Lecture 5

Derivatives and edges

Ranjay Krishna, Jieyu Zhang

Administrative

A1 is out

- It is graded
- Due Tue, Apr 16

A2 will be out this weekend

Ranjay Krishna, Jieyu Zhang

Administrative

Recitation this friday: More linear algebra recap

by Mahtab

Ranjay Krishna, Jieyu Zhang

So far: 2D impulse function

- A special function
- 1 at the origin [0,0].
- 0 everywhere else

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 4

So far: We get the impulse response when we pass an impulse function through a LSI system

• The moving average filter equation again: $g[n,m] = \frac{1}{9} \sum_{n=1}^{1} \sum_{n=1}^{1} f[n-k,m-l]$

$$\begin{aligned} \delta_2[n,m] \xrightarrow{S} h[n,m] \\ \text{Pass in an impulse function} \\ \end{aligned}$$

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

April 09, 2024

Lecture 5 - 5

Ranjay Krishna, Jieyu Zhang

So far: write down *f* as a sum of impulses

Let's say our input *f* is a 3x3 image:

 $= f[0,0] \cdot \delta_2[n,m] + f[0,1] \cdot \delta_2[n,m-1] + \ldots + f[2,2] \cdot \delta_2[n-2,m-2]$

April 09, 2024

Ranjay Krishna, Jieyu Zhang

So far: We derived convolutions

- An LSI system is completely specified by its impulse response.
 - \circ For any input *f*, we can compute the output *g* in terms of the impulse response *h*.

Discrete Convolution

April 09, 2024

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

So far: We created a sharpening system by combining filters

Let's add it back to get a sharpening system:

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 8

(Cross) correlation – symbol: **

Cross correlation of two 2D signals f[n,m] and h[n,m]

$$f[n,m] ** h[n,m] = \sum_{k} \sum_{l} f[k,l]h[n+k,m+l]$$

Equivalent to a convolution without the flip

Ranjay Krishna, Jieyu Zhang

What we will learn today

- Edge detection
- Image Gradients
- A simple edge detector

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 8

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 10

What we will learn today

• Edge detection

- Image Gradients
- A simple edge detector

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 8

Ranjay Krishna, Jieyu Zhang

Q. What do you see?

Ranjay Krishna, Jieyu Zhang

- (A) Cave painting at Chauvet, France, about 30,000B.C.;
- (B) Aerial photograph of the picture of a monkey as part of the Nazca Lines geoglyphs, Peru, about 700 200 B.C.;
- (C) Shen Zhou (1427-1509A.D.): Poet on a mountain top, ink on paper, China;
- (D) Line drawing by 7-year old I. Lleras (2010 A.D.).

Ranjay Krishna, Jieyu Zhang

Lecture 5 -

A Experimental setup

Light bar stimulus projected on screen

bel & Wiesel, 1960s

We know edges are special from human (mammalian) vision studies

Rahjay Krishha, Gieyu Zhang

Lecture 5 -

We know edges are special from human (mammalian) vision studies

152 Biederman

Figure 4.14 Complementary-part images. From an original intact image (left column), two complemen-

Ranjay Krishna, Jieyu Zhang

Lecture 5 -

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 17

Edge detection

- **Goal:** Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - $\, \odot \,$ More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 18

Why do we care about edges?

• Extract information, recognize objects

Recover geometry and viewpoint
 Vertical vanishing point (at infinity)
 Vanishing point (at infinity)
 Vanishing point (at infinity)

Ranjay Krishna, Jieyu Zhang

Origins of edges

surface normal discontinuity

depth discontinuity

surface color discontinuity

illumination discontinuity

Ranjay Krishna, Jieyu Zhang

Closeup of edges

Ranjay Krishna, Jieyu Zhang

Closeup of edges

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 22

Closeup of edges

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 23

What we will learn today

- Edge detection
- Image Gradients
- A simple edge detector

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 24

Review: Derivatives in 1D - example

$$y = x^2 + x^4$$

Q. What is the dy/dx?

Ranjay Krishna, Jieyu Zhang

Review: Derivatives in 1D - example

$$y = x^{2} + x^{4}$$
$$\frac{dy}{dx} = 2x + 4x^{3}$$

Ranjay Krishna, Jieyu Zhang

Derivatives in 1D - example

$$y = x^{2} + x^{4}$$

$$y = \sin x + e^{-x}$$

$$\frac{dy}{dx} = 2x + 4x^{3}$$
Q. What is the dy/dx?

