Lecture 8

Detectors and Descriptors
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Administrative

A2 is out
- Due April 25th

A3 is going to be out this weekend
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Administrative

- Recitation this Friday
- Fatemah
- Geometric transformations
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So far: Corners as key-points

- We should easily recognize the corner point by looking through a small
window (/ocality)

- Shifting the window in any direction should give a large change in intensity
(good localization)

“flat” region: “edge”: “corner”:
no change in no change along significant change
all directions the edge direction in all directions
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So far: Harris Corner Detector marisss

e Compute second moment matrix
(autocorrelation matrix)

1. Image
I’(c,) I11/(c),) derivatives
M(GjaGD):g(Gj)*|:[] (GD ) ]2263
R 2. Square of
op: for Gaussian in the derivative calculation derivatives
o;: for Gaussian in the windowing function
3. Gaussian
filter g(s)

4. Cornerness function - two strong eigenvalues
0 =det[M(o,,0 ,)]-aftrace(M (c,,0 )]’
=g(I)g()~-[g(I 1)) —alg(l)+g()T

5. Perform non-maximum suppression
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So far: Harris Detector Properties

e Translation invariance?

Ranjay Krishna, Jieyu Zhang Lecture 8 - 6 Apiil 18, 2024



So far: Harris Detector Properties

e [ranslation invariance
e Rotation invariance?

Ellipse rotates but its shape (i.e.
eigenvalues) remains the same

Corner response 0 is invariant to image rotation
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So far: Harris Detector Properties

e [ranslation invariance
e Rotation invariance
e Scale invariance?

N\

A = £

Corner All points will be
classified as edges!

Not invariant to image scale!
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Today's agenda

e Scale invariant keypoint detection
e Local descriptors (SIFT)
e Global descriptors (HoG)
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What will we learn today?

e Scale invariant keypoint detection
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Scale Invariant Detection

e Consider regions (e.g. circles) of different sizes around a point

e \What region size do we choose, so that the regions look the same in both
Images”?
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Problem: How do we choose region sizes independently

iIn each image”?

Image 1

region size

region size
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Solution: design a “scale-invariant” detector

e Assume that the detector is made up of a series of functions,
o each function depends on the pixel values and the region’s size

e The function on the region should have the same value even if the keypoints
are at different scales

Image 1 Image 2

region size region size )
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Scale Invariant Detection

e Common approach to choose scale:
o Take a local maximum of this function

e Important: this scale invariant region size is found in each image
iIndependently!

e Observation: the region size at the maximum should be correlated to
keypoint's scale.

Image 1 Image 2

region size region size
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Scale Invariant Detection

e Common approach to choose scale:
o Take a local maximum of this function

e Important: this scale invariant region size is found in each image
iIndependently!

e Observation: the region size at the maximum should be correlated to
keypoint’'s scale.

f fl
Image 1 Image 2
| J scale = 2x . J
: ) :
! region size i region size
S > 82 >
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Scale Invariant Detection

e A “good” function for scale selection has one stable sharp peak

= |

region size region size region size

e For usual images: a good function would be one which responds to
contrast (sharp local intensity change)
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Review: detecting edges

Signal

Image f

Gaussian Filter /,

Kernel

o

Convolution /), % f

Convolution

Derivative a%(h, * f)

Differentiation

0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Review: Because convolutions are linear:

Sigma = 50

D(hxf)=(Lh)xf

.................................................

.....................................................

| | | | | | | 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

ox
| n ! | i ! ! A I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
o
(9 -
(o]
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O_ ........ : l T i i —

I | I 1 1 l
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Another similar filter: The Laplacian

. *f 02
Laplacian 7° f = ()Tf + BT]; 0[-110
_1] 4 [-1
0]-1|0
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Another similar filter: The Laplacian (second
derivative) of a Gaussian

Beed 0(-1]0

I I I ! 1 1 I | !
0 200 400 600 800 1000 1200 1400 1600 1800 2000

a_Qh 50} S T —— ....... ......... ........ ]
Ox2 o : . . ; ; : : : :
Laplacian of Gaussian : : : : : : : : :
0 200 400 600 800 1000 1200 1400 1600 1800 2000 Edge a‘t Zero
_ T T T T T T T T T — CFOSSIng
52
(G_ajh) " f g0_ .......
O

] ] ] ] ] ] ] ] ]
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Laplacian of a Gaussian

