Lecture 9

Saliency and Retargeting

Ranjay Krishna, Jieyu Zhang

Jigsaw

Which image fits here?

<u>Multi-view reasoning</u>

Visual correspondence

Which point is the same?

<u>Semantic correspondence</u>

Which points have similar semantics?

Forensics detection

Which image is real?

Which point is closer? <u>Relative reflectance</u>

Which point is darker?

Functional correspondence

Which points have similar affordance when pulling out a nail?

Which image is more similar to the left?

Which object does it folds into?

April 23, 2024

Ranjay Krishna, Jieyu Zhang

Semantic correspondence

Which points have similar semantics?

Ranjay Krishna, Jieyu Zhang

Task	Vis.Corr.	Depth	Multi-view	Sem.Corr.	Forensic	Reflect.
Random	25.00	50.00	50.00	25.00	25.00	33.33
Human						
Gemini Pro						
GPT-4V						
Specialist						

Ranjay Krishna, Jieyu Zhang

Task	Vis.Corr.	\mathbf{Depth}	Multi-view	Sem.Corr.	Forensic	Reflect.
Random	25.00	50.00	50.00	25.00	25.00	33.33
Human	99.56	99.59	92.10	94.60	100.00	99.63
Gemini Pro						
GPT-4V						
Specialist	2 2					

Ranjay Krishna, Jieyu Zhang

Task	Vis.Corr.	Depth	Multi-view	Sem.Corr.	Forensic	Reflect.
Random	25.00	50.00	50.00	25.00	25.00	33.33
Human	99.56	99.59	92.10	94.60	100.00	99.63
Gemini Pro						
GPT-4V						
Specialist	DIFT [69]	DepthAnything [8	0] LoFTR [67]	DIFT [69]	DIRE [78]	Ordinal Shading [13]
	96.51	97.58	90.22	71.22	68.94	77.61

These are models that utilize ideas we are learning in this class

Ranjay Krishna, Jieyu Zhang

Task	Vis.Corr.	Depth	Multi-view	Sem.Corr.	Forensic	Reflect.
Random	25.00	50.00	50.00	25.00	25.00	33.33
Human	99.56	99.59	92.10	94.60	100.00	99.63
Gemini Pro	42.44	40.32	44.36	26.62	50.76	45.52
GPT-4V	33.72	59.68	55.64	28.78	34.09	38.81
Specialist	DIFT [69]	DepthAnything [80]	LoFTR [67]	DIFT [69]	DIRE [78]	Ordinal Shading [13]
	96.51	97.58	90.22	71.22	68.94	77.61

Ranjay Krishna, Jieyu Zhang

Administrative

A2 is out

- Due April 28th
- Date moved back

A3 is out

- Due May 9th

Ranjay Krishna, Jieyu Zhang

Administrative

Recitation

- Xiaojuan Wang
- Panorama (part of your A2)
- detector, descriptor, RANSAC recap

So far: 1D example of how blobs are detected with LoG

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 10

So far: SIFT detector algorithm

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 11

So far: Extracting SIFT keypoints and scales

• Choose the maxima within 3x3x3 neighborhood.

Ranjay Krishna, Jieyu Zhang

Finishing up last lecture -> slide 64

Ranjay Krishna, Jieyu Zhang

Today's agenda

- Image retargeting
- Seam carving
- Dynamic programming
- Applications
- Forward algorithm

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 14

Today's agenda

- Image retargeting
- Seam carving
- Dynamic programming
- Applications
- Forward algorithm

Ranjay Krishna, Jieyu Zhang

Display Devices

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 16

Content Retargeting

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 17

Page Layout

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 18

Simple Media Retargeting Operators

Le Seatinging

Ranjay Krishna, Jieyu Zhang

Content-aware Retargeting Operators

"Important" content

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 20

Content-aware Retargeting

Ranjay Krishna, Jieyu Zhang

Image Retargeting

Problem statement

- Input image I of size n x m
- Output image I' of size n' x m'

Output image should be geometrically and semantically consistent with input image

• Till date, there is no formal definition of what constitutes as a "consistent" view.

Ranjay Krishna, Jieyu Zhang

How can we define consistency?

In large, we would expect retargeting to:

- 1. Adhere to the geometric constraints (display/aspect ratio)
- 2. Preserve the important content and structures
- 3. Limit artifacts

Very III-posed!

- \circ How do we define what is important?
 - Is there a universal important vs unimportant?
- Would different people find different image regions more or less important?
- \circ What about artistic impression in the original content?

