Lecture 4

Systems and Convolutions

Administrative

A 0 is out.

- It is upgraded
- Meant to help you with python and numpy basics
- Learn how to do homeworks and submit them on gradescope.
- It is due today.

A1 is out

- It is graded
- Due Tue, Apr 16

Administrative

Recitation sections on fridays

- (optional)
- Fridays 12:30pm-1:20pm
- JHU 102
- It will be recorded

This week:
We will go over Python \& Numpy basics

So far: 2D discrete system (filters)

\mathbf{S} is the system operator, defined as a mapping or assignment of possible inputs $\mathrm{f}[\mathrm{n}, \mathrm{m}]$ to some possible outputs $\mathrm{g}[\mathrm{n}, \mathrm{m}]$.

$$
f[n, m] \rightarrow \text { System } \mathcal{S} \rightarrow g[n, m]
$$

So far: Moving Average

$$
g[n, m]=\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]
$$

$h[\cdot, \cdot]$							
9							
1					1	1	1
:---:	:---:	:---:					
1	1	1					
1	1	1					

So far: Image Segmentation

- Use a simple pixel threshold: $g[n, m]=\left\{\begin{array}{cl}255, & f[n, m]>100 \\ 0, & \text { otherwise } .\end{array}\right.$

So far: Properties of systems

- Amplitude properties:
- Additivity

$$
\mathcal{S}\left[f_{i}[n, m]+f_{j}[n, m]\right]=\mathcal{S}\left[f_{i}[n, m]\right]+\mathcal{S}\left[f_{j}[n, m]\right]
$$

- Homogeneity

$$
\mathcal{S}[\alpha f[n, m]]=\alpha \mathcal{S}[f[n, m]]
$$

- Superposition

$$
\mathcal{S}\left[\alpha f_{i}[n, m]+\beta f_{j}[n, m]\right]=\alpha \mathcal{S}\left[f_{i}[n, m]\right]+\beta \mathcal{S}\left[f_{j}[n, m]\right]
$$

- Stability

$$
\text { If } \forall n, m,|f[n, m]| \leq k \Longrightarrow|\mathcal{S}[f[n, m]]| \leq c k \text { for some constant } \mathrm{c} \text { and } \mathrm{k}
$$

- Invertibility

$$
\mathcal{S}^{-1} \mathcal{S}[f[n, m]]=f[n, m]
$$

So far: Properties of systems

- Spatial properties
- Causality

$$
\text { for } n<n_{0}, m<m_{0}, \text { if } f[n, m]=0 \Longrightarrow g[n, m]=0
$$

- Shift invariance:

$$
f\left[n-n_{0}, m-m_{0}\right] \xrightarrow{\mathcal{S}} g\left[n-n_{0}, m-m_{0}\right]
$$

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

Linear Systems (filters)

$$
f[n, m] \rightarrow \text { System } \mathcal{S} \rightarrow g[n, m]
$$

- Linear filtering:
- Form a new image whose pixels are a weighted sum of original pixel values
- Use the same set of weights at each point
- \mathbf{S} is a linear system (function) iff it S satisfies

$$
S\left[\alpha f_{i}[n, m]+\beta f_{j}[k, l]\right]=\alpha S\left[f_{i}[n, m]\right]+\beta S\left[f_{j}[k, l]\right]
$$

superposition property

Linear Systems (filters)

$$
f[n, m] \rightarrow \text { System } \mathcal{S} \rightarrow g[n, m]
$$

- Q . Is the moving average a linear system?

$$
g[n, m]=\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]
$$

Linear Systems (filters)

$$
f[n, m] \rightarrow \text { System } \mathcal{S} \rightarrow g[n, m]
$$

- Q . Is the moving average a linear system?

$$
g[n, m]=\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]
$$

- Q. Is thresholding a linear system?

$$
g[n, m]= \begin{cases}1, & f[n, m]>100 \\ 0, & \text { otherwise }\end{cases}
$$

Linear Systems (filters)

$$
f[n, m] \rightarrow \text { System } \mathcal{S} \rightarrow g[n, m]
$$

- Q . Is the moving average a linear system?

