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Detecting Lines
Lecture 6
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Central but we 
can drop the 1/2

So far: discrete derivatives in 3 ways

Backward

Forward
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●Using Backward differentiation:

●Using Forward differentiation:

●Using Central differentiation: 

So far: Designing filters that perform 
differentiation 
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So far: Calculating gradient magnitude and direction
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Today’s agenda

Optional reading:
Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition
Sections 7.1, 8.1.4
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● Sobel Edge detector
● Canny edge detector
● Hough Transform
● RANSAC
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Sobel Operator
● uses two 3×3 kernels which are convolved with the original image 

to calculate approximations of the derivatives 
● one for horizontal changes, and one for vertical
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Sobel Operation
● Smoothing + differentiation

Gaussian smoothing differentiation
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Sobel Operation
● Magnitude:

● Angle or direction of the gradient:
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Sobel Filter 
example

Step 1: Calculate the 
gradient magnitude at 
every pixel location.

Step 2: Threshold the 
values to generate a 
binary image
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Sobel Filter Problems

● Poor Localization (Trigger response in multiple adjacent pixels)
● Thresholding value favors certain directions over others

○ Can miss oblique edges more than horizontal or vertical edges
○ False negatives
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● Sobel Edge detector
● Canny edge detector
● Hough Transform
● RANSAC

What we will learn today
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So far: A simple edge detector
• This theorem gives us a very useful property:

• This saves us one operation: f

Source: S. Seitz13
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Canny edge detector
• This is probably the most widely used edge detector in 

computer vision
• Theoretical model: optimal edge detection when pixels 

are corrupted by additive Gaussian noise
• Theory shows that first derivative of the Gaussian 

closely approximates the operator that optimizes the 
product of signal-to-noise ratio 

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern 
Analysis and Machine Intelligence, 8:679-714, 1986. 

14

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4
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1. Suppress Noise
2. Compute gradient magnitude and direction 
3. Apply Non-Maximum Suppression

○ Assures minimal response
4. Use hysteresis and connectivity analysis to detect edges

Canny edge detector

15
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Example

● original image
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Derivative of Gaussian filter

x-direction y-direction
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Compute gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude
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Get orientation at each pixel
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Compute gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude
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Canny edge detector
1. Suppress Noise
2. Compute gradient magnitude and direction 
3. Apply Non-Maximum Suppression

○ Assures minimal response
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Non-maximum suppression
● Edge occurs where gradient reaches a maxima
● Suppress non-maxima pixels even if it passes threshold
● Assume only points along the angle directions 

○ Suppress all pixels in the direction which are not maxima
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Remove spurious gradients

23

[n2, m2] [n, m]

[n1, m1]
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What if p = [n1, m1] or r = [n2, m2], is not a pixel location

24

q is a maximum if the value is larger 
than those at both p and at r. 

How should we calculate magnitude 
at G? 
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What if p = [n1, m1] or r = [n2, m2], is not a pixel location

25

q is a maximum if the value is larger 
than those at both p and at r. 

How should we calculate magnitude 
at G? 
p and r are weighted averaged values 
of top k=8 closest pixel locations
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Non-max Suppression

Before                         After

26
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Canny edge detector
1. Suppress Noise
2. Compute gradient magnitude and direction 
3. Apply Non-Maximum Suppression

○ Assures minimal response
4. Use hysteresis and connectivity analysis to detect edges

27
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Problem: if your threshold is too high (left) or too 
low (right), you have too many or too few edges
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Hysteresis thresholding
● Avoid breaking edges near the threshold value 
● Define two thresholds: Low and High

○ If less than Low => not an edge
○ If greater than High => strong edge
○ If between Low and High => weak edge 

29
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Hysteresis thresholding
If the gradient at a pixel is
● above High, declare it as an ‘strong edge pixel’
● below Low, declare it as a “non-edge-pixel”
● between Low and High

○ Consider its neighbors iteratively then declare it an “edge pixel” if it is 
connected to an ‘strong edge pixel’ directly or via pixels between Low 
and High

30
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Hysteresis thresholding

Source: S. Seitz

strong edge pixel weak but connected 
edge pixels

strong edge pixel
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Final Canny Edges

32
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Canny edge detector

1. Filter image with x, y derivatives of Gaussian 

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
○ Thin multi-pixel wide “ridges” down to single pixel width

4. Thresholding and linking (hysteresis):
○ Define two thresholds: low and high

○ Use the high threshold to start edge curves and the low threshold to 
continue them

33
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Effect of σ (Gaussian kernel spread/size)

Canny with Canny with original 

The choice of σ depends on desired behavior
• large σ detects large scale edges

• small σ detects fine features
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Gradients
(e.g. Canny)

Human
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45 years of edge 
detection

Source: Arbelaez, Maire, Fowlkes, and Malik. TPAMI 2011 (pdf)
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What we will learn today
● Sobel Edge detector
● Canny edge detector
● Hough Transform
● RANSAC
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Hough transform
How Transform edge detections into lines

38
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Hough transform
● It was introduced in 1962 (Hough 1962) and first used to find lines in 

images a decade later (Duda 1972). 