2000

M 1500] - - - - - AR M Pl e AP SR

e et A (U

Characteristic scale
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LoG is very good to detecting not just edges or
corners but any “blob”
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1 D [\ Blob A ﬂ Blob B /’—\T
e g

example '

Blob B is 2x as wide as blob A
Of hOW Blob C is 3x as wide as blob B
blobs are
detected
with LoG
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1 D [\ Blob A ﬂ Blob B m
e g

example :

of how Y AN JAE
blobs are .

detected e W s s
with LoG
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1 D [\ Blob A ﬂ Blob B /’—\T
f(0) g

example :
of how w A\ AU J\
blobs are 7%,

detected S
with LoG
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1 D A Blob A /—\ Blob B m
e g

example |

of how .\ J\ J\
blobs are .

detected e M v o
with LoG
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By o [\ Blob A /*‘\ Blob B F \ Blob C

iIncreasing ) | : |

sigma, we VAN A =
. Characterlst]c Scale (¢%)

can o e A/

detect '

blobs of  F#rw : e a

dlﬂ:e rent Liocal Extrema in (x, a)%Space Represent Blobs

sizes
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Given: 1D signal f(x)

2

d“n
Compute: o2 ax; « f(x) at many scales (g, 04,05, ..., 0%).

62
0x?2

- f (%)

Find: | (x*,0*) = arg max
(x,0)

x*: Blob Position

o™ : Characteristic Scale (Blob Size)
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Example in 2D

Normalized LoG (NLoG) is used to find blobs in images

Laplacian Gaussian LoG NLoG
V2 = i 5—2
dx? 0y?

N, Vn,

Location of Blobs identified by Local maxima after applying
NLoG at many scales.
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Example in 2D

S(x,y,0,) S(x,y,0,) S(x,y,0,) S(x,y,03)

>

Increasing o, Higher Scale, Lower Resolution

Scale Space: Stack of images created by filtering an image with
Gaussians of different sigma values

S(x,y,0) =n(x,y,0) *1(x,y)
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Example in 2D

S(x,y,0,) S(x,y,0,) S(x,y,0,) S(x,y,03)

>

Increasing o, Higher Scale, Lower Resolution

Selecting sigmas to generate the scale-space: O = 0os* | k=0123,..

s: Constant multiplier
o,: Initial Scale
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Example in 2D

a?V?S(x,y,0)

NLoG = I(x,
( ? * 1Y) O Extremum

o 01 Oy o3 Scale
Characteristic Scale (a*)
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Example in 2D

S(x,y,00) S(x,y,01) S(x,y,0,) S(x,y,03)

a?V?S(x,y,0)
(NLoG * I(x,y))

® @ @
®
No Strong Extremum = No Blob
0o 01 O, 03 Scale
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Given an image I(x,y)

Convolve the image using NLoG at many scales o

Find:

(x*,y*,0%) = argmax |c*V*ng * I(x,y)
(X,y,0)

(x*,y"): Position of the blob
o*: Size of the blob
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Laplacian of a Gaussian

Laplacian (2" o |
derivative) of g Function
Gaussian response
(LoG)

>

o . ’ Image blob size
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The LoG is very similar to the difference of
Gaussians (DoG)

JL - /\ - ~ Laplacian of Gaussian

(LOG)
g — 9o

Fxg90)— f*xg0) = f*(90) — 92)
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LoG and DoG are very similar

Note: both filters are invariant to
scale and rotation
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Overall SIFT detector algorithm

Gaussian Difference of

Scale-Space Gaussians (DoG)

S(x,y,0) ~ (s — 1)a?V?S(x,y,0)
[Lowe 2004]
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Extracting SIFT keypoints and scales

e Choose the maxima within 3x3x3 neighborhood.

D e AR A A

L L oD S
L L o S
L L I S

D(kzcr)

ST T L T H A

Scale

D(ko)

(A )

A =7, Y, A

/

T T T LT
L L [ororr S

X is selected if it is larger or smaller than all 26 neighbors
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Extracting SIFT keypoints and scales

e Sigma value tells you how big the blog is
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Difference-of-Gaussians

G( 26)*1
Glko )* I

D(o)=(Glko)-Glo)* 1

Scale, o

Gaussian:
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Difference of Gaussians (DoG) example

Original video Blurred with a Blurred with a different
Gaussian kernel Gaussian kernel

What happens if you subtract one blurred image from another?
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https://www.youtube.com/watch?v=oTud1De_W4s

