Lecture 7

Keypoints and Corners

Ranjay Krishna, Jieyu Zhang

Administrative

A1 due today!!!

- You can use up to 2 late days

A2 is out

- Due April 25th

Ranjay Krishna, Jieyu Zhang

Lecture 7 - 2

Administrative

- Recitation this Friday
- Fatemah
- Geometric transformations

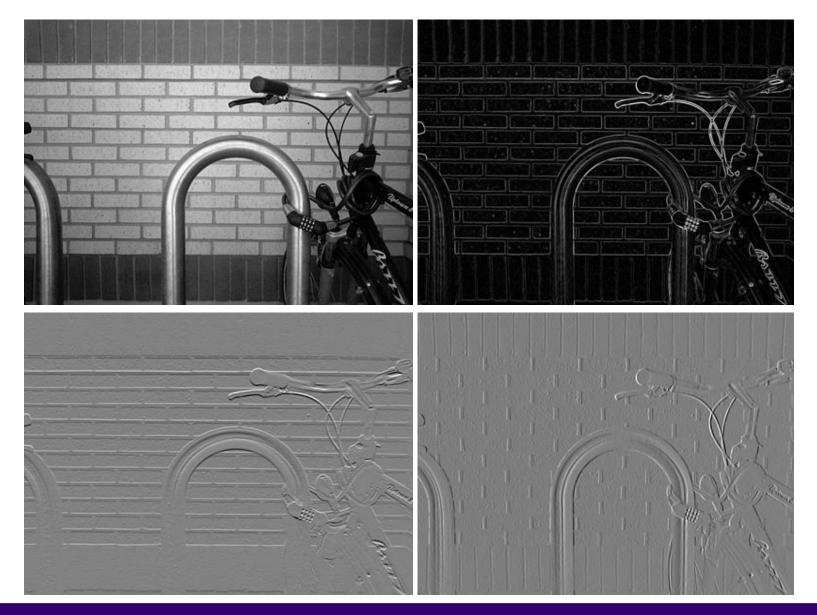
Ranjay Krishna, Jieyu Zhang

Lecture 7 - 3

So far: Sobel Filter

Step 1: Calculate the gradient magnitude at every pixel location.

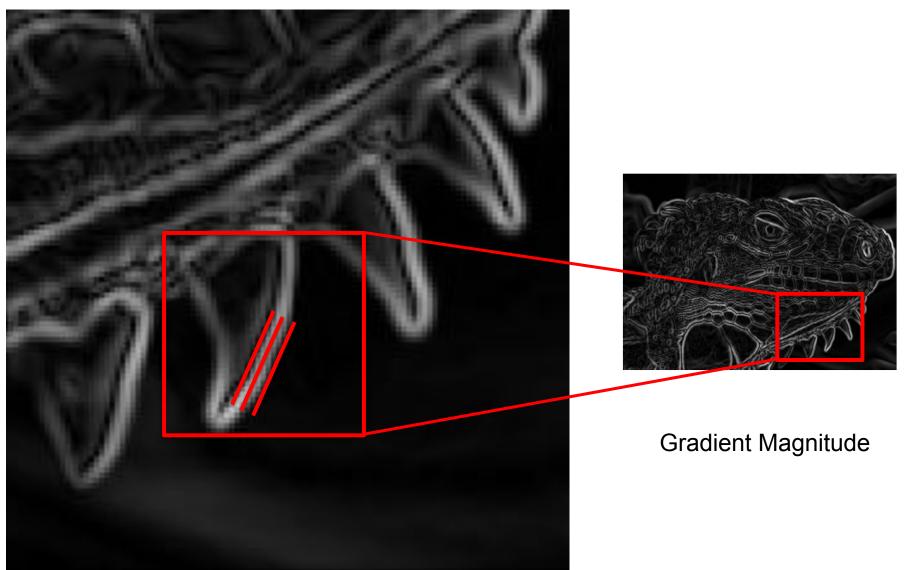
Step 2: Threshold the values to generate a binary image



Ranjay Krishna, Jieyu Zhang

Lecture 7 - 4

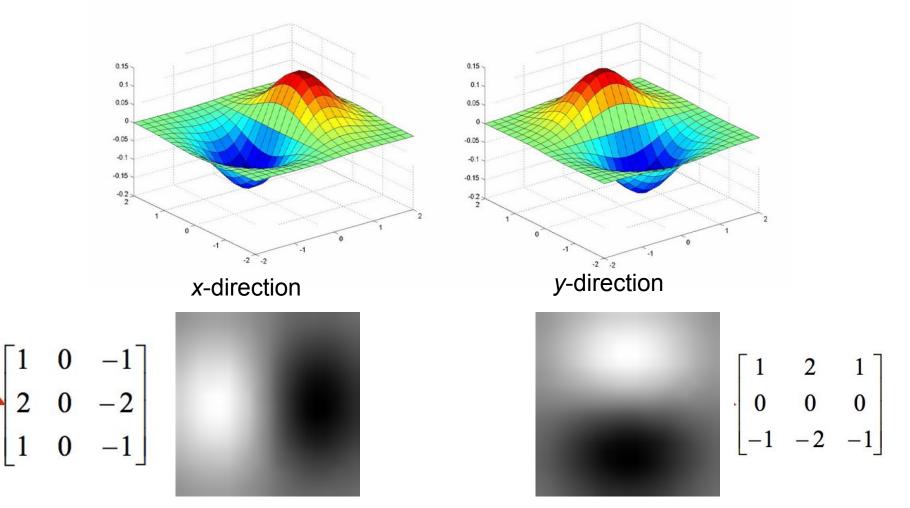
So far: challenges multiple disconnected edges



Ranjay Krishna, Jieyu Zhang

Lecture 7 - 5

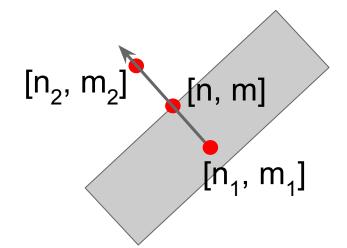
So far: Canny edge detector Use Sobel filters to find line estimates



Ranjay Krishna, Jieyu Zhang

Lecture 7 - 6

So far: Non-maximum suppression



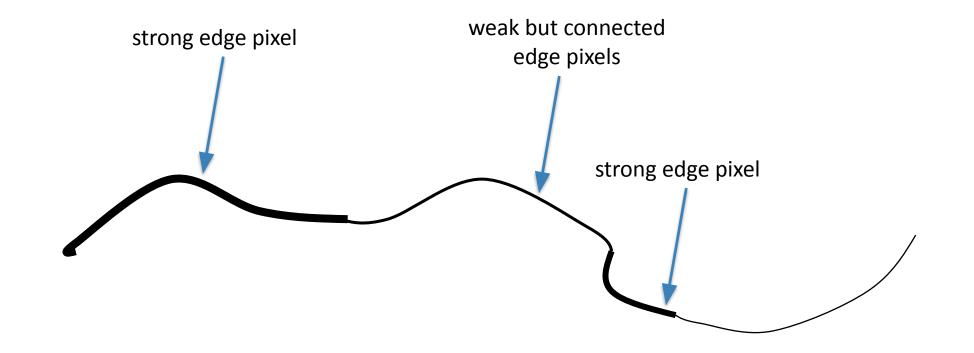
$$\mathbf{G}=\sqrt{{\mathbf{G}_x}^2+{\mathbf{G}_y}^2}$$

