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Lecture 5
Derivatives and edges
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Administrative

A1 is out
- It is graded
- Due Tue, Apr 16

A2 will be out this weekend
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Recitation this friday:
More linear algebra recap

by Mahtab

Administrative
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So far: 2D impulse function

● A special function
● 1 at the origin [0,0].
● 0 everywhere else
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● The moving average filter equation again:

So far: We get the impulse response when we 
pass an impulse function through a LSI system

Pass in an impulse function Record its response
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So far: write down f as a sum of impulses

f[2,2]f[2,1]f[2,0]

f[1,2]f[1,1]f[1,0]

f[1,1]f[0,1]f[0,0]

Let’s say our input f is a 3x3 image:
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So far: We derived convolutions
● An LSI system is completely specified by its impulse response.

○ For any input f, we can compute the output g in terms of the impulse response h.

Discrete Convolution
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original smoothed (3x3)

– =

=

Let’s add it back to get a sharpening system:

+

Detailed

Detailedoriginal Sharpened
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So far: We created a sharpening system by combining filters 
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Equivalent to a convolution without the flip
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● Edge detection
● Image Gradients
● A simple edge detector

What we will learn today

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 8
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What we will learn today
● Edge detection
● Image Gradients
● A simple edge detector

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 8
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Q. What do you see?
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(A) Cave painting at Chauvet, 
France, about 30,000 
B.C.;

(B) Aerial photograph of the 
picture of a monkey as 
part of the Nazca Lines 
geoglyphs, Peru, about 
700 – 200 B.C.; 

(C) Shen Zhou (1427-1509 
A.D.): Poet on a mountain 
top, ink on paper, China; 

(D) Line drawing by 7-year 
old I. Lleras (2010 A.D.). 
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We know edges are special from human 
(mammalian) vision studies

Hubel & Wiesel, 1960s
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We know edges are special from human 
(mammalian) vision studies
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Walther, Chai, Caddigan, Beck & Fei-Fei, PNAS, 2011
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Edge detection
• Goal:  Identify sudden changes (discontinuities) in an 

image

○ Intuitively, most semantic and shape information from 
the image can be encoded in the edges

○ More compact than pixels

• Ideal: artist’s line drawing (but artist is also using 
object-level knowledge)
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Why do we care about edges?

● Extract information, recognize objects

● Recover geometry and viewpoint

Vanishing
 point

Vanishing
 line

Vanishing
 point

 Vertical vanishing
 point

(at infinity)

Source: J. Hayes19
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Origins of edges

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity
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Surface normal discontinuity

Closeup of edges
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Depth discontinuity

Closeup of edges
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Closeup of edges

Surface color discontinuity
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● Edge detection
● Image Gradients
● A simple edge detector

What we will learn today
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Review: Derivatives in 1D - example

Q. What is the dy/dx?
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Review: Derivatives in 1D - example
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Derivatives in 1D - example

Q. What is the dy/dx?
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Derivatives in 1D - example
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Approximating derivatives using numerical 
differentiation
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Approximating derivatives using numerical 
differentiation

Change in f at x

Change in x
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In discrete derivatives with images, smallest value of x is 
1 pixel

31

This is called a forward derivative
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But change at x can be measured in many 
different ways

Backward
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But change at x can be measured in many 
different ways

Backward

Forward
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But change at x can be measured in many 
different ways

Backward

Forward

Central
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●Using Backward differentiation

Q. What is the equation in width (2nd) dimension? 

Designing filters that perform differentiation 
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●Using Backward differentiation

Designing filters that perform differentiation 
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

? ??

? ??

? ??
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

? ??

1 ??

? ??
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

? ??

1 ??

? ??
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

? ?0

1 ??

? ??
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

? ?0

1 ??

? ??
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

0 00

1 ??

? ??
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

0 00

1 ??

? ??
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

0 00

1 ??

0 00
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●Using Backward differentiation

Q. Last ones: What are these two?

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

0 00

1 ??

0 00

46



Ranjay Krishna, Jieyu Zhang April 09, 2024Lecture 5 -

●Using Backward differentiation

Q. Last ones: What are these two?

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

0 00

1 -10

0 00
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●Using Backward differentiation:

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

1 -10
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●Using Backward differentiation:

●Using Forward differentiation:

Q. What is the formula?

Designing filters that perform differentiation 

1 -10
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●Using Backward differentiation:

●Using Forward differentiation:

Q. What is the filter look like?

Designing filters that perform differentiation 

1 -10

? ??
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●Using Backward differentiation:

●Using Forward differentiation:

Designing filters that perform differentiation 

1 -10

-1 01
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●Using Backward differentiation:

●Using Forward differentiation:

●Using Central differentiation: 

Designing filters that perform differentiation 

1 -10

-1 01

Q. What is the formula?
52
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●Using Backward differentiation:

●Using Forward differentiation:

●Using Central differentiation: 

Designing filters that perform differentiation 

1 -10

-1 01

Q. What is 
the filter?

? ??
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●Using Backward differentiation:

●Using Forward differentiation:

●Using Central differentiation: 

Designing filters that perform differentiation 

1 -10

-1 01

0 -11
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Derivative in width dimension for one row
Using backward differentiation: 1 -10
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Derivative in width dimension for one row
Using backward differentiation: 1 -10

?
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Derivative in width dimension for one row
Using backward differentiation: 1 -10

