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Lecture 8
Detectors and Descriptors
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Administrative

2

A2 is out
- Due April 25th

A3 is going to be out this weekend
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Administrative

3

- Recitation this Friday
- Fatemah
- Geometric transformations
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So far: Corners as key-points
- We should easily recognize the corner point by looking through a small 

window (locality)
- Shifting the window in any direction should give a large change in intensity 

(good localization)

“edge”:
no change along 
the edge direction

“corner”:
significant change 
in all directions

“flat” region:
no change in 
all directions

4
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So far: Harris Corner Detector [Harris88] 
● Compute second moment matrix

(autocorrelation matrix) 1. Image 
    derivatives

Ix Iy

2. Square of    
    derivatives

Ix
2 Iy

2 IxIy

3. Gaussian 
    filter g(σI) g(Ix

2) g(Iy
2) g(IxIy)

R

4. Cornerness function – two strong eigenvalues

5. Perform non-maximum suppression

Slide credit: Krystian Mikolajczyk
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So far: Harris Detector Properties
● Translation invariance?

Slide credit: Kristen Grauman6
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So far: Harris Detector Properties
● Translation invariance
● Rotation invariance?

Ellipse rotates but its shape (i.e. 
eigenvalues) remains the same

Corner response θ is invariant to image rotation

7
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So far: Harris Detector Properties
● Translation invariance
● Rotation invariance
● Scale invariance?

Not invariant to image scale!

All points will be 
classified as edges!

Corner

Slide credit: Kristen Grauman8
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Today’s agenda

9

● Scale invariant keypoint detection
● Local descriptors (SIFT)
● Global descriptors (HoG)
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What will we learn today?

10

● Scale invariant keypoint detection
● Local descriptors (SIFT)
● Global descriptors (HoG)
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● Consider regions (e.g. circles) of different sizes around a point
● What region size do we choose, so that the regions look the same in both 

images?

Scale Invariant Detection

11
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Problem: How do we choose region sizes independently 
in each image?

f

region size

Image 2
f

region size

Image 1

12
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● Assume that the detector is made up of a series of functions,
○ each function depends on the pixel values and the region’s size

● The function on the region should have the same value even if the keypoints 
are at different scales

Solution: design a “scale-invariant” detector

f

region size

Image 2
f

region size

Image 1
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● Common approach to choose scale:
○ Take a local maximum of this function

● Important: this scale invariant region size is found in each image 
independently!

● Observation: the region size at the maximum should be correlated to 
keypoint’s scale.

Scale Invariant Detection

14

f

region size

Image 2
f

region size

Image 1
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● Common approach to choose scale:
○ Take a local maximum of this function

● Important: this scale invariant region size is found in each image 
independently!

● Observation: the region size at the maximum should be correlated to 
keypoint’s scale.

Scale Invariant Detection

f

region size

Image 2
f

region size

Image 1
scale = 2x

s1 s2
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● A “good” function for scale selection has one stable sharp peak

● For usual images: a good function would be one which responds to 
contrast (sharp local intensity change)

f

region size

bad

f

region size

bad

f

region size

Good !

Scale Invariant Detection
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Review: detecting edges

17
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Review: Because convolutions are linear:
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Another similar filter: The Laplacian

19
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Another similar filter: The Laplacian (second 
derivative) of a Gaussian 

Edge at zero 
crossing

20
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Laplacian of a Gaussian 

21
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LoG is very good to detecting not just edges or 
corners but any “blob”
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Blob B is 2x as wide as blob A
Blob C is 3x as wide as blob B

1D 
example 
of how 
blobs are 
detected 
with LoG

23
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1D 
example 
of how 
blobs are 
detected 
with LoG
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1D 
example 
of how 
blobs are 
detected 
with LoG
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1D 
example 
of how 
blobs are 
detected 
with LoG
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By 
increasing 
sigma, we 
can 
detect 
blobs of 
different 
sizes

27
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Example in 2D
Normalized LoG (NLoG) is used to find blobs in images

Location of Blobs identified by Local maxima after applying
NLoG at many scales.