If
$$G[n,m] = \begin{cases} G[n,m] & \text{if } G[n,m] > G[n_1,m_1] \text{ and } G[n,m] > G[n_2,m_2] \\ 0 & \text{otherwise} \end{cases}$$

Ranjay Krishna, Jieyu Zhang

Lecture 7 - 7

So far: Hysteresis thresholding Strong and weak edges



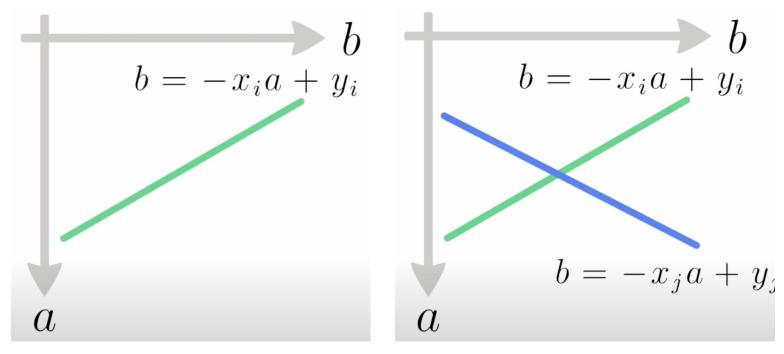
Source: S. Seitz

Ranjay Krishna, Jieyu Zhang

Lecture 7 - 8

So far: The Hough transform

- So: one point (x_i, y_i) gives a line in (a, b) space.
- Another point (x_i, y_i) will give rise to another line in (a,b)-space.
- Iterate over pairs of points, to vote for buckets of intersection in (a,b)-space

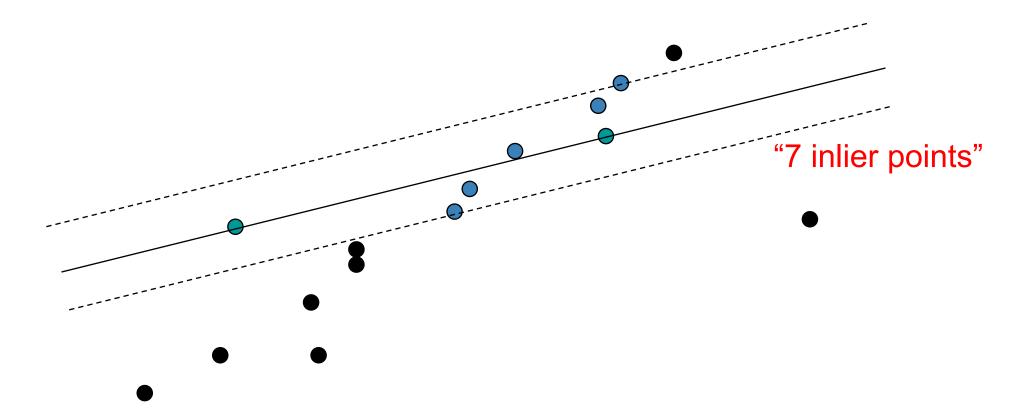


Ranjay Krishna, Jieyu Zhang

Lecture 7 - 9

So far: RANSAC

• Sample seed points, calculate line, count # of inliers, repeat



Ranjay Krishna, Jieyu Zhang

Today's agenda

- Local Invariant Features
- Harris Corner Detector

Ranjay Krishna, Jieyu Zhang

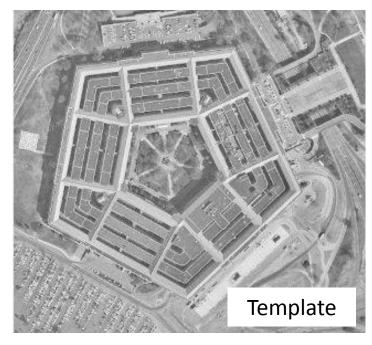
Lecture 7 - 11

Today's agenda

- Local Invariant Features
- Harris Corner Detector

Ranjay Krishna, Jieyu Zhang

Image matching: a challenging problem



Q1. Will cross-correlation work?

Q2. Can we use match the lines?

April 16, 2024

Ranjay Krishna, Jieyu Zhang

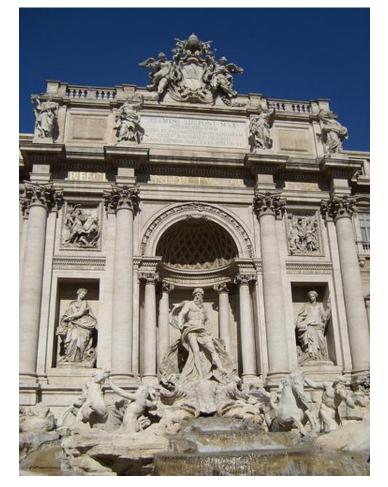
Q. How would you build a system that can detect this movie in the pile?

Ranjay Krishna, Jieyu Zhang

Lecture 7 - 14

Challenge: Perspective / viewpoint changes

by <u>Diva Sian</u>



by <u>swashford</u>

SlideAppril St 65ei2024

Ranjay Krishna, Jieyu Zhang

Challenge: partial observability

by <u>Diva Sian</u>

by <u>scgbt</u>

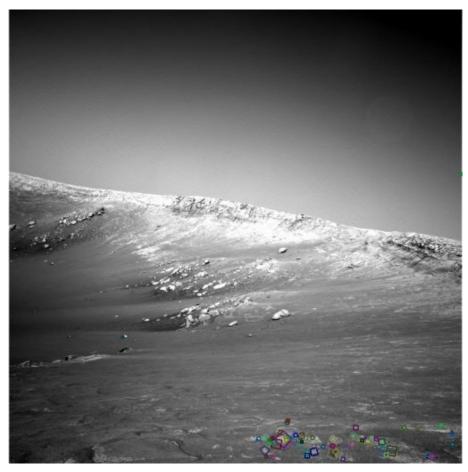
Ranjay Krishna, Jieyu Zhang

Challenge even for us

NASA Mars Rover images

Ranjay Krishna, Jieyu Zhang

Answer Below (Look for tiny colored squares)

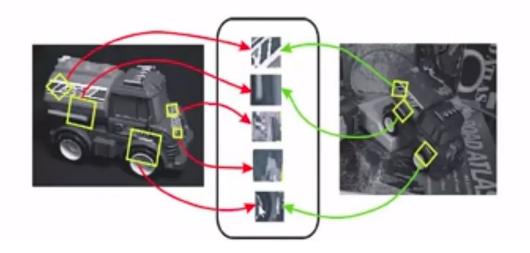


NASA Mars Rover images with SIFT feature matches (Figure by Noah Snavely)

Ranjay Krishna, Jieyu Zhang

Intuition behind how to match images

- Find matching patches
- Check to make sure enough patches



Ranjay Krishna, Jieyu Zhang

Lecture 7 - 19

Intuition behind how to match images

- Find matching patches
- Check to make sure enough patches

What do we need?