Ranjay Krishna, Jieyu Zhang

Importance (Saliency) Measures

- A function $\mathcal{S}: n \times m \rightarrow [0, 1]$
- Ideas from human perception

First stage: coarse scan over entire image Second stage: more focused attention on specific region

Wang et al. A Two-stage approach to saliency detection in images 2008

Ranjay Krishna, Jieyu Zhang

Importance (Saliency) Measures

- A function $\mathcal{S}: n \times m \rightarrow [0, 1]$
- More sophisticated: attention models, eye tracking (gazing studies), face detectors, ...

Judd et al. Learning to predict where people look ICCV 2009

Ranjay Krishna, Jieyu Zhang

General Retargeting Framework

Ranjay Krishna, Jieyu Zhang

General Retargeting Framework

Step 1. Define an energy function **E(I)** (interest, importance, saliency)

Ranjay Krishna, Jieyu Zhang

General Retargeting Framework

Step 1. Define an energy function **E(I)** (interest, importance, saliency)

Step 2. Use some operator(s) to change the image I

Potential Retargeting Approaches

• Optimal Cropping Window

Ranjay Krishna, Jieyu Zhang

Potential Retargeting Approaches

- For videos: "Pan and scan"
- Still done manually in the movie industry

Liu and Gleicher, Video Retargeting: Automating Pan and Scan (2006)

Ranjay Krishna, Jieyu Zhang

Cropping

Ranjay Krishna, Jieyu Zhang

Today's agenda

- Image retargeting
- Seam carving
- Dynamic programming
- Applications
- Forward algorithm

Ranjay Krishna, Jieyu Zhang

Seam Carving

- Assume input I is size m x n
- Output I is $m \times n'$,
 - o where n'<n
- Basic Idea: remove unimportant pixels from the image
 - Unimportant = pixels with less "energy"

$$E(I) = \left|\frac{\partial I}{\partial x}\right| + \left|\frac{\partial I}{\partial y}\right| \qquad \qquad E(I) = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2}$$

- Intuition for gradient-based energy:
 - Preserve edges
 - Human vision more sensitive to edges so try remove content from smoother areas
 - Simple enough for producing some nice results

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 33

Let's do a though experiment

We calculate the energy for this image.

Q1. Can we just remove the K **pixels** with the lowest energy?

Ranjay Krishna, Jieyu Zhang

Let's do a though experiment

We calculate the energy for this image.

Q1. Can we just remove the K **pixels** with the lowest energy?

Q2. Can we remove the K **rows** with the lowest energies?

Ranjay Krishna, Jieyu Zhang

Let's do a though experiment

We calculate the energy for this image.

Q1. Can we just remove the K **pixels** with the lowest energy?

Q2. Can we remove the K **rows** with the lowest energies?

Q3. Can we remove the K **columns** with the lowest energies?

April 23, 2024

Ranjay Krishna, Jieyu Zhang

Optimal

Pixel Removal

Least-energy pixels (per row)

Least-energy columns

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 37

Solution: A Seam

• A seam is a connected path of pixels from top to bottom (or left to right). Exactly one in each row (or column)

$$s^x = \{s^x_i\}_{i=1}^n$$

April 23, 2024

Ranjay Krishna, Jieyu Zhang

Solution: A Seam

• A seam is a connected path of pixels from top to bottom (or left to right). Exactly one in each row (or column)

$$s^{x} = \{s_{i}^{x}\}_{i=1}^{n}$$

$$s^{x} = \{x(i), y\}_{i=1}^{n}$$
for every row i
find the column with
the lowest energy
$$i = 1 \text{ for every row i}$$

$$i = 1 \text{ for every ro$$

Solution: A Seam

• A seam is a connected path of pixels from top to bottom (or left to right). Exactly one in each row (or column)

$$s^{x} = \{s_{i}^{x}\}_{i=1}^{n}$$

$$s^{x} = \{\underbrace{x(i), i}_{i=1}^{n}, \underbrace{i=1}_{\text{for every row i}}$$
find the column with the lowest energy

s.t.
$$\forall i, |x(i) - x(i-1)| \le 1$$

Ensure that seam is "connected". Columns can only change by a maximum of 1 column

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 40

A Seam

• A connected path of pixels from top to bottom (or left to right). Exactly one in each row

$$\mathbf{s}^{\mathbf{x}} = \{s_i^x\}_{i=1}^n = \{(x(i), i)\}_{i=1}^n, \text{ s.t. } \forall i, |x(i) - x(i-1)| \le 1$$

$$\mathbf{s}^{\mathbf{y}} = \{s_j^y\}_{j=1}^m = \{(j, y(j))\}_{j=1}^m, \text{ s.t. } \forall j | y(j) - y(j-1) | \le 1$$

Ranjay Krishna, Jieyu Zhang

How do we find the optimal Seam?