● Caveat: Hough transform can detect lines, circles and other structures 
ONLY if their parametric equation is known. 

● It can give robust detection under noise and partial occlusion
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Input to Hough transform algorithm
● We have performed some edge detection (Sobel filter, Canny Edge 

detector, etc.), including a thresholding of the edge magnitude image. 
● Thus, we have some pixels that may partially describe the boundary of 

some objects.
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Detecting lines using Hough transform
● We wish to find sets of pixels that make up straight lines. 
● Instead of using [n, m], this might be easier to do with (x, y)

How do we transform [n, m] to (x, y)?
- Simple: We assume 

- n = y, 
- m = x.

- So, f[n, m] = f[y, x]

41
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● Consider a line that passes through two points in 
the image
○ (x1, y1) and (x2, y2)

● Straight lines that pass that point have the form:
y= a*x + b 

● How do we calculate the parameters (a, b)?
a = (y2 - y1) / (x2 - x1)

b = y1 - a × x1

Detecting lines using Hough transform

42



Ranjay Krishna, Jieyu Zhang April 11, 2024Lecture 6 -

● Consider a line that passes through two points in 
the image
○ (x1, y1) and (x2, y2)

● Straight lines that pass that point have the form:
y= a*x + b 

● How do we calculate the parameters (a, b)?
a = (y2 - y1) / (x2 - x1)

b = y1 - a × x1

Detecting lines using Hough transform

43



Ranjay Krishna, Jieyu Zhang April 11, 2024Lecture 6 -

Detecting lines using Hough transform

44

● Problem: We don’t know which pairs of edge points belong to the 
same line. 

● That’s where Hough transform comes in!
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The Hough transform

45

● Consider a line that passes through a single point in the image
○ (xi, yi)

● All straight lines that pass that point have the form:
yi= a*xi + b 
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The Hough transform

● This equation can be rewritten as follows: 
○ b = -a*xi + yi

46

yi = a*xi + b 
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The Hough transform

● This equation can be rewritten as follows: 
○ b = -a*xi + yi
○ We can now consider 

x and y as parameters
○ a and b as coordinates. 

47

yi = a*xi + b 
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● b = -a*xi + yi
● If our coordinates were (a,b) instead of (x, y):

○ We could say the above equation is a line in 
(a,b)-space

○ parameterized by x and y. 
○ So: one point (xi,yi) gives a line in (a,b) 

space. 

The Hough transform

48

yi = a*xi + b 
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The Hough transform
● So: one point (xi,yi) gives a line in (a,b) space.
● Another point (xj,yj) will give rise to another line in (a,b)-space.

49
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The Hough transform

50

● Doing this for 6 edge points will 
result in an graph like the one on 
the right.

● In (a,b) space these lines will 
intersect in a point (a’, b’)
○ On the right, a’ = 1, b’ = 1

● All points on the line defined by (xi, 
yi) and (xj , yj) in (x, y)-space will 
parameterize lines that intersect in 
(a’, b’) in (a,b) space.
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The need to quantize and “vote”
Not all intersections will be valid lines.

Consider two edge points that are not part of a real 
edge:
- They might still intersect in (a, b) space.

Problem: How do we identify intersections that are 
belong to the same edge versus random points?

51
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Intuition behind voting

The more lines intersect at the same (a’, b’) point, the 
more likely y=a’x + b’ is a real edge in the image.

So, we need to count how many lines intersect at a point 
and keep the ones with high count

52
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Counting in quantized (a, b)-space
1. Quantize the parameter space (a b) by dividing it into cells 

a. [[amin, amax],[bmin,bmax]]
2. For each pair of points (xi, yi) and (xj, yj), find the intersection (a’,b’)  in 

(a,b)-space.
3. Increase the value of a cell in the range 

[[amin, amax],[bmin,bmax]] that (a’, b’) belongs to.
4. Cells receiving more than a certain number of counts (also called ‘votes’) 

are assumed to correspond to lines in (x,y) space.