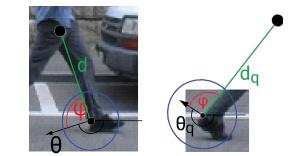
- We need to identify patches
- We need to learn to a way to describe each patch
- We need an algorithm to match the description between two patches

Ranjay Krishna, Jieyu Zhang

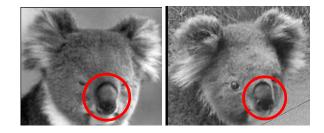
Motivation for using local features

- Global representations have major limitations
- Instead, describe and match only local regions
- Increased robustness to
 - \circ Occlusions

• Articulation



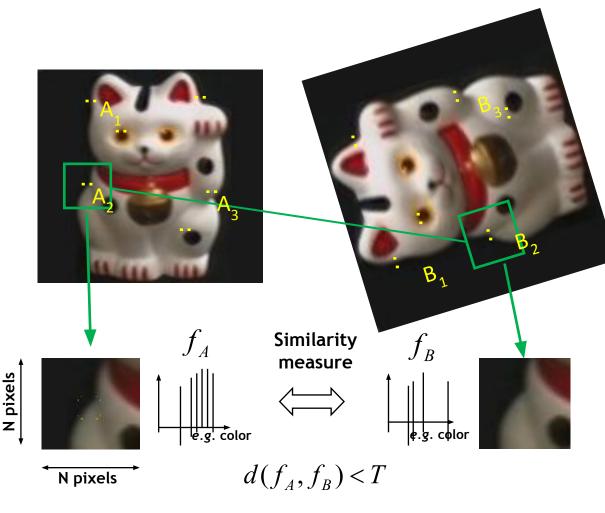
• Intra-category variations



Ranjay Krishna, Jieyu Zhang

Lecture 7 - 21

General Approach



1. Find a set of distinctive key-points

2. Define a region/patch around each keypoint

3. Describe and normalize the region content

4. Compute a local descriptor from the normalized region

April 16, 2024

5. Match local descriptors

Ranjay Krishna, Jieyu Zhang

Common Requirements

- Problem 1: How should we choose the key-points?
 - We want to detect the same points independently in both images

Ranjay Krishna, Jieyu Zhang

Lecture 7 - 23

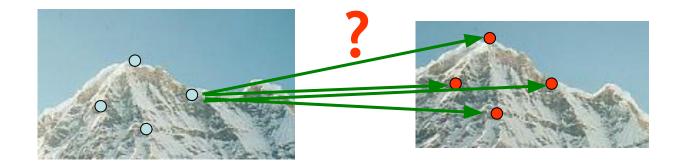
Darya Frolog Pfills 16, 2024

No chance to match if the key-points aren't the same

We need a repeatable detector!

Common Requirements

- Problem 1: How should we choose the key-points?
 Detect the same point independently in both images
- Problem 2: How should we describe each patch?
 o For each point correctly recognize the corresponding one



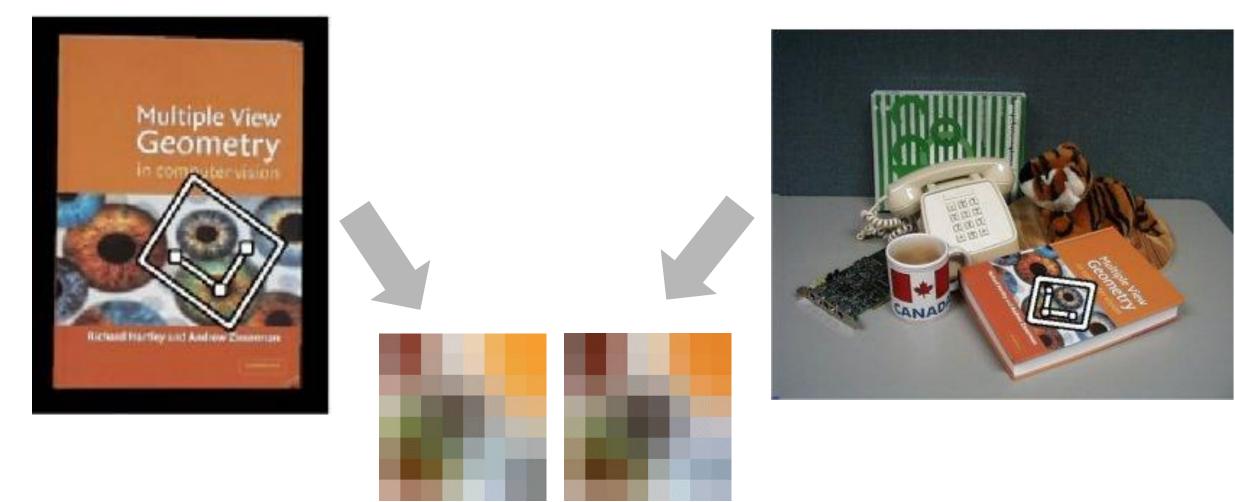
We need a reliable and distinctive descriptor!

Lecture 7 - 24

<u>April 516, 2024</u>

Ranjay Krishna, Jieyu Zhang

Descriptions should be invariant to rotation and translation

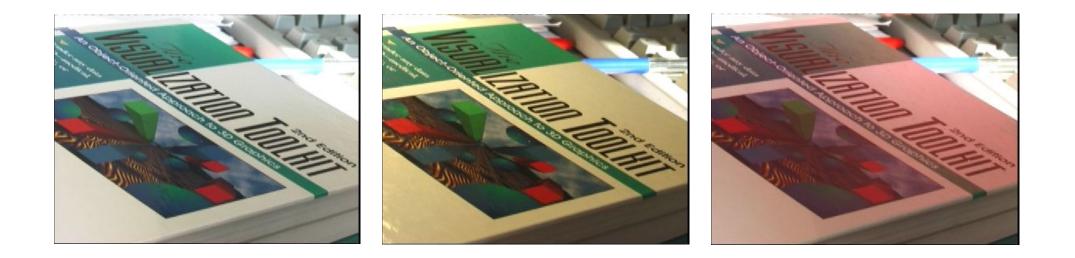


Ranjay Krishna, Jieyu Zhang

Lecture 7 - 25

Slide April 16; 2024

Descriptions should be invariant to photometric transformations



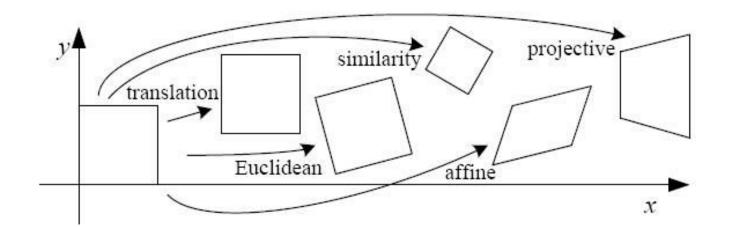
- Often modeled as a linear transformation:
 - Scaling + Offset

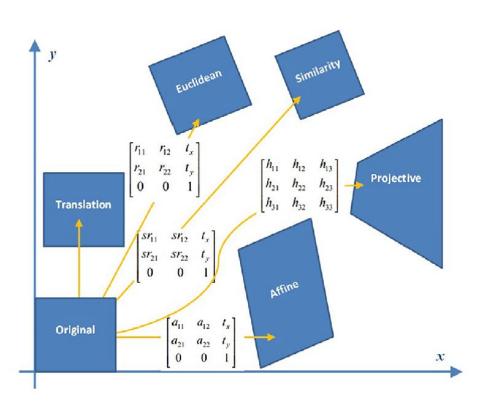
Slide credit: Tinne Tuytelaars

April 16, 2024

Ranjay Krishna, Jieyu Zhang

Levels of geometric transformations





Ranjay Krishna, Jieyu Zhang

Lecture 7 - 27

Slide credit Britial 6: 2024

Requirements for Local Features

- Patch selection needs to be repeatable and accurate
 Invariant to translation, rotation, scale changes
 Robust to out-of-plane (≈affine) transformations
 Robust to lighting variations, noise, blur, quantization
- Locality: Features are local, therefore robust to occlusion and clutter.
- Quantity: We need a sufficient number of regions to cover the object.