$$
g[n, m]=\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]
$$

- Q. Is thresholding a linear system?
- Let $\mathrm{f} 1[0,0]=\mathrm{f} 2[\mathrm{n}, \mathrm{m}]=0.4$
- Let T = 0.5
- So, $\mathrm{S}[f 1[0,0]]=\mathrm{S}[f 2[0,0]]=0$
- But S[f1[0,0] + f2[0,0]] = 1

$$
g[n, m]= \begin{cases}1, & f[n, m]>100 \\ 0, & \text { otherwise }\end{cases}
$$

Linear shift invariant (LSI) systems

- Satisfies two properties:
- Superposition property

$$
S\left[\alpha f_{i}[n, m]+\beta f_{j}[k, l]\right]=\alpha S\left[f_{i}[n, m]\right]+\beta S\left[f_{j}[k, l]\right]
$$

- Shift invariance:

$$
f\left[n-n_{0}, m-m_{0}\right] \xrightarrow{\mathcal{S}} g\left[n-n_{0}, m-m_{0}\right]
$$

Moving average system is linear shift invariant (LSI)

- We are going to use this as an example to dive into interesting properties about linear shift-invariant systems.
- Why are linear shift invariant systems important?

Our visual system is a linear shift invariant system

Human vision are scale and translation invariant

$\begin{array}{cc}\text { Target } & \text { 아드피 뤄 춘 선 머르타 예 간 방 우 시 켜 } \\ \text { Distractor } & \text { 마므티 뢔훈 건다브 뎌 메 산 랑은지 려 }\end{array}$
(A)

(B)

(C)

Participants were shown some target Korean character once and were tested on whether they can identify the targets from other distractors

Han et al. Scale and translation-invariance for novel objects in human vision. Nature 2020 [link]

Human vision are scale and translation invariant
 Non-Koreans

Very high recognition accuracies

Han et al. Scale and translation-invariance for novel objects in human vision. Nature 2020 [link]

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

2D impulse function

- Let's look at a special function
- 1 at the origin [0,0].
- 0 everywhere else

2D impulse function as an image

- Let's look at a special function
- 1 at the origin [0,0].
- 0 everywhere else

	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	1	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	

What happens when we pass an impulse function through a LSI systems

- The moving average filter equation again: $g[n, m]=\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]$

- By passing an impulse function into an LSI system, we get it's impulse response.
- We will use $\mathrm{h}[\mathrm{n}, \mathrm{m}]$ to refer to the impulse response

What happens when we pass an impulse function through a LSI systems

Before we do this, let's remember how we used the moving average filter last lecture

	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	1	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	

Remember the Moving Average filter from last lecture

Remember the Moving Average filter from last lecture

Remember the Moving Average filter from last lecture

			$f[$													n			
0	0	0	0	0	0	0	0	0	0										
0	0	0	0	0	0	0	0	0	0		0	10	20						
0	0	0	90	90	90	90	90	0	0										
0	0	0	90	90	90	90	90	0	0										
0	0	0	90	90	90	90	90	0	0										
0	0	0	90	0	90	90	90	0	0										
0	0	0	90	90	90	90	90	0	0										
0	0	0	0	0	0	0	0	0	0										
0	0	90	0	0	0	0	0	0	0										
0	0	0	0	0	0	0	0	0	0										

Remember the Moving Average filter from last lecture

$f[n, m]$										$\delta[n]$								
0	0	0	0	0	0	0	0	0	0									
0	0	0	0	0	0	0	0	0	0		0	10	20	30				
0	0	0	90	90	90	90	90	0	0									
0	0	0	90	90	90	90	90	0	0									
0	0	0	90	90	90	90	90	0	0									
0	0	0	90	0	90	90	90	0	0									
0	0	0	90	90	90	90	90	0	0									
0	0	0	0	0	0	0	0	0	0									
0	0	90	0	0	0	0	0	0	0									
0	0	0	0	0	0	0	0	0	0									