Difference of Gaussians (DoG) example

Blurred with a Blurred with a different
Gaussian kernel: k1 Gaussian kernel: k2

Ranjay Krishna, Jieyu Zhang


https://www.youtube.com/watch?v=oTud1De_W4s

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. 1JCV 2004

Scale Invariant Detectors

scale

e Harris-Laplacian® N
Find local maximum of:

o Harris corner detector in
space (image coordinates) Y P

o Laplacian in scale

y

XY \J > ¥
«— DoG — «— Laplacian —

«— Harris —
 DoG (from SIFT by Lowe)* ___
Find local maximum of: A —
ng;‘zeanncs Sf)cfaclieaussm nsin .
Lo A~
«— DoG —
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Scale Invariant Detectors

e Experimental evaluatlon of deteotors
W. rt Scale Change - IHarri:s-La'\placian

0.9 —#— S|FT (Lowe)
- Harris

Repeatability rate:

# correspondences
# possible correspondences

repeatability rate
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Scale Invariant Detection: Summary

e Given: two images of the same scene with a large scale
difference between them

e Goal: find the same interest points independently in each image

e Solution: search for maxima of suitable functions in scale (DoG
with different size) and in space (convolution over the image)

Methods:

1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over scale,
Harris’ measure of corner response over the image

2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space
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Today's agenda

e Local descriptors (SIFT)
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What's next?

We now can detect keypoints at varying scales. But what can we do with
those keypoints?

Things we would like to do:
* Search:
* We would need to find similar key points in other images
« Panorama stitching
« Match keypoints from one image to another.
« Etc...

For all such applications, we need a way of "describing the keypoints.
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Local Descriptors are vectors

e \We know how to detect points
e Next question: How to describe them for matching?

e Descriptor: Vector that summarizes the content of the keypoint
neighborhood.

Point descriptor should be:
1. Invariant
2. Distinctive
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Invariant Local Descriptors

Image content is transformed into local feature coordinates that are invariant
to translation, rotation, scale, and other imaging parameters

| #

(\

ik

Y
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Rotation invariant descriptors

So far, we have figured out the scale of the

keypoints.
- S0 we can normalize them to be the

same size.

Q. How do we re-orient the patches so that
they are rotation invariant?
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Constructing a rotation invariant descriptor

e We are given a keypoint and its scale from DoG

e \We will select the direction of maximum gradient as
the orientation for the keypoint

e \We will describe all features relative to this
orientation
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Visualizing what that looks like

Q. Which one is the direction of the maximum gradient
for this ketpoint patch?
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Visualizing what that looks like

Q. Which one is the direction of the maximum gradient
for this ketpoint patch?

Rotated patch to make sure
the gradient 8 =0

Ranjay Krishna, Jieyu Zhang Lecture 8 - 54 April 18, 2024



Feature descriptors become rotation invariant

e If the keypoint appears rotated in another image, the features will be the same,
because they're relative to the characteristic orientation
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SIFT descriptor (Scale-Invariant Feature Transform)

Gradient-based descriptor to capture texture Keypoint neighborhood
In the keypoint neighborhood

1. Blur the keypoint's image patch to remove
noise

2. Calculate image gradients over the
neighborhood patch.

3. To become rotation invariant, rotate the
gradients by -6 (- maximum direction)

o Now we’ve cancelled out rotation and have
gradients expressed at locations relative to
maximum direction 6

4. Generate a descriptor

0 keypoint

rotate
gradients
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Generating the descriptor from rotated patch

Keypoint neighborhood

e Q. How do we turn this into a vector?
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Generating the descriptor from rotated patch

Keypoint neighborhood

e \We can turn every pixel into a histogram
e Histogram contains 8 buckets, all of them zero except for one.
e Make the bucket of the direction of the gradient equal to 1
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Generating the descriptor from rotated patch

Keypoint neighborhood

e Do this for every single pixel

Q. What would the size of the keypoint vector be?
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Generating the descriptor from rotated patch

Keypoint neighborhood

e Do this for every single pixel

Q. Why might this be a bad strategy? What could go wrong?
Hint: think about how matching might fail
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Generating the descriptor from rotated patch

Keypoint neighborhood

e Solution: divide keypoint up into 4x4 “cells”
e (Calculate a histogram per cell
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SIFT descriptor formation

Array of Orientation
Keypoint neighborhood y

Histograms
PR AN k| K PF |k
BN ELAEEE y [KPelF[¥
R s | Kk |k
NI F | K |K | ¥
Image gradients Keypoint descriptor

e Quantize the patch into 4x4 array

e Calculate the overall gradients in each patch into their local orientated
histograms
o Also, scale down gradient contributions for gradients far from the center
o Each histogram is quantized into 8 directions (each 45 degrees)
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SIFT descriptor formation