Lecture 7 - 28

Slide creap Bil ti16 ii 2024

- **Distinctiveness**: The regions should contain "unique" structure.
- Efficiency: Close to real-time performance.

Ranjay Krishna, Jieyu Zhang

Many existing feature detectors available

- Hessian & Harris
- Laplacian, DoG

- [Beaudet '78], [Harris '88]
 - [Lindeberg '98], [Lowe '99]
- Harris-/Hessian-Laplace [Mikolajczyk & Schmid '01]
- Harris-/Hessian-Affine
- EBR and IBR
- MSER
- Salient Regions
- Neural networks

[Mikolajczyk & Schmid '04] [Tuytelaars & Van Gool '04] [Matas '02] [Kadir & Brady '01] [Krichevsky '12]

Lecture 7 - 29

crApr 16; 2024

• Those detectors have become a basic building block for many applications in Computer Vision.

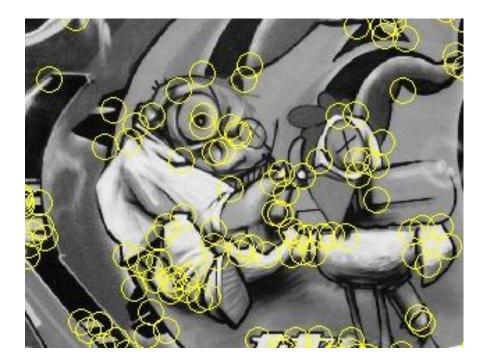
Ranjay Krishna, Jieyu Zhang

Today's agenda

- Local Invariant Features
- Harris Corner Detector

Ranjay Krishna, Jieyu Zhang

Keypoint Localization



• Goals:

• Repeatable detection

- Precise localization
- Interesting content

intuition ⇒ Look for 2D signal changes (LSI systems strike again)

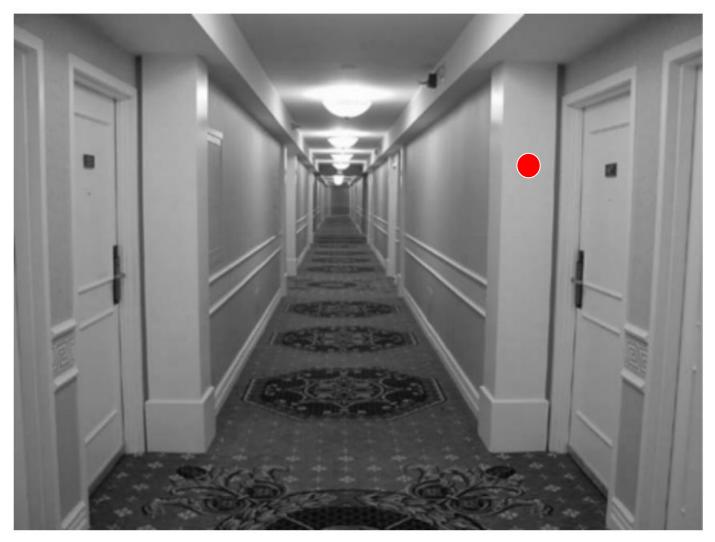
Ranjay Krishna, Jieyu Zhang

Lecture 7 - 31

Slide crApril ti16;ib2024

What are good patches?

Q. Is this a good patch for image matching?

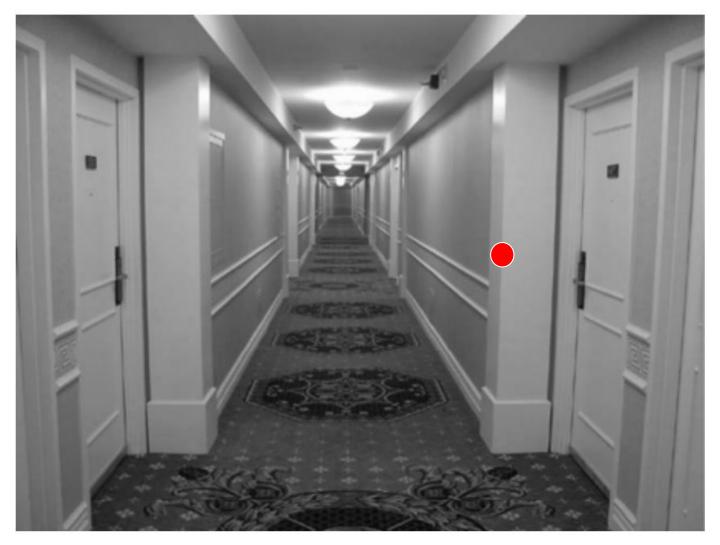


Ranjay Krishna, Jieyu Zhang

Lecture 7 - 32

What are good patches?

Q. What about this one?

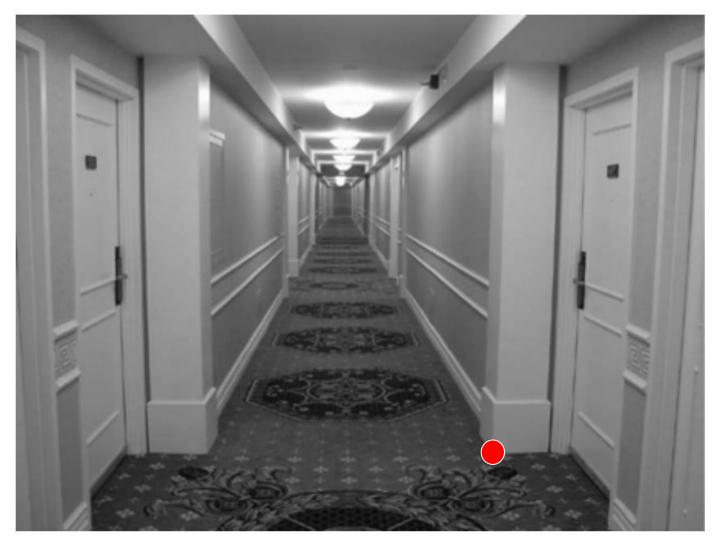


Ranjay Krishna, Jieyu Zhang

Lecture 7 - 33

What are good patches?

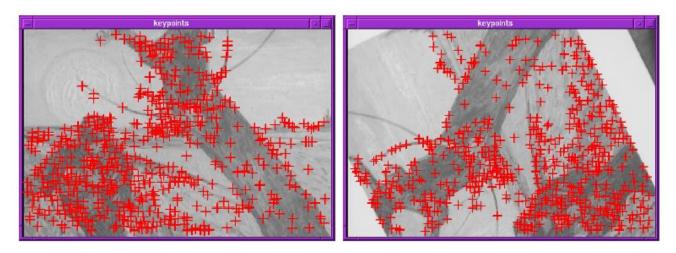
Q. Let's try another one?