53



Ranjay Krishna, Jieyu Zhang April 11, 2024Lecture 6 -

Output of Hough transform
● Here are the top 20 most voted lines in the image:

54
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Other Hough transformations
● We can represent lines as polar coordinates instead of y = a*x + b

● Polar coordinate representation:
○ x*cosθ + y*sinθ = ρ

● We can transform points in (x, y) space to curves in (ρ θ)-space
○ (x y) and (ρ θ)?

55
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Other Hough transformations
● Note that lines in (x, y)-space are not 

lines in (ρ, θ)-space

● Curves in (ρ, θ)-space intersect 
similarly like in (a, b)-space.

56
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Other Hough transformations

57

● x*cosθ + y*sinθ = ρ

● Q. For a vertical line in (x, y)-space, 
what are the θ and ρ values?
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Other Hough transformations

58

● x*cosθ + y*sinθ = ρ

● Q. For a vertical line in (x, y)-space, 
what are the θ and ρ values?
○ θ=0, ρ=x

● Q. For a horizontal line in (x, y)-space, 
what are the θ and ρ values?
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Hough transform remarks
● Advantages:

○ Conceptually simple.
○ Easy implementation 
○ Handles missing and occluded data very gracefully.
○ Can be adapted to many types of forms, not just lines

● Disadvantages:
○ Computationally complex for objects with many parameters. 
○ Looks for only one single type of object 
○ Can be “fooled” by “apparent lines”. 
○ The length and the position of a line segment cannot be determined. 
○ Co-linear line segments cannot be separated.

59
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Hough transform remarks
● Advantages:

○ Conceptually simple.
○ Easy implementation 
○ Handles missing and occluded data very gracefully.
○ Can be adapted to many types of forms, not just lines

● Disadvantages:
○ Computationally complex for shapes with many parameters. 
○ Looks for only one single shape of object 
○ Can be “fooled” by “apparent lines”. 
○ The length and the position of a line segment cannot be determined. 
○ Co-linear line segments cannot be separated.
○ Runs in O(N2) since all pairs of points should be considered
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What we will learn today
● Sobel Edge detector
● Canny edge detector
● Hough Transform
● RANSAC
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Why is Hough transform inefficient?
● It’s not feasible to check all pairs of points to calculate possible lines. For 

example, Hough Transform algorithm runs in O(N2).

● Voting is a general technique where we let the each point vote for all 
models that are compatible with it.

○ Iterate through features, cast votes for parameters.
○ Filter parameters that receive a lot of votes.

● Problem: Noisy points will cast votes too, but typically their votes should 
be inconsistent with the majority of “good” edge points.

Slide credit: Kristen Grauman62
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Difficulty of voting for lines
● Noisy edge points, cast 

inconsistent votes:
○ Can we identify them without 

iterating over all pairs?

● Only some parts of each line 
detected, and some parts are 
missing:
○ How do we find a line that

bridges missing evidence?

● Noise in measured edge points, 
orientations:
○ How to detect true underlying 

parameters?

Slide credit: Kristen Grauman63
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RANSAC [Fischler & Bolles 1981]

● RANdom SAmple Consensus 

● Approach: we want to avoid the impact of noisy outliers, so let’s look for 
“inliers”, and use only those.

● Intuition: if an outlier is chosen to compute the parameters, then the 
resulting line won’t have much support from rest of the points.

Slide credit: Kristen Grauman64
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RANSAC Line Fitting Example
● Task: Estimate the best line

○ Let’s randomly select a subset of points and calculate a line

Slide credit: 
Jinxiang Chai 65
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RANSAC Line Fitting Example
● Task: Estimate the best line

○ Let’s select only 2 points as an example

Sample two points

Slide credit: 
Jinxiang Chai 66
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RANSAC Line Fitting Example
● Task: Estimate the best line

○ Calculate the line parameters

Fit a line to them

Slide credit: 
Jinxiang Chai 67
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RANSAC Line Fitting Example
● Task: Estimate the best line

○ Edges can be noisy. To account for this, let’s say that the line is 
somewhere between the dashed lines

Slide credit: 
Jinxiang Chai 68
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RANSAC Line Fitting Example
● Task: Estimate the best line

○ Calculate the number of points that lie within the dashed lines

“7 inlier points”

Slide credit: 
Jinxiang Chai 69
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RANSAC Line Fitting Example
● Task: Estimate the best line

○ Repeat with two other randomly selected points

Slide credit: 
Jinxiang Chai 70
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This is a better fit!!!