Ranjay Krishna, Jieyu Zhang

Derivatives in 1D - example

$$y = x^{2} + x^{4}$$
$$y = \sin x + e^{-x}$$
$$\frac{dy}{dx} = 2x + 4x^{3}$$
$$\frac{dy}{dx} = \cos x + (-1)e^{-x}$$

Ranjay Krishna, Jieyu Zhang

Approximating derivatives using numerical differentiation

$$\frac{df}{dx} = \lim_{\Delta x=0} \frac{f[x + \Delta x] - f[x]}{\Delta x} = f'(x) = f_x$$

Ranjay Krishna, Jieyu Zhang

Approximating derivatives using numerical differentiation

Ranjay Krishna, Jieyu Zhang

In discrete derivatives with images, smallest value of x is 1 pixel

$$\begin{aligned} \frac{df}{dx} &= \lim_{\Delta x=0} \frac{f[x + \Delta x] - f[x]}{\Delta x} = f'(x) = f_x \\ &= \frac{f[x + 1] - f[x]}{1} \\ &= f[x + 1] - f[x] \end{aligned}$$

This is called a forward derivative

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 31

But change at x can be measured in many different ways

$$\frac{df}{dx} = f[x] - f[x - 1]$$

Ranjay Krishna, Jieyu Zhang

But change at x can be measured in many different ways

$$\label{eq:general} \begin{split} \frac{df}{dx} &= f[x] - f[x-1] & \mbox{Backward} \\ &= f[x+1] - f[x] & \mbox{Forward} \end{split}$$

Ranjay Krishna, Jieyu Zhang

But change at x can be measured in many different ways

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 34

Designing filters that perform differentiation

Using Backward differentiation

$$g[n,m] = ??$$

Q. What is the equation in width (2nd) dimension?

Ranjay Krishna, Jieyu Zhang

Designing filters that perform differentiation

Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

Ranjay Krishna, Jieyu Zhang

Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

Q. Let's write this as a filter

Ranjay Krishna, Jieyu Zhang

Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

Q. Let's write this as a filter

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 38

Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

Q. Let's write this as a filter

Ranjay Krishna, Jieyu Zhang

Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

Q. Let's write this as a filter

Ranjay Krishna, Jieyu Zhang

Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

Q. Let's write this as a filter

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 41

Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

Q. Let's write this as a filter

Ranjay Krishna, Jieyu Zhang

Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

Q. Let's write this as a filter

Ranjay Krishna, Jieyu Zhang

Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

Q. Let's write this as a filter

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 44

Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

Q. Let's write this as a filter

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 45

Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

Q. Last ones: What are these two?

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 46

Using Backward differentiation

$$g[n,m] = f[n,m] - f[n,m-1]$$

Q. Last ones: What are these two?

Ranjay Krishna, Jieyu Zhang

• Using Backward differentiation:

$$g[n,m] = f[n,m] - f[n,m-1]$$

Ranjay Krishna, Jieyu Zhang

• Using Backward differentiation:

$$g[n,m] = f[n,m] - f[n,m-1]$$

• Using Forward differentiation:

Q. What is the formula?

Ranjay Krishna, Jieyu Zhang

• Using Backward differentiation:

$$g[n,m] = f[n,m] - f[n,m-1]$$

• Using Forward differentiation:

April 09, 2024

Lecture 5 - 50

$$g[n,m] = f[n,m+1] - f[n,m]$$

Q. What is the filter look like?

Ranjay Krishna, Jieyu Zhang

• Using Backward differentiation:

$$g[n,m] = f[n,m] - f[n,m-1]$$

• Using Forward differentiation:

April 09, 2024

$$g[n,m] = f[n,m+1] - f[n,m]$$

Ranjay Krishna, Jieyu Zhang

• Using Backward differentiation:

$$g[n,m] = f[n,m] - f[n,m-1]$$

• Using Forward differentiation:

$$g[n,m] = f[n,m+1] - f[n,m]$$

• Using Central differentiation:

Q. What is the formula?

April 09, 2024

Ranjay Krishna, Jieyu Zhang

• Using Backward differentiation:

$$g[n,m] = f[n,m] - f[n,m-1]$$

• Using Forward differentiation:

$$g[n,m] = f[n,m+1] - f[n,m]$$

• Using Central differentiation:

anjay
$$g[n,m] = f[n,m+1] - f[n,m-1]$$

53

Q. What is the filter?

• Using Backward differentiation:

$$g[n,m] = f[n,m] - f[n,m-1]$$

• Using Forward differentiation:

$$g[n,m] = f[n,m+1] - f[n,m]$$

• Using Central differentiation:

$$anjay g[n,m] = f[n,m+1] - f[n,m-1]$$

Using backward differentiation:

April 09, 2024

$$g[n,m] = f[n,m] - f[n,m-1]$$

f[0,:] = [10, 15, 10, 10, 25, 20, 20, 20]

Ranjay Krishna, Jieyu Zhang

Using backward differentiation:

April 09, 2024

$$g[n,m] = f[n,m] - f[n,m-1]$$

$$f[0,:] = [10, 15, 10, 10, 25, 20, 20, 20]$$
$$\frac{df}{dm}[0,:] = [?]$$

Ranjay Krishna, Jieyu Zhang

Using backward differentiation:

April 09, 2024

$$g[n,m] = f[n,m] - f[n,m-1]$$

$$f[0,:] = \begin{bmatrix} 10, & 15, & 10, & 10, & 25, & 20, & 20 \end{bmatrix}$$
$$\frac{df}{dm}[0,:] = \begin{bmatrix} 10, & ? \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Using backward differentiation:

April 09, 2024

$$g[n,m] = f[n,m] - f[n,m-1]$$

$$f[0,:] = \begin{bmatrix} 10, & 15, & 10, & 10, & 25, & 20, & 20 \end{bmatrix}$$
$$\frac{df}{dm}[0,:] = \begin{bmatrix} 10, & 5, & ? \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Using backward differentiation:

April 09, 2024

$$g[n,m] = f[n,m] - f[n,m-1]$$

$$f[0,:] = \begin{bmatrix} 10, & 15, & 10, & 10, & 25, & 20, & 20 \end{bmatrix}$$
$$\frac{df}{dm}[0,:] = \begin{bmatrix} 10, & 5, & -5, & ? \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Using backward differentiation:

April 09, 2024

$$g[n,m] = f[n,m] - f[n,m-1]$$

$$f[0,:] = \begin{bmatrix} 10, & 15, & 10, & 10, & 25, & 20, & 20 \end{bmatrix}$$
$$\frac{df}{dm}[0,:] = \begin{bmatrix} 10, & 5, & -5, & 0, & ? \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Using backward differentiation:

April 09, 2024

$$g[n,m] = f[n,m] - f[n,m-1]$$

$$f[0,:] = \begin{bmatrix} 10, & 15, & 10, & 10, & 25, & 20, & 20 \end{bmatrix}$$
$$\frac{df}{dm}[0,:] = \begin{bmatrix} 10, & 5, & -5, & 0, & 15, & ? & ? \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Using backward differentiation:

April 09, 2024

$$g[n,m] = f[n,m] - f[n,m-1]$$

$$f[0,:] = \begin{bmatrix} 10, & 15, & 10, & 10, & 25, & 20, & 20, & 20 \end{bmatrix}$$
$$\frac{df}{dm}[0,:] = \begin{bmatrix} 10, & 5, & -5, & 0, & 15, & -5, & 0, & 0 \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Discrete derivation in 2D:

Given function f[n, m]

Gradient filter
$$\nabla f[n,m] = \begin{bmatrix} \frac{df}{dn} \\ \frac{df}{dm} \end{bmatrix} = \begin{bmatrix} f_n \\ f_m \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Discrete derivation in 2D:

Given function f[n, m]

Gradient filter
$$\nabla f[n,m] = \begin{bmatrix} \frac{df}{dn} \\ \frac{df}{dm} \end{bmatrix} = \begin{bmatrix} f_n \\ f_m \end{bmatrix}$$

Gradient magnitude $|\nabla f[n,m]| = \sqrt{f_n^2 + f_m^2}$

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 64

Discrete derivation in 2D:

Given function f[n, m]

Gradient filter
$$\nabla f[n,m] = \begin{bmatrix} \frac{df}{dn} \\ \frac{df}{dm} \end{bmatrix} = \begin{bmatrix} f_n \\ f_m \end{bmatrix}$$

Gradient magnitude $|\nabla f[n,m]| = \sqrt{f_n^2 + f_m^2}$ Gradient direction $\theta = \tan^{-1}(\frac{f_m}{f_n})$

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 65

2D discrete derivative filters

Q. What does this filter do?

$$h[n,m] = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

2D discrete derivative filters

$$h[n,m] = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

Q. What does this filter do?

$$h[n,m] = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

April 09, 2024

Lecture 5 - 67

Ranjay Krishna, Jieyu Zhang

$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

$$h[n,m] = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$$

April 09, 2024

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 69

?