Remember the Moving Average filter from last lecture

$f[n, m]$										$\delta[n]$									
0	0	0	0	0	0	0	0	0	0										
0	0	0	0	0	0	0	0	0	0		0	10	20	30	30				
0	0	0	90	90	90	90	90	0	0										
0	0	0	90	90	90	90	90	0	0										
0	0	0	90	90	90	90	90	0	0										
0	0	0	90	0	90	90	90	0	0										
0	0	0	90	90	90	90	90	0	0										
0	0	0	0	0	0	0	0	0	0										
0	0	90	0	0	0	0	0	0	0										
0	0	0	0	0	0	0	0	0	0										

Remember the Moving Average filter from last lecture

$f[n, m]$										$\delta[n]$									
0	0	0	0	0	0	0	0	0	0										
0	0	0	0	0	0	0	0	0	0		0	10	20	30	30	30	20	10	
0	0	0	90	90	90	90	90	0	0		0	20	40	60	60	60	40	20	
0	0	0	90	90	90	90	90	0	0		0	30	60	90	90	90	60	30	
0	0	0	90	90	90	90	90	0	0		0	30	50	80	80	90	60	30	
0	0	0	90	0	90	90	90	0	0		0	30	50	80	80	90	60	30	
0	0	0	90	90	90	90	90	0	0		0	20	30	50	50	60	40	20	
0	0	0	0	0	0	0	0	0	0		10	20	30	30	30	30	20	10	
0	0	90	0	0	0	0	0	0	0		10	10	10	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0										

Now let's do the same thing with an impulse function

$\mathrm{f}[n, m]$

	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	1	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

$h[n, m]$

Now let's do the same thing with an impulse function

$\mathrm{f}[n, m]$

	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	1	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

$h[n, m]$					
	?				

Now let's do the same thing with an impulse function

$\mathrm{f}[n, m]$

	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	1	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

$h[n, m]$					
	0				

Now let's do the same thing with an impulse function

$\mathrm{f}[n, m]$

	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	1	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

$h[n, m]$					

Now let's do the same thing with an impulse function

$\mathrm{f}[n, m]$

	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	1	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

$h[n, m]$						
 0 0 						

Now let's do the same thing with an impulse function

$\mathrm{f}[n, m]$

	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
0	0	0	1	0	0	0	
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

$h[n, m]$						
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $?$ 						

Now let's do the same thing with an impulse function

$\mathrm{f}[n, m]$

	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	1	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	

Now let's do the same thing with an impulse function

$\mathrm{f}[n, m]$								
0	0	0	0		0	0	0	
0	0	0	0		0	0	0	
0	0	0	0		0	0	0	
0	0	0	1		0	0	0	
0	0	0	0		0	0	0	
0	0	0	0		0	0	0	
0	0	0	0		0	0	0	

$h[n, m]$						
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $?$ 						

Now let's do the same thing with an impulse function

$\mathrm{f}[n, m]$								
0	0	0	0		0	0	0	
0	0	0	0		0	0	0	
0	0	0	0		0	0	0	
0	0	0	1		0	0	0	
0	0	0	0		0	0	0	
0	0	0	0		0	0	0	
0	0	0	0		0	0	0	

$h[n, m]$						
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $1 / 9$ 						

Now let's do the same thing with an impulse function

$\mathrm{f}[n, m]$

	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	1	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	

Now let's do the same thing with an impulse function

$\mathrm{f}[n, m]$							
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 							

$h[n, m]$						
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $1 / 9$ $1 / 9$ 						

Now let's do the same thing with an impulse function

$\mathrm{f}[n, m]$

	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	1	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	

Now let's do the same thing with an impulse function

$\mathrm{f}[n, m]$

	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	1	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	

Now let's do the same thing with an impulse function

$\mathrm{f}[n, m]$

	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	1	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	

Now let's do the same thing with an impulse function

$\mathrm{f}[n, m]$

	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	1	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	

Now let's do the same thing with an impulse function

$\mathrm{f}[n, m]$								
0	0	0	0		0	0	0	
0	0	0	0		0	0	0	
0	0	0	0		0	0	0	
0	0	0	1		0	0	0	
0	0	0	0		0	0	0	
0	0	0	0		0	0	0	
0	0	0	0		0	0	0	