RANSAC Line Fitting Example
● Task: Estimate the best line

○ This time we have 11 inliers

“11 inlier points”

Slide credit: 
Jinxiang Chai 71
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters from seed group
3. Find inliers for these parameters
4. If the number of inliers is larger than the best so far, save these 

parameters and the inliers
If number of inliers in the best line is < m, return no line
Else re-calculate the final parameters with all the inliers

Slide credit: Kristen Grauman72
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters from seed group
3. Find inliers for these parameters
4. If the number of inliers is larger than the best so far, save these 

parameters and the inliers
If number of inliers in the best line is < m, return no line
Else re-calculate the final parameters with all the inliers

Slide credit: Kristen Grauman73
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters from seed group
3. Find inliers for these parameters
4. If the number of inliers is larger than the best so far, save these 

parameters and the inliers
If number of inliers in the best line is < m, return no line
Else re-calculate the final parameters with all the inliers

Slide credit: Kristen Grauman74
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters from seed group
3. Find inliers for these parameters
4. If the number of inliers is larger than the best so far, save these 

parameters and the inliers
If number of inliers in the best line is < m, return no line
Else re-calculate the final parameters with all the inliers

Slide credit: Kristen Grauman75
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters from seed group
3. Find inliers for these parameters
4. If the number of inliers is larger than the best so far, save these 

parameters and the inliers
If number of inliers in the best line is < m, return no line
Else re-calculate the final parameters with all the inliers

Slide credit: Kristen Grauman76
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters from seed group
3. Find inliers for these parameters
4. If the number of inliers is larger than the best so far, save these 

parameters and the inliers
If number of inliers in the best line is < m, return no line
Else re-calculate the final parameters with all the inliers

Slide credit: Kristen Grauman77
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Final step: Refining the parameters
● The best parameters were computed using a seed set of n 

points. 
● We use these points to find the inliers.
● We can improve the parameters by estimating over all inliers 

(e.g. with standard least-squares minimization).
● But this may change the inliers, so repeat this last step until 

there is no change in inliers.

Slide credit: David Lowe78
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters from seed group
3. Find inliers for these parameters
4. If the number of inliers is larger than the best so far, save these 

parameters and the inliers
If number of inliers in the best line is < m, return no line
Else re-calculate the final parameters with all the inliers

Slide credit: Kristen Grauman79
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1. How many points to sample in the seed set?
a. We used 2 in the example above

The hyperparameters

Slide credit: Kristen Grauman80
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1. How many points to sample in the seed set?
a. We used 2 in the example above

2. How many times should we repeat?
a. More repetitions increase computation but increase chances of finding 

best line

The hyperparameters

Slide credit: Kristen Grauman81
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1. How many points to sample in the seed set?
a. We used 2 in the example above

2. How many times should we repeat?
a. More repetitions increase computation but increase chances of finding 

best line
3. The threshold for the dashed lines

a. Larger the gap between dashed lines, the more false positive inliers
b. Smaller the gap, the more false negatives outliers

The hyperparameters

Slide credit: Kristen Grauman82
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1. How many points to sample in the seed set?
a. We used 2 in the example above

2. How many times should we repeat?
a. More repetitions increase computation but increase chances of finding 

best line
3. The threshold for the dashed lines

a. Larger the gap between dashed lines, the more false positive inliers
b. Smaller the gap, the more false negatives outliers

4. The minimum number of inliers to confidently claim there is a line
a. Smaller the number, the more false negative lines
b. Larger the number, the fewer lines we will find

The hyperparameters

Slide credit: Kristen Grauman83
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RANSAC: Computed k (p=0.99)
Sample 

size

n

Proportion of outliers 

5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

Slide credit: David Lowe84
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RANSAC: How many iterations “k”?
●  

Slide credit: David Lowe85
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RANSAC: Pros and Cons
● Pros:

○ General method suited for a wide range of parameter fitting problems
○ Easy to implement and easy to calculate its failure rate

● Cons:
○ Only handles a moderate percentage of outliers without cost blowing up
○ Many real problems have high rate of outliers (but sometimes selective 

choice of random subsets can help)
● A voting strategy, The Hough transform, can handle high percentage of 

outliers

86
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Summary

Optional reading:
Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition
Sections 7.1, 8.1.4
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● Sobel Edge detector
● Canny edge detector
● Hough Transform
● RANSAC
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Next time

88

Detectors and descriptors