Ranjay Krishna, Jieyu Zhang

Lecture 7 - 34

Finding Corners



How do we find corners using LSI systems?

The image gradient around a corner has two or more dominant directions

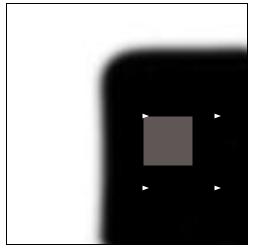
Corners are repeatable and distinctive

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*, 1988.

Ranjay Krishna, Jieyu Zhang

Corners are distinctive key-points

- We should easily recognize the corner point by looking through a small image patch (*locality*)
- Shifting the window in any direction should give a large change in intensity (good localization)





"flat" region: no change in all directions

"edge": no change along the edge direction

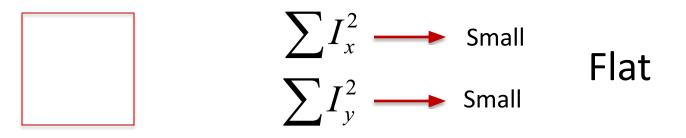
"corner": significant change in all directions

Slide credit: Alyosha Efros

April 16, 2024

Ranjay Krishna, Jieyu Zhang

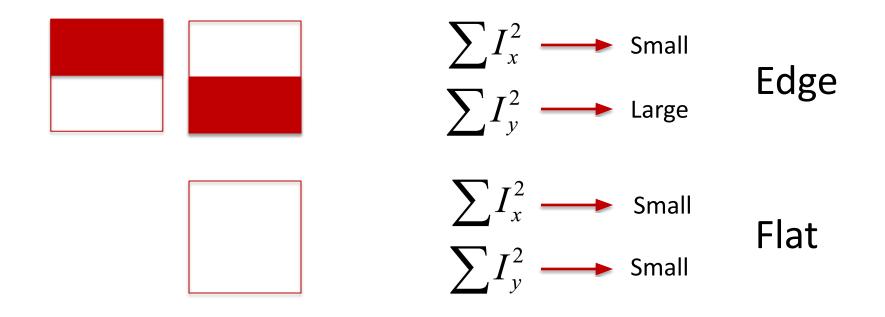
Flat patches have small image gradients



Ranjay Krishna, Jieyu Zhang

Lecture 7 - 37

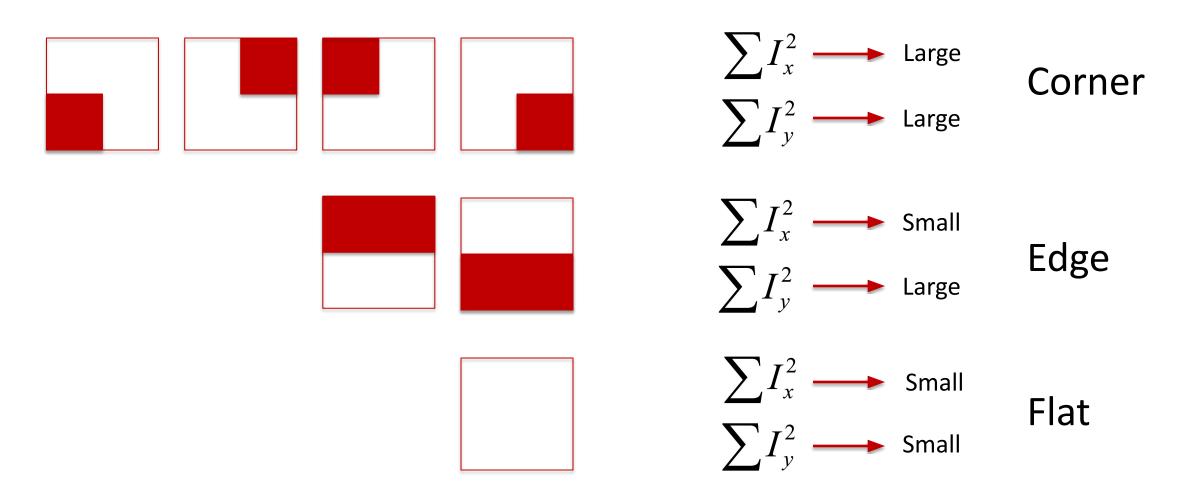
Edges have high gradient in one direction



Ranjay Krishna, Jieyu Zhang

Lecture 7 - 38

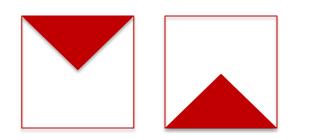
Corners versus edges

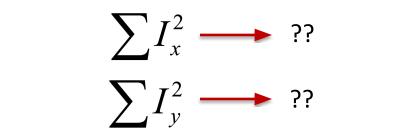


Ranjay Krishna, Jieyu Zhang

Lecture 7 - 39

Generalizing to corners in any direction





Corner

Ranjay Krishna, Jieyu Zhang

Harris Detector Formulation

- Find patches that result in large change of pixel values when shifted in *any direction*.
- When we shift by [*u*, *v*], the intensity change at the center pixel is:

[u, v] I(x + u, y + v)I(x, y)

"corner": significant change in all directions

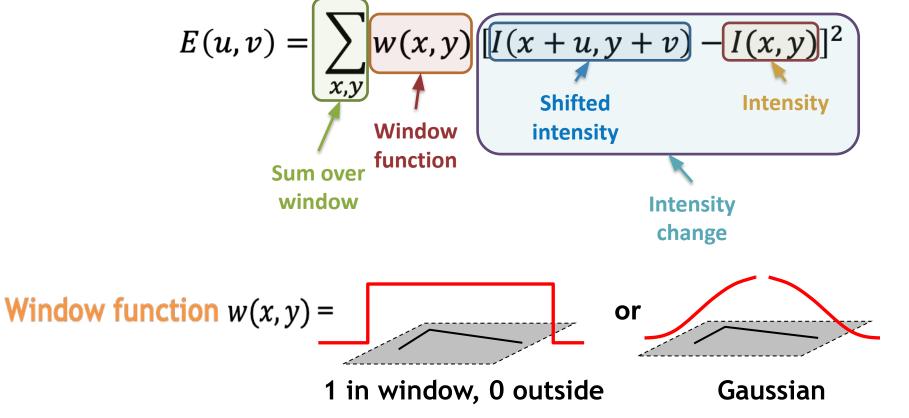
Ranjay Krishna, Jieyu Zhang

- Measure change as intensity difference: (I(x + u, y + v) - I(x, y))
- That's for a single point, but we have to accumulate over the patch or "small window" around that point...