29
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Example in 2D

Scale Space: Stack of images created by filtering an image with
Gaussians of different sigma values

30
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Selecting sigmas to generate the scale-space:

Example in 2D
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Example in 2D
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Example in 2D
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Laplacian of a Gaussian

Laplacian (2nd 

derivative) of 
Gaussian 
(LoG)

35

Image blob size
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The LoG is very similar to the difference of 
Gaussians (DoG)

36
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LoG and DoG are very similar

Note: both filters are invariant to 
scale and rotation
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Overall SIFT detector algorithm

38
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Extracting SIFT keypoints and scales

● Choose the maxima within 3x3x3 neighborhood. 

X is selected if it is larger or smaller than all 26 neighbors

39
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Extracting SIFT keypoints and scales

● Sigma value tells you how big the blog is

40
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Difference-of-Gaussians

Gaussian:

DoG:

 

41
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Difference of Gaussians (DoG) example

Original video Blurred with a 
Gaussian kernel

Blurred with a different 
Gaussian kernel

What happens if you subtract one blurred image from another?

Source: https://www.youtube.com/watch?v=oTud1De_W4s42

https://www.youtube.com/watch?v=oTud1De_W4s
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Difference of Gaussians (DoG) example

Original video Blurred with a 
Gaussian kernel: k

1

Blurred with a different 
Gaussian kernel: k

2

DoG: k
1
 – k

2

Source: https://www.youtube.com/watch?v=oTud1De_W4s

DoG: k
1
 – k

3
DoG: k

1
 – k

4

43

https://www.youtube.com/watch?v=oTud1De_W4s
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Scale Invariant Detectors
● Harris-Laplacian1

Find local maximum of:
○ Harris corner detector in 

space (image coordinates)
○ Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”.  IJCV 2004

scale

x

y

← Harris →

←
 L

ap
la

ci
an

 →

• DoG (from SIFT by Lowe)2

Find local maximum of:
– Difference of Gaussians in 

space and scale

scale

x

y

← DoG →

←
 D

oG
 →
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Scale Invariant Detectors

● Experimental evaluation of detectors 
w.r.t. scale change

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

Repeatability rate:
# correspondences
# possible correspondences

45
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Scale Invariant Detection: Summary
● Given: two images of the same scene with a large scale 

difference between them
● Goal: find the same interest points independently in each image
● Solution: search for maxima of suitable functions in scale (DoG 

with different size) and in space (convolution over the image)

Methods: 

1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over scale, 
Harris’ measure of corner response over the image

2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space

46
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Today’s agenda

47

● Scale invariant keypoint detection
● Local descriptors (SIFT)
● Global descriptors (HoG)
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What’s next?
We now can detect keypoints at varying scales. But what can we do with 
those keypoints?

Things we would like to do:
• Search:

• We would need to find similar key points in other images 
• Panorama stitching

• Match keypoints from one image to another.
• Etc…

For all such applications, we need a way of `describing` the keypoints.

48
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Local Descriptors are vectors
● We know how to detect points
● Next question: How to describe them for matching?
● Descriptor: Vector that summarizes the content of the keypoint 

neighborhood.

? Point descriptor should be:
1. Invariant
2. Distinctive

49
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Invariant Local Descriptors
Image content is transformed into local feature coordinates that are invariant 
to translation, rotation, scale, and other imaging parameters

50
50
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Rotation invariant descriptors

51

So far, we have figured out the scale of the 
keypoints. 
- So we can normalize them to be the 

same size.

Q. How do we re-orient the patches so that 
they are rotation invariant?
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● We are given a keypoint and its scale from DoG
● We will select the direction of maximum gradient as 

the orientation for the keypoint 
● We will describe all features relative to this 

orientation

Constructing a rotation invariant descriptor

52
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Visualizing what that looks like

53

Q. Which one is the direction of the maximum gradient 
for this ketpoint patch?

A)

B)

C)

D)



Ranjay Krishna, Jieyu Zhang April 18, 2024Lecture 8 -

Visualizing what that looks like

54

C)

Q. Which one is the direction of the maximum gradient 
for this ketpoint patch?

Rotated patch to make sure 
the gradient θ = 0
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Feature descriptors become rotation invariant