Lecture 5 - 70

 $\begin{vmatrix} 1\\0 \end{vmatrix}$

$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix} \qquad h[$$

$$g[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 0 & 0 & 0 & 0 & 0 \\ ? & ? & ? & ? & ? \\ & & & & & & & ? \end{bmatrix}$$

$$h[n,m] = \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}$$

April 09, 2024

Ranjay Krishna, Jieyu Zhang

$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix} \qquad h$$

$$h[n,m] = \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}$$

April 09, 2024

Ranjay Krishna, Jieyu Zhang
2D discrete derivative - example

$$h[n,m] = \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}$$

April 09, 2024

Ranjay Krishna, Jieyu Zhang

2D discrete derivative - example

 $[m] = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$

April 09, 2024

Ranjay Krishna, Jieyu Zhang

$$h[n,m] = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 75

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 76

$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix} \qquad h[n,m] = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$
$$g[n,m] = \begin{bmatrix} 10 & ? \\ 10 & ? \\ 10 & ? \\ 10 & ? \\ 10 & ? \\ 10 & ? \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 77

$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix} h[n,m] = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$
$$g[n,m] = \begin{bmatrix} 10 & 10 & ? \\ 10 & 10 & ? \\ 10 & 10 & ? \\ 10 & 10 & ? \\ 10 & 10 & ? \\ 10 & 10 & ? \\ 10 & 10 & ? \\ 10 & 10 & ? \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 78

$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix} \qquad h[n,m] = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$
$$g[n,m] = \begin{bmatrix} 10 & 10 & 10 & 2 \\ 10 & 10 & 10 & 2 \\ 10 & 10 & 10 & 2 \\ 10 & 10 & 10 & 2 \\ 10 & 10 & 10 & 2 \\ 10 & 10 & 10 & 2 \\ 10 & 10 & 10 & 2 \\ 10 & 10 & 10 & 2 \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 79

$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix} \qquad h[n,m] = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$
$$g[n,m] = \begin{bmatrix} 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \end{bmatrix}$$

April 09, 2024

Ranjay Krishna, Jieyu Zhang

$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix} \qquad h[n,m] = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$
$$g[n,m] = \begin{bmatrix} 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \\ 10 & 10 & 10 & 0 & ? \end{bmatrix}$$

April 09, 2024

Ranjay Krishna, Jieyu Zhang

$$f[n,m] = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix} \qquad h[n,m] = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$
$$g[n,m] = \begin{bmatrix} 10 & 10 & 10 & 0 & -20 \\ 10 & 10 & 10 & 0 & -20 \\ 10 & 10 & 10 & 0 & -20 \\ 10 & 10 & 10 & 0 & -20 \\ 10 & 10 & 10 & 0 & -20 \\ 10 & 10 & 10 & 0 & -20 \\ 10 & 10 & 10 & 0 & -20 \\ 10 & 10 & 10 & 0 & -20 \end{bmatrix}$$

April 09, 2024

Ranjay Krishna, Jieyu Zhang

Q. Which filter was applied?

Ranjay Krishna, Jieyu Zhang

Q. Which filter was applied?

Ranjay Krishna, Jieyu Zhang

What we will learn today

- Edge detection
- Image Gradients
- A simple edge detector

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 85

Characterizing edges

An edge is a place of rapid change in the image intensity function

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 86

Image gradient

The gradient of an image:

 $\blacktriangleright \nabla_m f[n,m] = \begin{bmatrix} 0 & \frac{df}{dm} \end{bmatrix}$

$$\nabla_n f[n,m] = \begin{bmatrix} \frac{df}{dn} & 0 \end{bmatrix} \qquad \begin{array}{c} \nabla f[n,m] = \begin{bmatrix} \frac{df}{dn} & \frac{df}{dm} \end{bmatrix}$$

The gradient vector points in the direction of most rapid increase in intensity

$$\theta = \tan^{-1}(\frac{f_m}{f_n})$$

Ranjay Krishna, Jieyu Zhang

Image gradient

The gradient of an image:

 $\blacktriangleright \nabla_m f[n,m] = \begin{bmatrix} 0 & \frac{df}{dm} \end{bmatrix}$

$$\nabla_n f[n,m] = \begin{bmatrix} \frac{df}{dn} & 0 \end{bmatrix} \qquad \nabla f[n,m] = \begin{bmatrix} \frac{df}{dn} & \frac{df}{dm} \end{bmatrix}$$