Lecture 7 - 41

Harris Detector Formulation

• When we shift by [u, v], the change in intensity for the "small window" is:



Ranjay Krishna, Jieyu Zhang

Lecture 7 - 42

Slide cApril ck16 is 2024

Change in intensity function

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^2$$

We can rewrite the shifted intensity using Taylor's expansion:

$$I(x+u, y+v) \approx I(x, y) + I_x u + I_y v$$

Substituting it back into E(u, v):

$$E(u,v) = \sum_{x,y} w(x,y) [I_x u + I_y v]^2$$

Ranjay Krishna, Jieyu Zhang

Lecture 7 - 43

 $E(u,v) = \sum w(x,y)[I_x u + I_y v]^2$ $_{x,y}$

Ranjay Krishna, Jieyu Zhang

Lecture 7 - 44

$$E(u,v) = \sum_{x,y} w(x,y) [I_x u + I_y v]^2$$
$$= \sum_{x,y} w(x,y) [I_x u \quad I_y v] \begin{bmatrix} I_x u \\ I_y v \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Lecture 7 - 45

$$E(u,v) = \sum_{x,y} w(x,y) [I_x u + I_y v]^2$$
$$= \sum_{x,y} w(x,y) [I_x u \quad I_y v] \begin{bmatrix} I_x u \\ I_y v \end{bmatrix}$$
$$= \sum_{x,y} w(x,y) [u \quad v] \begin{bmatrix} I_x \\ I_y \end{bmatrix} \begin{bmatrix} I_x u \\ I_y v \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

$$E(u,v) = \sum_{x,y} w(x,y) [I_x u + I_y v]^2$$

= $\sum_{x,y} w(x,y) [I_x u \quad I_y v] \begin{bmatrix} I_x u \\ I_y v \end{bmatrix}$
= $\sum_{x,y} w(x,y) [u \quad v] \begin{bmatrix} I_x \\ I_y \end{bmatrix} \begin{bmatrix} I_x u \\ I_y v \end{bmatrix}$
= $\sum_{x,y} w(x,y) [u \quad v] \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x \quad I_y] \begin{bmatrix} u \\ v \end{bmatrix}$

April 16, 2024

Ranjay Krishna, Jieyu Zhang

$$E(u,v) = \sum_{x,y} w(x,y) [I_x u + I_y v]^2$$

$$= \sum_{x,y} w(x,y) [I_x u \quad I_y v] \begin{bmatrix} I_x u \\ I_y v \end{bmatrix}$$

$$= \sum_{x,y} w(x,y) [u \quad v] \begin{bmatrix} I_x \\ I_y \end{bmatrix} \begin{bmatrix} I_x u \\ I_y v \end{bmatrix}$$

$$= \sum_{x,y} w(x,y) [u \quad v] \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x \quad I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$

$$= \sum_{x,y} w(x,y) [u \quad v] \begin{bmatrix} I_x \\ I_y \end{bmatrix} \begin{bmatrix} I_x \quad I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

Lecture 7 - 48

April 16, 2024

Ranjay Krishna, Jieyu Zhang

$$\begin{split} E(u,v) &= \sum_{x,y} w(x,y) [I_x u + I_y v]^2 \\ &= \sum_{x,y} w(x,y) [I_x u \quad I_y v] \begin{bmatrix} I_x u \\ I_y v \end{bmatrix} \\ &= \sum_{x,y} w(x,y) [u \quad v] \begin{bmatrix} I_x \\ I_y \end{bmatrix} \begin{bmatrix} I_x u \\ I_y v \end{bmatrix} \\ &= \sum_{x,y} w(x,y) [u \quad v] \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x \quad I_y] \begin{bmatrix} u \\ v \end{bmatrix} \\ &= \sum_{x,y} w(x,y) [u \quad v] \begin{bmatrix} I_x \\ I_y \end{bmatrix} \begin{bmatrix} I_x \quad I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \\ &= \sum_{x,y} w(x,y) [u \quad v] \begin{bmatrix} I_x \\ I_x I_y \quad I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \\ &= w(x,y) [u \quad v] \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \end{split}$$

April 16, 2024

Ranjay Krishna, Jieyu Zhang

$$E(u,v) = w(x,y) \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Lecture 7 - 50

$$E(u,v) = w(x,y) \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$
$$= w(x,y) \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$
$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

$$E(u,v) = w(x,y) \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$= w(x, y) \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$
$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y \end{bmatrix}$$

Does anyone know what this part of the equation is?

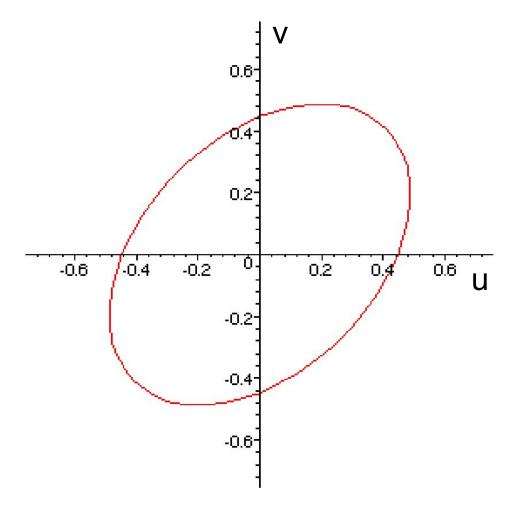
April 16, 2024

$$A = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

It's the equation of an ellipse

$$5u^{2} - 4uv + 5v^{2} = 1$$
$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$
$$M = \begin{bmatrix} 5 & -2 \\ -2 & 5 \end{bmatrix}$$



Ranjay Krishna, Jieyu Zhang

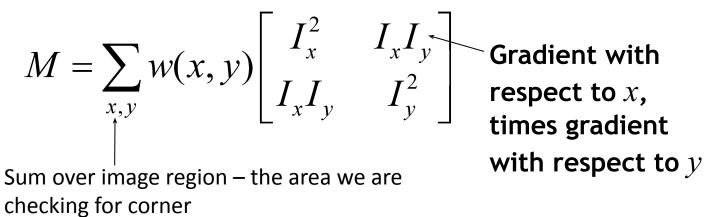
Lecture 7 - 53

Change in intensity in a patch

• So, using Taylor's expansion, the change in intensity in an image patch:

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

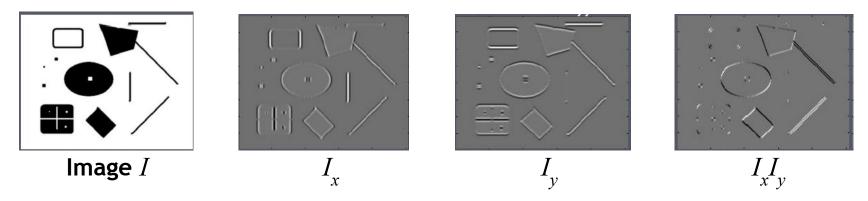
where M is a 2×2 matrix computed from image derivatives:



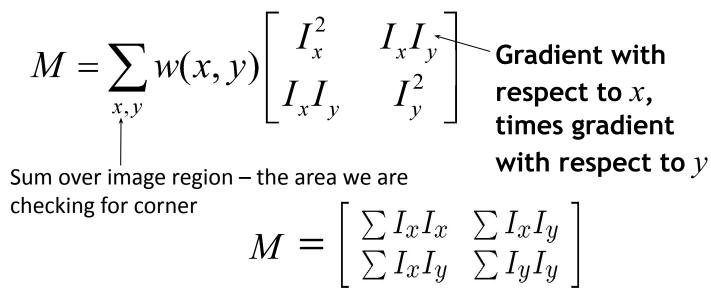
Ranjay Krishna, Jieyu Zhang

Lecture 7 - 54

Harris Detector Formulation



where *M* is a 2×2 matrix computed from image derivatives:



Ranjay Krishna, Jieyu Zhang

Lecture 7 - 55

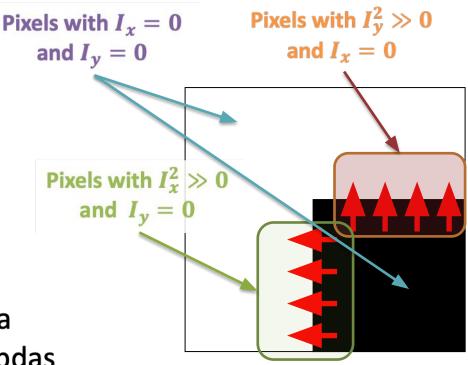
What Does This Matrix Reveal?