Ranjay Krishna, Jieyu Zhang

The Optimal Seam

$$E(\mathbf{I}) = \left|\frac{\partial}{\partial x}\mathbf{I}\right| + \left|\frac{\partial}{\partial y}\mathbf{I}\right| \implies s^* = \arg\min_{S} E(s)$$

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 43

Today's agenda

- Image retargeting
- Seam carving
- Dynamic programming
- Applications
- Forward algorithm

Ranjay Krishna, Jieyu Zhang

Input: Given an energy E(i, j)

5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8

Energy - E(i, j)

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 45

- Create a cost matrix M with the following property:
 - M(i, j) = minimal cost of a seam going through pixel (i, j)
 - \circ starting from j=0

5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8

Energy - E(i, j)

April 23, 2024

M(i, j)

Ranjay Krishna, Jieyu Zhang

M(i, 0) = E(i, 0) of a seam going through pixel (i, j)

5	8	12	3

5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8

Energy - E(i, j)

April 23, 2024

M(i, j)

Ranjay Krishna, Jieyu Zhang

Q. What do you think should be this value?

5	8	12	3
	?		

5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8

Energy - E(i, j)

April 23, 2024

M(i, j)

Ranjay Krishna, Jieyu Zhang

M(i, j) = total energy of seam going through pixel (i, j) from j=0

5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8

Energy - E(i, j)

April 23, 2024

M(i, j)

Ranjay Krishna, Jieyu Zhang

The recurrence formula

$$\mathbf{M}(i, j) = E(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$$

5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8

Energy - E(i, j)

April 23, 2024

M(i, j)

Ranjay Krishna, Jieyu Zhang

5	8	12	3
	7		

5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8

Energy - E(i, j)

April 23, 2024

M(i, j)

Ranjay Krishna, Jieyu Zhang

$$\mathbf{M}(i, j) = E(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$$

5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8

Energy - E(i, j)

April 23, 2024

M(i, j)

Ranjay Krishna, Jieyu Zhang

$$\mathbf{M}(i, j) = E(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$$

5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8

Energy - E(i, j)

April 23, 2024

M(i, j)

Ranjay Krishna, Jieyu Zhang

$$\mathbf{M}(i, j) = E(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$$
5 8 12

	5	8	12	3
	9	7	6	12
	14	9	10	8
j)	14	14	15	8+8

5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8

Energy - E(i, j)

M(i, j)

Ranjay Krishna, Jieyu Zhang

Searching for minimum seam

Backtrack: Find the minimum M(i, j=m)

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 55

Backtrack

After finding minimum M(i, j) at row j,

find minimum M(i, j-1) but only be looking at neighboring locations: i-1, i, i+1

5	8	12	3
9	7	6	12
14	9	10	8
14	14	15	16

M(i, j)

Ranjay Krishna, Jieyu Zhang

Searching for Minimum

M(i, j)

Ranjay Krishna, Jieyu Zhang

Searching for Minimum

M(i, j)

Ranjay Krishna, Jieyu Zhang

The Optimal Seam - dynamic programming

• The recursion relation

$$\mathbf{M}(i, j) = E(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$$

• Can be solved efficiently using dynamic programming in

 $O(s \cdot n \cdot m)$ (s=3 in the original algorithm)

Ranjay Krishna, Jieyu Zhang

Horizontal and vertical cost maps

Ranjay Krishna, Jieyu Zhang

Lecture 9 -

Seam Carving

Ranjay Krishna, Jieyu Zhang

The Seam-Carving Algorithm

```
Algorithm: Seam carving
Input: Image I of size m x n
Output: Image I' of size m x n' where n' < n
I' = I
Do d=(n-n') times
Compute energy map on I'
Find optimal seam in E
Remove s from im
Return I'
```

For vertical resize: transpose the image

Running time: O(dmn)

Ranjay Krishna, Jieyu Zhang

Changing Aspect Ratio

Ranjay Krishna, Jieyu Zhang

Another example

Ranjay Krishna, Jieyu Zhang

Example seam carving

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 65

Example seam carving

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 66

Changing Aspect Ratio

Original

Retargeting

Scaling

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 67

Changing Aspect ratio

Scaling

April 23, 2024

Ranjay Krishna, Jieyu Zhang

Changing Aspect Ratio

Original

Retarget

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 69

Changing Aspect Ratio

Original

Retarget

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 70

Questions

• Q: Will the result be the same if the image is flipped upside down?