55

● If the keypoint appears rotated in another image, the features will be the same, 
because they’re relative to the characteristic orientation
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Gradient-based descriptor to capture texture 
in the keypoint neighborhood

1. Blur the keypoint’s image patch to remove 
noise

2. Calculate image gradients over the 
neighborhood patch.

3. To become rotation invariant, rotate the 
gradients by -θ (- maximum direction)
○ Now we’ve cancelled out rotation and have 

gradients expressed at locations relative to 
maximum direction θ

4. Generate a descriptor

SIFT descriptor (Scale-Invariant Feature Transform)

Keypoint neighborhood

56
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● Q. How do we turn this into a vector?

Generating the descriptor from rotated patch

02π

Keypoint neighborhood
Orientation Histogram

Orientation 
Histogram

57
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● We can turn every pixel into a histogram
● Histogram contains 8 buckets, all of them zero except for one.
● Make the bucket of the direction of the gradient equal to 1

Generating the descriptor from rotated patch

02π

Keypoint neighborhood
Orientation Histogram

Orientation 
Histogram

58
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● Do this for every single pixel

Q. What would the size of the keypoint vector be?

Generating the descriptor from rotated patch

02π

Keypoint neighborhood
Orientation Histogram

Orientation 
Histogram

59
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● Do this for every single pixel

Q. Why might this be a bad strategy? What could go wrong?
Hint: think about how matching might fail

Generating the descriptor from rotated patch

02π

Keypoint neighborhood
Orientation Histogram

Orientation 
Histogram

60
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Generating the descriptor from rotated patch

02π

Keypoint neighborhood
Orientation Histogram

Orientation 
Histogram

61

● Solution: divide keypoint up into 4x4 “cells”
● Calculate a histogram per cell



Ranjay Krishna, Jieyu Zhang April 18, 2024Lecture 8 -

● Quantize the patch into 4x4 array
● Calculate the overall gradients in each patch into their local orientated 

histograms
○ Also, scale down gradient contributions for gradients far from the center
○ Each histogram is quantized into 8 directions (each 45 degrees)

SIFT descriptor formation
Keypoint neighborhood

Array of Orientation 
Histograms

62
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SIFT descriptor formation
Keypoint neighborhood

Array of Orientation 
Histograms

63

● Q. What is the size of the descriptor?
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● 8 orientation bins per histogram, 
● 4x4 histogram array, 
● yields 8 x 4x4 = 128 numbers.
● So a SIFT descriptor is a length 128 vector

SIFT descriptor formation
Keypoint neighborhood

Array of Orientation 
Histograms

64
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● SIFT descriptor is invariant to rotation (because we rotated the patch) and 
scale (because we worked with the scaled image from DoG)

● We can compare each vector from image A to each vector from image B to 
find matching keypoints!
○ How do we match distances?

SIFT descriptor formation
Keypoint neighborhood

Array of Orientation 
Histograms

65
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SIFT descriptor distances
Given keypoints k1 and k2, we can calculate their HoG features:

HoG(k1)
HoG(k2)

We can calculate their matching score as:

66
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Find nearest neighbor for each keypoint in 
image A in image B
Given keypoints k1 and k2, we can calculate their HoG features:

HoG(k1)
HoG(k2)

We can calculate their matching score as:

67
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A few more technical details
● Adding robustness to illumination changes:
● Each descriptor is made of gradients (differences between pixels),

○ It’s already invariant to changes in brightness
○ (e.g. adding 10 to all image pixels yields the exact same descriptor)

● A higher-contrast filter applied to the image will increase the magnitude of 
gradients linearly. 
○ To correct for contrast changes, normalize the histogram (scale to 

magnitude=1.0)
● Very large image gradients are usually from unreliable 3D illumination effects 

(glare, etc). 
○ To reduce their effect, clamp all values in the vector to be ≤ 0.2 (an 

experimentally tuned value). Then normalize the vector again.
● Result is a vector which is fairly invariant to illumination changes.