- First, let's consider an axis-aligned corner.
- In that case, the dominant gradient directions align with the x or the y axis

•
$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

- This means: if either λ is close to 0, then this is not a corner, so look for image windows where both lambdas are large.
- What if we have a corner that is not aligned with the image axes?

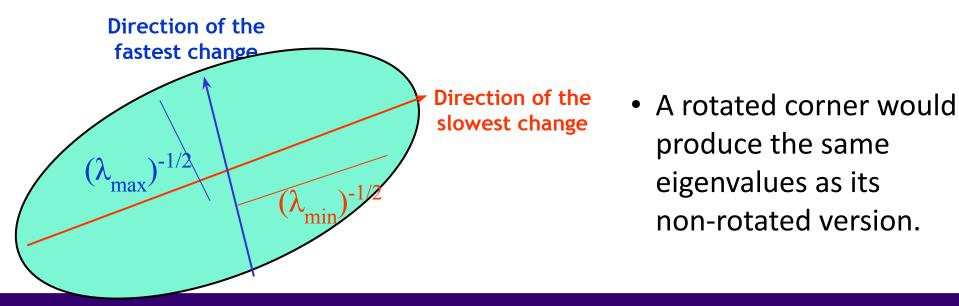


Lecture 7 - 56

General Case

• Since $M = \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$ is symmetric, we can re-rewrite $M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$ (Eigenvalue decomposition)

• We can think of *M* as an ellipse with its axis lengths determined by the eigenvalues λ_1 and λ_2 ; and its orientation determined by *R*

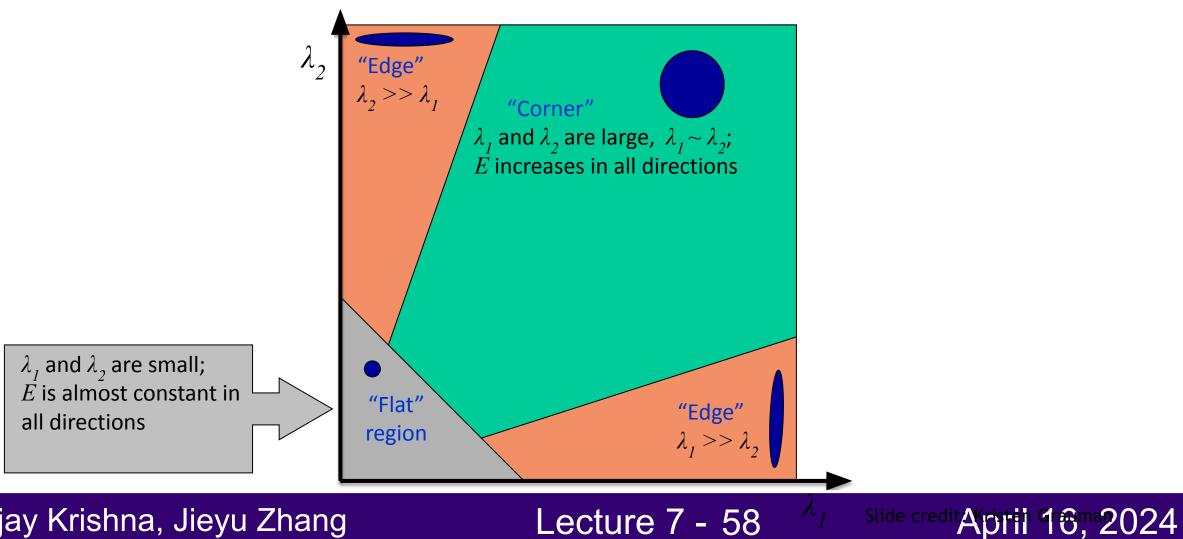


Ranjay Krishna, Jieyu Zhang

Lecture 7 - 57

Interpreting the Eigenvalues

• Classification of image points using eigenvalues of *M*:



Ranjay Krishna, Jieyu Zhang

Corner Response Function $\theta = \det(M) - \alpha \operatorname{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$

 λ_{γ} 'Edge" $\theta < 0$ "Corner" $\theta > 0$ "Flat" "Edge" region $\theta < 0$ λ

- Fast approximation

 Avoid computing the
 - eigenvalues ο α: constant
 - (0.04 to 0.06)

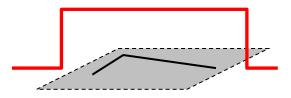
Ranjay Krishna, Jieyu Zhang

Window Function *w*(*x*,*y*)

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- Option 1: uniform window
 - Sum over square window

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$



• Problem: not rotation invariant

1 in window, 0 outside

- Option 2: Smooth with Gaussian
 - Gaussian already performs weighted sum

$$M = g(\sigma) * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

• Result is rotation invariant
an

Ranjay Krishna, Jieyu Zhang

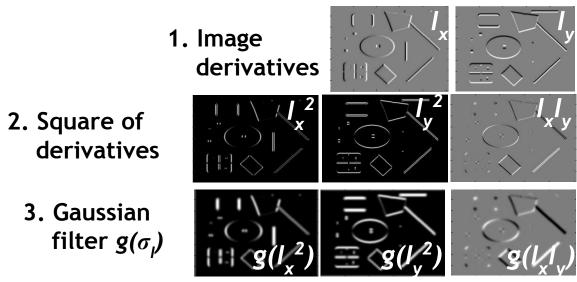
Lecture 7 - 60

Summary: Harris Detector [Harris88]

• Compute second moment matrix (autocorrelation matrix)

 $M(\sigma_{I},\sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix}$

 σ_D : for Gaussian in the derivative calculation σ_I : for Gaussian in the windowing function



4. Cornerness function - two strong eigenvalues

 $\theta = \det[M(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(M(\sigma_{I}, \sigma_{D}))]^{2}$ = $g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$