Ranjay Krishna, Jieyu Zhang

Q. What if we simultaneously want to reduce both width and height?

m x n -> m' x n'

- 1. Should we remove horizontal seam first?
- 2. Should we remove vertical seams first?
- 3. Alternate between the two?
- 4. Any other ideas?

Ranjay Krishna, Jieyu Zhang

What if we simultaneously want to reduce both width and height?

m x n -> m' x n'

- 1. Should we remove horizontal seam first?
- 2. Should we remove vertical seams first?
- 3. Alternate between the two?
- 4. Any other ideas?

The optimal order can be found! Dynamic Prog (again)

Ranjay Krishna, Jieyu Zhang

Retargeting in Both Dimensions

• Let T(r,c) denote a new cost matrix of obtaining an image of size (n-r)x(m-c).

$$\mathbf{T}(r,c) = \min(\mathbf{T}(r-1,c) + E(\mathbf{s}^{\mathbf{x}}(\mathbf{I}_{\mathbf{n}-\mathbf{r}-1\times\mathbf{m}-\mathbf{c}})), \mathbf{T}(r,c-1) + E(\mathbf{s}^{\mathbf{y}}(\mathbf{I}_{\mathbf{n}-\mathbf{r}\times\mathbf{m}-\mathbf{c}-1})))$$

Ranjay Krishna, Jieyu Zhang

Retargeting in Both Dimensions

• Let T(r,c) denote a new cost matrix of obtaining an image of size (n-r)x(m-c).

$$\mathbf{T}(r,c) = \min(\mathbf{T}(r-1,c) + E(\mathbf{s}^{\mathbf{x}}(\mathbf{I}_{\mathbf{n}-\mathbf{r}-1\times\mathbf{m}-\mathbf{c}})), \mathbf{T}(r,c-1) + E(\mathbf{s}^{\mathbf{y}}(\mathbf{I}_{\mathbf{n}-\mathbf{r}\times\mathbf{m}-\mathbf{c}-1})))$$

where $E(\mathbf{s}^{\mathbf{x}}(\mathbf{I}_{n-r-1\times m-c}))$ is the cost of removing a horizontal seam from the image $\mathbf{I}_{n-r-1\times m-c}$

Ranjay Krishna, Jieyu Zhang

Optimal Order Map

Removal of horizontal seams ???

Removal of vertical seams

Ranjay Krishna, Jieyu Zhang

Lecture 9 -

Is it optimal...

- ... for removing ONE seam?
- ... for removing multiple seams?

Ranjay Krishna, Jieyu Zhang

Is it optimal...

- ... for removing ONE seam?
- ... for removing multiple seams?

Consider HVV (how many possible orderings?)
Cost(V) on HV not necessarily equal Cost(V) on VH
But we keep track of only one: min(HV,VH)...

Today's agenda

- Image retargeting
- Seam carving
- Dynamic programming
- Applications
- Forward algorithm

Ranjay Krishna, Jieyu Zhang

Image expansion - Repeat the lowest energy seam?

Ranjay Krishna, Jieyu Zhang

Image Expansion – Repeat the K lowest energy seams

Scaling

Ranjay Krishna, Jieyu Zhang

Can you tell if this image has been enlarged or reduced?

Ranjay Krishna, Jieyu Zhang

Combined Insert and Remove

Insert & remove seams

Scaling

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 83

Multi-Size Images

- We can create a new <u>representation</u> of an image that will allow adapting it to different sizes!
 - 1. Precompute all seams once
 - 2. Realtime resizing / transmit with content

Ranjay Krishna, Jieyu Zhang

Multi-Size Images

Ranjay Krishna, Jieyu Zhang

Lecture 9 -

Multi-Size Image Representation

Ranjay Krishna, Jieyu Zhang

Multi-Size Image Representation

Ranjay Krishna, Jieyu Zhang

Content Enhancement

Q. How would you use seam carving to do this?

Ranjay Krishna, Jieyu Zhang

Replace E(i, j) with user defined energies

Recall our seam equation

 $\mathbf{M}(i, j) = E(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$

Set E(i, j) to be infinity is a user wants to keep this pixel Set E(i, j) to be negative number if a user wants to get rid of it.