$h[n, m]$						
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $1 / 9$ $1 / 9$ $1 / 9$ 0 0 0 0 $1 / 9$ $1 / 9$ $1 / 9$ 0 0 0 0 $1 / 9$ $1 / 9$ $1 / 9$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 						

Impulse response of the 3 by 3 moving average filter

$$
h[n, m]=\left[\begin{array}{lll}
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & 1 / 9 & 1 / 9
\end{array}\right]
$$

Notice that any filter can be written as a summation of shifted delta functions

$$
\begin{array}{ll}
h[n, m]=\left[\begin{array}{lll}
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & 1 / 9 & 1 / 9
\end{array}\right] & \frac{1}{4} h[\cdot, \cdot] \\
\hline \begin{array}{|ll|l|l|l|}
\hline 1 & 1 & 1 & 1 & \\
\hline 1 & 1 & 1 \\
\hline & & 1 & 1 & 1 \\
\hline
\end{array} & \\
h[0,0]=\frac{1}{9} \delta_{2}[0,0] &
\end{array}
$$

Notice that any filter can be written as a summation of shifted delta functions

$$
\begin{aligned}
& h[n, m]=\left[\begin{array}{ccc}
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & \frac{1 / 9}{1 / 9} & \frac{1 / 9}{1 / 9}
\end{array}\right] \\
& 1 / 9
\end{aligned} \frac{1}{1 / 2}\left[\begin{array}{l}
\\
h[0,0]=\frac{1}{9} \delta_{2}[0,0] \\
h[0,1]=\frac{1}{9} \delta_{2}[0,0]
\end{array}\right.
$$

Notice that any filter can be written as a summation of shifted delta functions

$$
\begin{aligned}
& h[n, m]=\left[\begin{array}{ccc}
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & \frac{1 / 9}{1 / 9} & \frac{1 / 9}{1 / 9}
\end{array}\right] \\
& 1 / 9
\end{aligned} \frac{1}{1 / 9}\left[\begin{array}{l}
\\
h[0,0]=\frac{1}{9} \delta_{2}[0,0] \\
h[0,1]=\frac{1}{9} \delta_{2}[0,0]
\end{array}\right.
$$

Q. For what values of \mathbf{n} and \mathbf{m} is $\mathrm{h}[$,$] not zero?$

Notice that any filter can be written as a summation of shifted delta functions

$$
\begin{aligned}
h[n, m] & =\left[\begin{array}{lll}
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & \frac{1 / 9}{} & 1 / 9
\end{array}\right] \\
& =\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_{2}[n-k, m-l]
\end{aligned}
$$

The general form for a moving average $h[n, m]$

Notice that any filter can be written as a summation of shifted delta functions

$$
\begin{aligned}
h[n, m] & =\left[\begin{array}{lll}
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & \frac{1 / 9}{} & 1 / 9
\end{array}\right] \\
& =\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_{2}[n-k, m-l]
\end{aligned}
$$

Q. Why is this the general form?

Notice that any filter can be written as a summation of shifted delta functions

$$
\begin{aligned}
h[n, m] & =\left[\begin{array}{lll}
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & \frac{1 / 9}{} & 1 / 9
\end{array}\right] \\
& =\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_{2}[n-k, m-l] \\
& 1
\end{aligned}
$$

Q. Why is this the general form?

As long as $n-1, n$, or $n+1$ is 0 , the value is $1 / 9$
Same for m

Notice that any filter can be written as a summation of shifted delta functions

$$
\begin{aligned}
& h[n, m]=\left[\begin{array}{lll}
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & \frac{1 / 9}{} & 1 / 9
\end{array}\right] \\
&\left.=\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_{2}[n-k, m-l], \cdot\right] \\
& \begin{array}{|l|l|l|l|}
\hline 1 & 1 & 1 & \\
\hline 1 & \frac{1}{9} & 1 & 1 \\
\hline 1 & 1 & 1 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Q. What if we swap n-k for k-n. Does that also work?

$$
=\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_{2}[k-n, l-m]
$$

Notice that any filter can be written as a summation of shifted delta functions

$$
\begin{aligned}
& h[n, m]=\left[\begin{array}{lll}
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & \frac{1 / 9}{} & 1 / 9 \\
1 / 9 & 1 / 9 & 1 / 9
\end{array}\right] \\
& =\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_{2}[n-k, m-l]
\end{aligned}
$$