The gradient vector points in the direction of most rapid increase in intensity

The edge strength is given by the gradient magnitude

$$|\nabla f[n,m]| = \sqrt{f_n^2 + f_m^2}$$

$$\theta = \tan^{-1}(\frac{f_m}{f_n})$$

April 09, 2024

Ranjay Krishna, Jieyu Zhang

Finite differences: example

Original Image

Gradient magnitude

height-direction

width-direction

Ranjay Krishna, Jieyu Zhang

Intensity profile

Ranjay Krishna, Jieyu Zhang

Q. What will happen if we use this edge detector on a noisy pixels?

Ranjay Krishna, Jieyu Zhang

• Consider a single row or column of the image

Plotting intensity as a function of position gives a signal

Lecture 5 - 92

April 09, 2024

Ranjay Krishna, Jieyu Zhang

• Consider a single row or column of the image

Plotting intensity as a function of position gives a signal

Where is the edge?

April 09, 2024

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 93^{urce: S. Seitzl}

- Finite difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- Q. What is a potential quick fix for noisy images?

- Finite difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- Q. What is a potential quick fix for noisy images?
- Smoothing the image should help, by forcing pixels different to their neighbors (=noise pixels?) to look more like neighbors

Smoothing with different filters

• Mean smoothing

$$\frac{1}{3} \begin{bmatrix} 1\\1\\1 \end{bmatrix} \qquad \qquad \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

• Gaussian (smoothing * derivative)

1

$$\frac{1}{4} \begin{bmatrix} 1\\2\\1 \end{bmatrix} \qquad \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 96

Slide cred Still 09, 2024

Smoothing with different filters

Mean Gaussian Median 3x3

5x5

7x7

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 97

slide crAprile09;it2024

Solution: input function

Ranjay Krishna, Jieyu Zhang

Lecture 5 -

Solution: smooth first

Ranjay Krishna, Jieyu Zhang

Solution: smooth first

To find edges, look for peaks in $\frac{d}{dx}(f * g)$

Ranjay Krishna, Jieyu Zhang

Lecture 5 -

Derivative theorem of convolution

• This theorem gives us a very useful property:

Ranjay Krishna, Jieyu Zhang

 $\frac{d}{dx}(f * g) = f * \frac{d}{dx}g$

Derivative theorem of convolution

• This theorem gives us a very useful property:

Ranjay Krishna, Jieyu Zhang

Lecture 5 - 102

Derivative theorem of convolution

• This theorem gives us a very useful property:

• This saves us one operation:

April 09, 2024

Ranjay Krishna, Jieyu Zhang

Derivative of Gaussian filter (central derivative)

2D-gaussian

x - derivative

April 09, 2024

Ranjay Krishna, Jieyu Zhang

Derivative of Gaussian filter

Ranjay Krishna, Jieyu Zhang

Derivative of Gaussian filter

Ranjay Krishna, Jieyu Zhang

Tradeoff between smoothing at different scales

1 pixel3 pixels7 pixels

Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

Ranjay Krishna, Jieyu Zhang

Designing an edge detector

- Criteria for an "optimal" edge detector:
 - Good detection: the optimal detector must minimize the probability of false positives (detecting spurious edges caused by noise), as well as that of false negatives (missing real edges)

Ranjay Krishna, Jieyu Zhang

Designing an edge detector

- Criteria for an "optimal" edge detector:
 - Good detection: the optimal detector must minimize the probability of false positives (detecting spurious edges caused by noise), as well as that of false negatives (missing real edges)
 - Good localization: the edges detected must be as close as possible to the true edges

Ranjay Krishna, Jieyu Zhang

Designing an edge detector

- Criteria for an "optimal" edge detector:
 - Good detection: the optimal detector must minimize the probability of false positives (detecting spurious edges caused by noise), as well as that of false negatives (missing real edges)
 - Good localization: the edges detected must be as close as possible to the true edges
 - Single response: the detector must return one point only for each true edge point; that is, minimize the number of local maxima around the true edge

Ranjay Krishna, Jieyu Zhang

Summary

- Edge detection
- Image Gradients
- A simple edge detector

Ranjay Krishna, Jieyu Zhang

Next time: Detecting lines

Ranjay Krishna, Jieyu Zhang