68



Ranjay Krishna, Jieyu Zhang April 18, 2024Lecture 8 -

Sensitivity to number of histogram orientations

David G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

69
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Feature stability to noise
● Match features after random 

change in image scale & 
orientation, with differing levels 
of image noise

● Find nearest neighbor in 
database of 30,000 features

70
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Feature stability to affine changes
● Match features after random 

change in image scale & 
orientation, with 2% image 
noise, and affine distortion

● Find nearest neighbor in 
database of 30,000 features

71
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Distinctiveness of features
● Vary size of database of 

features, with 30 degree 
affine change, 2% image 
noise

● Measure % correct for 
single nearest neighbor 
match

72
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Useful SIFT resources
● An online tutorial: 

http://www.aishack.in/2010/05/sift-scale-invariant-feature-transform/
● Wikipedia: http://en.wikipedia.org/wiki/Scale-invariant_feature_transform

73

http://www.aishack.in/2010/05/sift-scale-invariant-feature-transform/
http://en.wikipedia.org/wiki/Scale-invariant_feature_transform
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Recognition of specific objects, scenes

Rothganger et al. 2003
Lowe 2002

Schmid and Mohr 1997 Sivic and Zisserman, 2003

76
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Panorama stitching/Automatic image mosaic

http://matthewalunbrown.com/autostitch/autostitch.html

77

http://matthewalunbrown.com/autostitch/autostitch.html
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Wide baseline stereo

78
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Even robust to extreme occlusions

79
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Applications of local invariant features
● Recognition
● Wide baseline stereo
● Panorama stitching
● Mobile robot navigation
● Motion tracking
● 3D reconstruction
● …

80



Ranjay Krishna, Jieyu Zhang April 18, 2024Lecture 8 -

Today’s agenda

81

● Scale invariant keypoint detection
● Local descriptors (SIFT)
● Global descriptors (HoG)
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Feature descriptors
● Find robust feature set that allows object shape to be recognized. 
● Challenges 

○ Wide range of pose and large variations in appearances 
○ Cluttered backgrounds under different illumination
○ Computation speed

● Histogram of Oriented Gradients (HoG)
■ [1] N. Dalal and B. Triggs. Histograms of Oriented Gradients for 

Human Detection. In CVPR, pages 886-893, 2005 
■ [2] Chandrasekhar et al. CHoG: Compressed Histogram of Gradients - 

A low bit rate feature descriptor, CVPR 2009
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Histogram of Oriented Gradients

● Local object appearance and 
shape can often be characterized 
well using gradients.

● Specifically, the distribution of local 
intensity gradients or edge 
directions.

83
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Histogram of Oriented Gradients

● Dividing the image window into 
small spatial regions (cells) 

● Cells can be either rectangle or 
radial. 

● Each cell accumulates a weighted 
local 1-D histogram of gradient 
directions over the pixels of the 
cell.

84
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Histogram of Oriented Gradients
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Histogram of Oriented Gradients

86
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Normalization
● For better invariance to illumination and shadowing, it is useful to 

normalize the local responses
● Normalize each cell’s local histogram using histogram over a larger 

regions (“blocks”).
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Visualizing HoG

a. Average gradient over example photos of people 
b. Maximum positive weight in each block 
c. Maximum negative weight in each block 
d. A test image 
e. It’s HOG descriptor 
f. HOG descriptor weighted by positive weights 

g. HOG descriptor weighted by negative weights
88



Ranjay Krishna, Jieyu Zhang April 18, 2024Lecture 8 -

Visualizing HoG

89
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HoG features are good but gradients are 
insufficient sometimes
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The HOGgles Challenge

Clap your hands when you see a person
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The HOGgles Challenge

102
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Chair Detections

103

(A) (B) (C) (D)

(F) (G)(E)
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Chair Detections

104



Ranjay Krishna, Jieyu Zhang April 18, 2024Lecture 8 -

Car Detections
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Car Detections

106
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Difference between HoG and SIFT
● HoG is usually used to describe larger image regions. SIFT is used for key 

point matching
● SIFT histograms are normalized with respect to the dominant gradient. 

HoG is not.
● HoG gradients are normalized using neighborhood blocks.
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Summary

108

● Scale invariant keypoint detection
● Local descriptors (SIFT)
● Global descriptors (HoG)
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Next time
Resizing image content