Ranjay Krishna, Jieyu Zhang

Object Removal

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 90

Object Removal

Input

Retargeted

Pigeon Removed

Girl Removed

Ranjay Krishna, Jieyu Zhang

Find the Missing Shoe!

Ranjay Krishna, Jieyu Zhang

Solution

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 93

Use face detector to set energies of faces high

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 94

With User Constraints

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 95

Today's agenda

- Image retargeting
- Seam carving
- Dynamic programming
- Applications
- Forward algorithm

Ranjay Krishna, Jieyu Zhang

Questions

Q: What happens to the overall energy in the image during seam carving?

Ranjay Krishna, Jieyu Zhang

Preserved Energy

If we measure the average energy of pixels in the image after applying a resizing operator...

...the average should increase!

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 98

Limitations

Content

Structure

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 99

Inserted Energy

Ranjay Krishna, Jieyu Zhang

Seam carving creates artifacts breaks edges

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 101

Preserved Energy

M(i, j)

Energy increases after every seam removal

While resizing: remove *as many* low energy pixels and *as few* high energy pixels!

Ranjay Krishna, Jieyu Zhang

Image Reduction \longrightarrow

Ranjay Krishna, Jieyu Zhang

Minimize Inserted Energy

 Instead of removing the seam of least energy, remove the seam that <u>inserts the least energy</u> to the image !

Ranjay Krishna, Jieyu Zhang

Tracking Inserted Energy

Three possibilities when removing pixel P_{i,j}

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 105

Pixel P_{i,j} : Left Seam

 $C_L(i,j) = |I(i,j+1) - I(i,j-1)| + |I(i-1,j) - I(i,j-1)|$

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 106

Pixel P_{i,j} : Right Seam

$$C_R(i,j) = |I(i,j+1) - I(i,j-1)| + |I(i-1,j) - I(i,j+1)|$$

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 107

Pixel P_{i,j} : Vertical Seam

Ranjay Krishna, Jieyu Zhang

Old Backward Cost Matrix

$$M(i,j) = E \quad (j) + \min \begin{cases} M(i-1,j-1) \\ M(i-1,j) \\ M(i-1,j+1) \end{cases}$$

Ranjay Krishna, Jieyu Zhang

New Forward Looking Cost Matrix

$$M(i,j) = E(i,j) + min egin{cases} M(i-1,j-1) + C_L(i,j) \ M(i-1,j) + C_V(i,j) \ M(i-1,j+1) + C_R(i,j) \end{cases}$$

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 110

Results

Backward

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 111

Results

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 112

Backward vs. Forward

Backwar

Forward

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 113

Results

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 114

From Images to Videos

In general, video processing is a much (much!) harder problem

- 1. Cardinality
 - Suppose 1min of video x 30 fps = 1800 frames
 - Say your algorithm processes an image in 1 minute
 - 1 video would take 30 hours !!
- 2. Dimensionality/algorithmic
 - Temporal coherency: human visual system is highly sensitive to motion!

Lecture 9 - 115

April 23, 2024

Ranjay Krishna, Jieyu Zhang

Seam-Carving Video?

• Naive... frame by frame independently

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 116

Frame-by-frame Seam-Carving

Let's check out this video

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 117

From 2D to 3D

1D paths in images

2D manifolds in video cubes

Ranjay Krishna, Jieyu Zhang

Example video retargeting

Ranjay Krishna, Jieyu Zhang

Object detection + seam carving

Ranjay Krishna, Jieyu Zhang

Today's agenda

- Image retargeting
- Seam carving
- Dynamic programming
- Applications
- Forward algorithm

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 121

Next lecture

Segmentation and grouping

Ranjay Krishna, Jieyu Zhang

References

- Seam Carving for Content-Aware Image Resizing Avidan and Shamir 2007
- Content-driven Video Retargeting Wolf et al. 2007
- Improved Seam Carving for Video Retargeting Rubinstein et al. 2008
- Optimized Scale-and-Stretch for Image Resizing Wang et al. 2008
- Summarizing Visual Data Using Bidirectional Similarity Simakov et al. 2008
- Multi-operator Media Retargeting Rubinstein et al. 2009
- Shift-Map Image Editing Pritch et al. 2009
- Energy-Based Image Deformation Karni et al. 2009
- Seam carving in Photoshop CS4: <u>http://help.adobe.com/en_US/Photoshop/11.0/WS6F81C45F-2AC0-4685-8FFD-DBA374BF21CD.html</u>

Ranjay Krishna, Jieyu Zhang

Lecture 9 - 123

Ranjay Krishna, Jieyu Zhang

