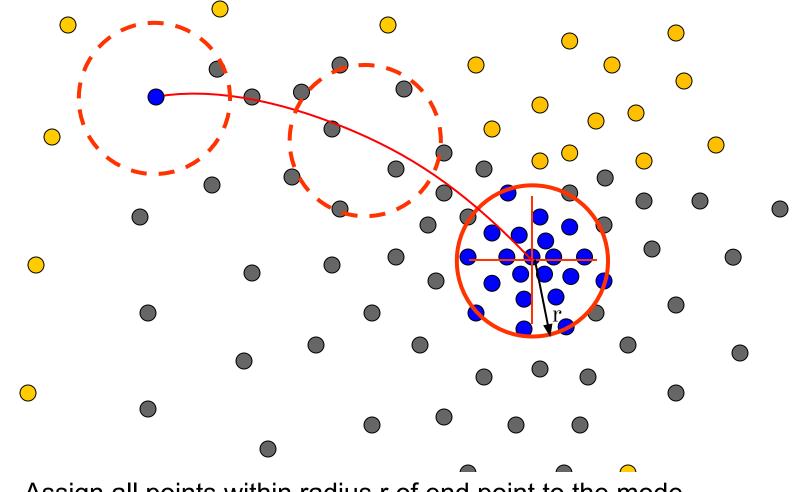
- Need to shift one window for every pixel
- Many computations will be redundant.

Slide credit: Bastian Leibe

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 26-Oct-1

Speedups: Basin of Attraction

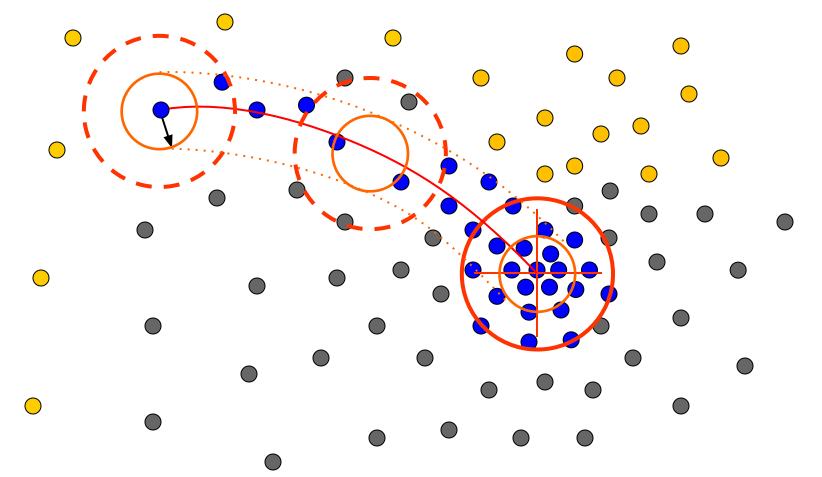


1. Assign all points within radius r of end point to the mode.

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 26-Oct-1

Speedups



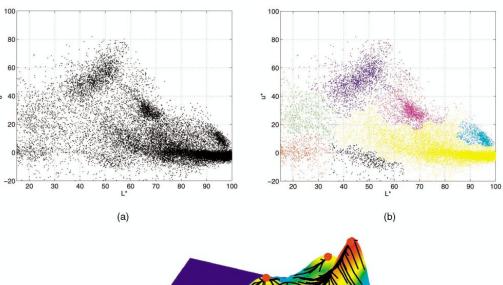
2. Assign all points within radius r/c of the search path to the mode -> reduce the number of data points to search.

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 26-Oct-1

Mean-Shift Clustering

- Find features (color, gradients, texture, etc)
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- At every step, merge windows that have high overlap to reduce computation



U¹

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 112

April 25, 2024

Mean-Shift pros and cons

• Pros

- General, application-independent algorithm
- Model-free, does not assume any prior shape (spherical, elliptical, etc.) of data clusters
- Just a single parameter (window size r)
 - r has a physical meaning (unlike k-means)
- Finds variable number of modes
- Robust to outliers

• Cons

- $\circ\,$ Output depends on window size
- $\circ\,$ Window size (bandwidth) selection is not easy
- Computationally (relatively) expensive (~2s/image)
- $\circ\,$ Does not scale well with dimension of feature space

Ranjay Krishna, Jieyu Zhang

Summary

• Introduction to segmentation and clustering

Lecture 10 - 114

April 25, 2024

- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering
- K-means clustering
- Mean-shift clustering

Ranjay Krishna, Jieyu Zhang

Next time

Cameras and Calibration

Ranjay Krishna, Jieyu Zhang

Other Kernels

A kernel is a function that satisfies the following requirements :

1.
$$\int_{R^d} \phi(x) = 1$$

2. $\phi(x) \ge 0$

Some examples of kernels include :

1. Rectangular
$$\phi(x) = \begin{cases} 1 & a \leq x \leq b \\ 0 & else \end{cases}$$

2. Gaussian $\phi(x) = e^{-rac{x^2}{2\sigma^2}}$

3. Epanechnikov
$$\phi(x) = \begin{cases} \frac{3}{4}(1-x^2) & if \ |x| \leq 1 \\ 0 & else \end{cases}$$

<u>source</u>

April 25, 2024

Ranjay Krishna, Jieyu Zhang

Technical Details

Taking the derivative of:
$$\hat{f}_{K} = \frac{1}{nh^{d}} \sum_{i=1}^{n} K\left(\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right)$$

$$\nabla \hat{f}(\mathbf{x}) = \underbrace{\frac{2c_{k,d}}{nh^{d+2}} \left[\sum_{i=1}^{n} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)\right]}_{\text{term 1}} \underbrace{\left[\frac{\sum_{i=1}^{n} \mathbf{x}_{i} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{n} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right) - \mathbf{x}\right]}_{\text{term 2}}, \quad (3)$$

where g(x) = -k'(x) denotes the derivative of the selected kernel profile.

- Term1: this is proportional to the density estimate at x (similar to equation 1 from two slides ago).
- Term2: this is the mean-shift vector that points towards the direction of maximum density.

Comaniciu & Meer, 2002

April 25, 2024

Ranjay Krishna, Jieyu Zhang

Technical Details

Finally, the mean shift procedure from a given point x_{t} is:

1. Compute the mean shift vector **m**:

$$\left[\frac{\sum\limits_{i=1}^{n}\mathbf{x}_{i}g\left(\left\|\frac{\mathbf{x}-\mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum\limits_{i=1}^{n}g\left(\left\|\frac{\mathbf{x}-\mathbf{x}_{i}}{h}\right\|^{2}\right)}-\mathbf{x}\right]$$

2. Translate the density window:

$$\mathbf{x}_i^{t+1} = \mathbf{x}_i^t + \mathbf{m}(\mathbf{x}_i^t).$$

3. Iterate steps 1 and 2 until convergence.

$$abla f(\mathbf{x}_i) = 0.$$

Comaniciu & Meer, 2002

April 25, 2024

Ranjay Krishna, Jieyu Zhang

Technical Details

Given n data points $\mathbf{x}_i \in \mathbb{R}^d$, the multivariate kernel density estimate using a radially symmetric kernel¹ (e.g., Epanechnikov and Gaussian kernels), $K(\mathbf{x})$, is given by,

$$\hat{f}_K = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right),\tag{1}$$

where h (termed the *bandwidth* parameter) defines the radius of kernel. The radially symmetric kernel is defined as,

$$K(\mathbf{x}) = c_k k(\|\mathbf{x}\|^2), \tag{2}$$

where c_k represents a normalization constant.

Ranjay Krishna, Jieyu Zhang