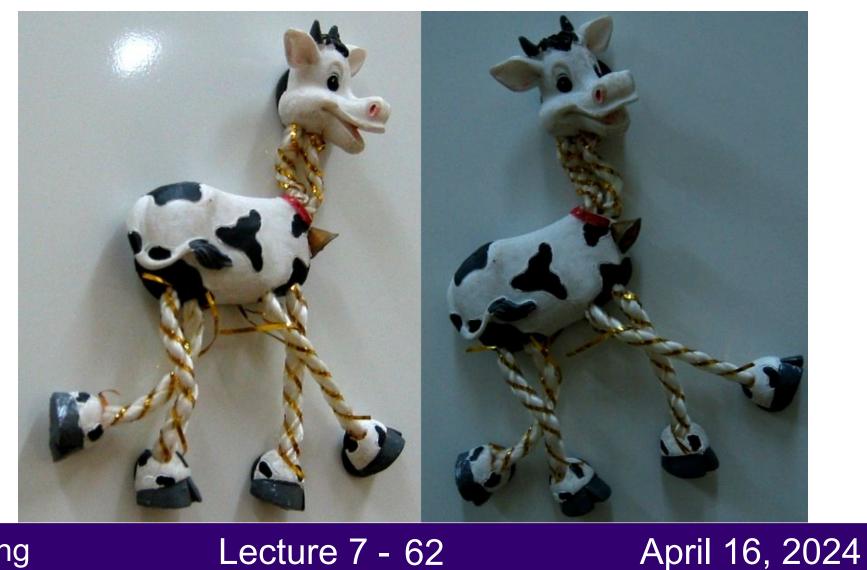
5. Perform non-maximum suppression

Lecture 7 - 61

April 16, 2024

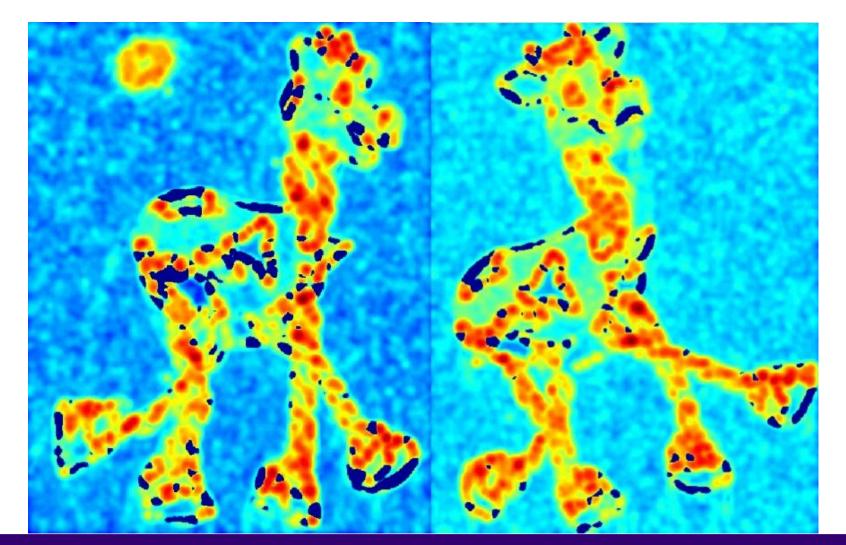
Ranjay Krishna, Jieyu Zhang

• Input Image



Ranjay Krishna, Jieyu Zhang

- Input Image
- Compute corner response function θ



Ranjay Krishna, Jieyu Zhang

Lecture 7^{Slide}63^{pted from Daya Frolova}Aprilinato, 2024

- Input Image
- Compute corner response function θ
- Take only the local maxima of θ,
 where θ > threshold

Ranjay Krishna, Jieyu Zhang

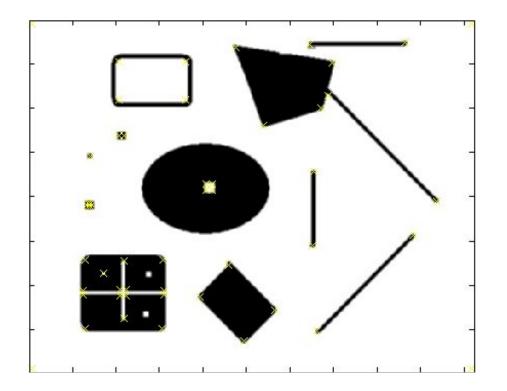
Lecture 7 - 64

- Input Image
- Compute corner response function θ
- Take only the local maxima of θ,
 where θ > threshold

Ranjay Krishna, Jieyu Zhang

Lecture 7 - 65

Harris Detector – Responses [Harris88]



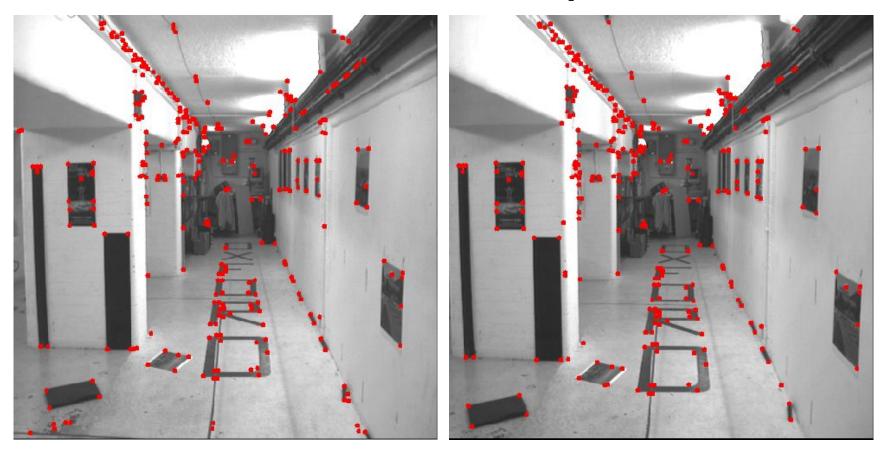
Effect: A very precise corner detector.

Ranjay Krishna, Jieyu Zhang

Harris Detector – Responses [Harris88]

Ranjay Krishna, Jieyu Zhang

Harris Detector – Responses [Harris88]



• Results are great for finding correspondences matches between images

Ranjay Krishna, Jieyu Zhang

Summary

- Local Invariant Features
- Harris Corner Detector

Ranjay Krishna, Jieyu Zhang

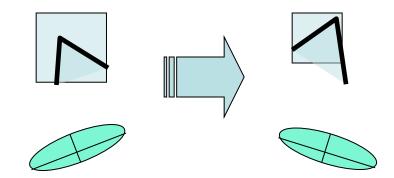
Harris Detector: Properties

• Translation invariance?

Ranjay Krishna, Jieyu Zhang

Harris Detector: Properties

- Translation invariance
- Rotation invariance?



Ellipse rotates but its shape (i.e. eigenvalues) remains the same

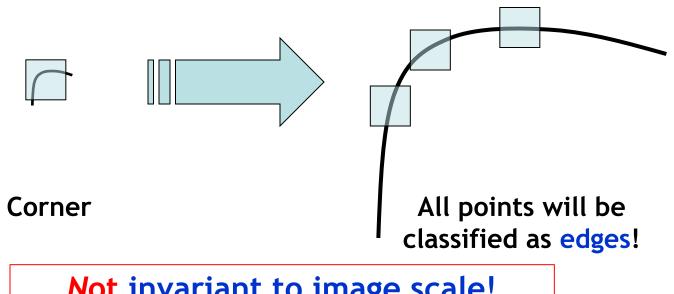
Corner response θ is invariant to image rotation

Ranjay Krishna, Jieyu Zhang

Lecture 7 - 71

Harris Detector: Properties

- Translation invariance
- Rotation invariance
- Scale invariance?



Not invariant to image scale!

Ranjay Krishna, Jieyu Zhang

Lecture 7 - 72

Slide credit April 16, 2024

Next time

Detectors and Descriptors

Ranjay Krishna, Jieyu Zhang