?
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Derivative in width dimension for one row
Using backward differentiation: 1 -10

  ?
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Derivative in width dimension for one row
Using backward differentiation: 1 -10

  ?
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Derivative in width dimension for one row
Using backward differentiation: 1 -10

  ?
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Derivative in width dimension for one row
Using backward differentiation: 1 -10

  ?       ?     ?
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Derivative in width dimension for one row
Using backward differentiation: 1 -10
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Discrete derivation in 2D:
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Discrete derivation in 2D:
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Discrete derivation in 2D:
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2D discrete derivative filters

Q. What does this filter do?
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2D discrete derivative filters

Q. What does this filter do?
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2D discrete derivative - example
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2D discrete derivative - example

    ?           ?          ?           ?           ?
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2D discrete derivative - example

    ?           ?          ?           ?           ?
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2D discrete derivative - example

    ?           ?          ?           ?           ?
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2D discrete derivative - example

    ?           ?          ?           ?           ?
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2D discrete derivative - example

    ?           ?          ?           ?           ?
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2D discrete derivative - example
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Let’s do the other one

?
?
?
?
?
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Let’s do the other one
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Let’s do the other one
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Let’s do the other one

78

?
?
?
?
?



Ranjay Krishna, Jieyu Zhang April 09, 2024Lecture 5 -

Let’s do the other one
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Let’s do the other one
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Let’s do the other one
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Let’s do the other one
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Q. Which filter was applied?

A B
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Q. Which filter was applied?

A B
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● Edge detection
● Image Gradients
● A simple edge detector

What we will learn today
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Characterizing edges
An edge is a place of rapid change in the image intensity function

image
intensity function

(along horizontal scanline)
first 

derivative

edges correspond to
extrema of derivative

86
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The gradient vector points in the direction of most rapid increase in intensity

Image gradient
The gradient of an image: 
 

Source: Steve Seitz87
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The gradient vector points in the direction of most rapid increase in intensity

Image gradient
The gradient of an image: 
 

The edge strength is given by the gradient magnitude
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Finite differences: example

Original
Image

Gradient 
magnitude

width-direction height-direction
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Intensity profile

G
ra

di
en

t
In

te
ns

ity
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Q. What will happen if we use this edge detector 
on a noisy pixels?

91
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Effects of noise
● Consider a single row or column of the image

○ Plotting intensity as a function of position gives a signal

Source: S. Seitz

In
te

ns
ity
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Effects of noise
● Consider a single row or column of the image

○ Plotting intensity as a function of position gives a signal

Where is the edge?

Source: S. Seitz
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• Finite difference filters respond strongly to noise
– Image noise results in pixels that look very different from 

their neighbors

– Generally, the larger the noise the stronger the response

• Q. What is a potential quick fix for noisy images?

Effects of noise

Source: D. Forsyth94
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• Finite difference filters respond strongly to noise
– Image noise results in pixels that look very different from 

their neighbors

– Generally, the larger the noise the stronger the response

• Q. What is a potential quick fix for noisy images?
• Smoothing the image should help, by forcing pixels different 

to their neighbors (=noise pixels?) to look more like 
neighbors

Effects of noise

Source: D. Forsyth95
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Smoothing with different filters
● Mean smoothing

● Gaussian  (smoothing * derivative)

Slide credit: Steve Seitz96
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Smoothing with 
different filters

Slide credit: Steve Seitz97
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Solution: input function
f

Source: S. Seitz
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Solution: smooth first
f

g

f * g

Source: S. Seitz
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Solution: smooth first

To find edges, look for 
peaks in

f

g

f * g

Source: S. Seitz
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Derivative theorem of convolution
• This theorem gives us a very useful property:

Source: S. Seitz

f
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Derivative theorem of convolution
• This theorem gives us a very useful property:

• This saves us one operation:

We can precompute:

Source: S. Seitz

f
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Derivative theorem of convolution
• This theorem gives us a very useful property:

• This saves us one operation: f

Source: S. Seitz103
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Derivative of Gaussian filter (central derivative)

2D-gaussian

*       [1    0   -1] = 

x - derivative
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Derivative of Gaussian filter

x-direction y-direction
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Derivative of Gaussian filter
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Smoothed derivative removes noise, but blurs edge. 
Also finds edges at different “scales”.

Tradeoff between smoothing at different scales

1 pixel 3 pixels 7 pixels

Source: D. Forsyth107
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Designing an edge detector
• Criteria for an “optimal” edge detector:

○ Good detection: the optimal detector must minimize the probability 
of false positives (detecting spurious edges caused by noise), as 
well as that of false negatives (missing real edges)

108
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Designing an edge detector
• Criteria for an “optimal” edge detector:

○ Good detection: the optimal detector must minimize the probability 
of false positives (detecting spurious edges caused by noise), as 
well as that of false negatives (missing real edges)

○ Good localization: the edges detected must be as close as 
possible to the true edges
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Designing an edge detector
• Criteria for an “optimal” edge detector:

○ Good detection: the optimal detector must minimize the probability 
of false positives (detecting spurious edges caused by noise), as 
well as that of false negatives (missing real edges)

○ Good localization: the edges detected must be as close as 
possible to the true edges

○ Single response: the detector must return one point only for each 
true edge point; that is, minimize the number of local maxima around 
the true edge
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● Edge detection
● Image Gradients
● A simple edge detector

Summary

111
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Next time: Detecting lines
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