Array of Orientation
Keypoint neighborhood y

Histograms

T

/:f ST 7 f\\ dqi Qq\/ K
- 7 T >
4__\$\“ T > w0~ ) /\K .>Vl\‘ é(
| = &5 | > P
P A A ul* e / =3 éé }K éé }<
NI S |K (K K
o
Image gradients Keypoint descriptor

e Q. What is the size of the descriptor?
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SIFT descriptor formation

Array of Orientation
Keypoint neighborhood y

Histograms
FOEHEEEY k[kEx [ %
y [KPePFx
AEEAGARE | K PF | K
NG K K K
Image gradients Keypoint descriptor

e 8 orientation bins per histogram,
e 4x4 histogram array,
e yields 8 x 4x4 = 128 numbers. L

e So a SIFT descriptor is a length 128 vector 91
HoG(k) = | ¥

| 128
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SIFT descriptor formation

Array of Orientation
Keypoint neighborhood y

Histograms
PR AN k| K PF |k
) [K[PFX
R s | Kk |k
NG K K K
Image gradients Keypoint descriptor

e SIFT descriptor is invariant to rotation (because we rotated the patch) and
scale (because we worked with the scaled image from DoG)

e \We can compare each vector from image A to each vector from image B to
find matching keypoints!

o How do we match distances?
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SIFT descriptor distances

Given keypoints k, and k,, we can calculate their HoG features:
HoG(k,)
HoG(k,)

We can calculate their matching score as:

d1iog (K1, k2) = \/Z(Hog(kl)z' — HoG (kz2);)?
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Find nearest neighbor for each keypoint in
image A in image B

Given keypoints k, and k,, we can calculate their HoG features:
HoG(k,)
HoG(k,)

We can calculate their matching score as:

CZ'HOg(k'l, kz) = \/Z(%Og(kl)z — Hog(k2)2)2
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/:f ™ ~ \\ %K %% }<

: : >0 A || oK | K

A few more technical details = —> -
NECH2SAp,

e Adding robustness to illumination changes: e e %K Akjg%

e Each descriptor is made of gradients (differences between pixels),
o It's already invariant to changes in brightness
o (e.g. adding 10 to all image pixels yields the exact same descriptor)

e A higher-contrast filter applied to the image will increase the magnitude of
gradients linearly.

o To correct for contrast changes, normalize the histogram (scale to
magnitude=1.0)

e \ery large image gradients are usually from unreliable 3D illumination effects
(glare, etc).

o To reduce their effect, clamp all values in the vector to be < 0.2 (an
experimentally tuned value). Then normalize the vector again.

e Result is a vector which is fairly invariant to illumination changes.
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Sensitivity to number of histogram orientations

60 | ; !
9 |
T 50} ; . S—— e
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Q : -
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S 40 | R :d
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© .
- H /
$ 30 i
o With 16 orientations ——
*;:, 20 S 2 - With 8 orientations - .
- With 4 orientations
o
© 10

0 i - 1
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Width n of descriptor (angle 50 deg, noise 4%)

Figure 8: This graph shows the percent of keypoints giving the correct match to a database of 40,000
keypoints as a function of width of the n X n keypoint descriptor and the number of orientations in
each histogram. The graph is computed for images with affine viewpoint change of 50 degrees and
addition of 4% noise.

David G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, 60, 2 (2004), pp. 91-110
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Feature stability to noise

100
e Match features after random
change in image scale & " SO
. . . . T T - e e i e sl
orientation, with differing levels - e S
of image noise g o
e Find nearest neighbor in E
database of 30,000 features g 40
S Keypoint location ——
Location & orientation -—&=—
20 Ne;nrest descript:or ----- e
0 | i
0% 2% 4% 6% 8% 10%

Image noise

Ranjay Krishna, Jieyu Zhang Lecture 8 - 70 April 18, 2024



Feature stability to affine changes

e Match features after random
change in image scale &
orientation, with 2% image
noise, and affine distortion

e Find nearest neighbor in
database of 30,000 features

Ranjay Krishna, Jieyu Zhang

100
80 & S > =AY
;\3 *
E 60
O
©
£
>
S 40
o
S Keypoint location ——
Location & orientation -
i Nearest descriptor —-*---
0

0 10 20 30 40
Viewpoint angle (degrees)
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Distinctiveness of features

e Vary size of database of 100
features, with 30 degree
affine change, 2% image 80 e e
noise g
(o) -§ 60 B
e Measure % correct for S
. . E
Slngle neareSt nelgthr = Keypoint location & orientation ——
matCh § 971 Correct nearest descriptor -
3
20 +
O N " N N s PR | " N N N 1
1000 10000 100000

Number of keypoints in database (log scale)
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Useful SIFT resources

e An online tutorial:
http://www.aishack.in/2010/05/sift-scale-invariant-feature-transform/

e Wikipedia: http://en.wikipedia.org/wiki/Scale-invariant_feature transform
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http://www.aishack.in/2010/05/sift-scale-invariant-feature-transform/
http://en.wikipedia.org/wiki/Scale-invariant_feature_transform

Figure 12: The training images for two objects are shown on the left. These can be recognized in a
cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown
on the right. A parallelogram is drawn around each recognized object showing the boundaries of the
original training image under the athi ne transformation solved for during recognition. Smaller squares
indicate the keypoints that were used for recognition.
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Figure 13: This example shows location recognition within a complex scene. The traming images for
locations are shown at the upper left and the 640x3 15 pixel test image taken from a different viewpoint
is on the upper right. The recognized regions are shown on the lower image. with keypoints shown
as squares and an outer parallelogram showing the boundaries of the training images under the affi ne
transform used for recognition.
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Recognition of specific objects, scenes

Rothganger et al. 2003
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Panorama stitching/Automatic image mosaic

http://matthewalunbrown.com/autostitch/autostitch.html
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http://matthewalunbrown.com/autostitch/autostitch.html

Wide baseline stereo

April 18, 2024
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Even robust to extreme occlusions

Ranjay Krishna, Jieyu Zhang Lecture 8 - 79 April 18, 2024



Applications of local invariant features

e Recognition

e \Wide baseline stereo

e Panorama stitching

e Mobile robot navigation
e Motion tracking

e 3D reconstruction

Ranjay Krishna, Jieyu Zhang Lecture 8 - 80 April 18, 2024



Today's agenda

e Global descriptors (HoG)
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Feature descriptors

e Find robust feature set that allows object shape to be recognized.
e Challenges

o Wide range of pose and large variations in appearances

o Cluttered backgrounds under different illumination

o Computation speed
e Histogram of Oriented Gradients (HoG)

= [1] N. Dalal and B. Triggs. Histograms of Oriented Gradients for
Human Detection. In CVPR, pages 886-893, 2005

x [2] Chandrasekhar et al. CHoG: Compressed Histogram of Gradients -
A low bit rate feature descriptor, CVPR 2009

Ranjay Krishna, Jieyu Zhang Lecture 8 - 82 April 18, 2024



Histogram of Oriented Gradients

e | ocal object appearance and
shape can often be characterized
well using gradients.

e Specifically, the distribution of local
Intensity gradients or edge
directions.
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Histogram of Oriented Gradients

e Dividing the image window into

small spatial regions (cells)

e Cells can be either rectangle or

radial.

e Each cell accumulates a weighted

local 1-D histogram of gradient

directions over the pixels of the 135 2 45
cell.
180 0
225 315
270
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Histogram of Oriented Gradients
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Histogram of Oriented Gradients
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Normalization

e For better invariance to illumination and shadowing, it is useful to
normalize the local responses

e Normalize each cell’s local histogram using histogram over a larger
regions (“blocks”).
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(b) (C)
Average gradient over example photos of people
Maximum positive weight in each block
Maximum negative weight in each block
A test image
It's HOG descriptor

HOG descriptor weighted by positive weights Visualizing HoG
g. HOG descriptor weighted by negative weights
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Visualizing HoG
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HoG features are good but gradients are

insufficient sometimes
| :'1!‘,\'1'.\";
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The HOGgles Challenge

Clap your hands when you see a person
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Chair Detections
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Chair Detections
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Car Detections

Ranjay Krishna, Jieyu Zhang Lecture 8 - 105 April 18, 2024



Car Detections
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Difference between HoG and SIFT

e HoG is usually used to describe larger image regions. SIFT is used for key
point matching

e SIFT histograms are normalized with respect to the dominant gradient.
HoG is not.

e HoG gradients are normalized using neighborhood blocks.
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Summary

e Scale invariant keypoint detection
e Local descriptors (SIFT)
e Global descriptors (HoG)
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Next time

Resizing image content
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