Q. What if we swap n-k for k-n. Does that also work?
$=\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_{2}[k-n, l-m] \begin{aligned} & \text { Yes because } \mathrm{h} \text { is symmetric } \\ & \text { across the origin }\end{aligned}$
Q. What if h was the filter on the right:

$$
\mathrm{h}[:,-1]=0
$$

$$
\begin{aligned}
& h[n, m] \\
& (\mathrm{A})=\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_{2}[n-k, m-l] \\
& \left(\text { (B) }=\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_{2}[k-n, l-m]\right.
\end{aligned}
$$

Is A correct?
Is B correct?
Are both correct?
Are both wrong?

Q. What if h was the filter on the right:
 $$
\mathrm{h}[:,-1]=0
$$

$$
h[n, m]=\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=0}^{1} \delta_{2}[n-k, m-l]
$$

Q. What if h was the filter on the right:

$$
\mathrm{h}[:,-1]=0
$$

$$
\begin{aligned}
h[n, m] & =\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=0}^{1} \delta_{2}[n-k, m-l] \\
& =\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{0} \delta_{2}[k-n, l-m]
\end{aligned}
$$

Because h is not symmetric, we need to invert the range if we invert m -l to $\mathrm{I}-\mathrm{m}$

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

Property of (LSI) systems

- An LSI system is completely specified by its impulse response.
- For any input f, we can compute g using only the impulse response h.

$$
f[n, m] \xrightarrow{S} g[n, m]
$$

Property of (LSI) systems

- An LSI system is completely specified by its impulse response.
- For any input f, we can compute g using only the impulse response h.

$$
f[n, m] \xrightarrow{S} g[n, m]
$$

\circ Let's derive an expression for g in terms of \boldsymbol{h}.

Recall the 3 properties about LSI systems:

1. We know what happens when we send a delta function through an LSI system:

$$
\delta_{2}[n, m] \rightarrow \text { System } \mathcal{S} \rightarrow h[n, m]
$$

Recall the 3 properties about LSI systems:

1. We know what happens when we send a delta function through an LSI system:

$$
\delta_{2}[n, m] \rightarrow \text { System } \mathcal{S} \rightarrow h[n, m]
$$

2. We also know that LSI systems shift the output if the input is shifted:

$$
\delta_{2}[n-k, m-l] \rightarrow \text { System } \mathcal{S} \rightarrow h[n-k, m-l]
$$

Recall the 3 properties about LSI systems:

1. We know what happens when we send a delta function through an LSI system:

$$
\delta_{2}[n, m] \rightarrow \text { System } \mathcal{S} \rightarrow h[n, m]
$$

2. We also know that LSI systems shift the output if the input is shifted:

$$
\delta_{2}[n-k, m-l] \rightarrow \text { System } \mathcal{S} \rightarrow h[n-k, m-l]
$$

3. Finally, the superposition principle:

$$
S\left\{\alpha f_{1}[n, m]+\beta f_{2}[n, m]\right\}=\alpha S\left\{f_{1}[n, m]\right\}+\beta S\left\{f_{2}[n, m]\right\}
$$

Key idea: write down f as a sum of impulses

Let's say our input f is a 3×3 image:

$f[0,0]$	$f[0,1]$	$f[1,1]$				
$f[1,0]$	$f[1,1]$	$f[1,2]$				
$f[2,0]$	$f[2,1]$	$f[2,2]$	$=$	$[[0,0]$	0	0
:---:	:---:	:---:	:---:	:---:	:---:	
0	0	0				
0	0	0	$+$	0	$f[0,1]$	0
:---:	:---:	:---:	:---:	:---:		
0	0	0				
0	0	0	$+\ldots+$	0	0	0
:---:	:---:	:---:				
0	0	0				
0	0	$f[2,2]$				

Key idea: write down f as a sum of impulses

Let's say our input f is a 3×3 image:

f[0,0]	$\mathrm{f}[0,1]$	$\mathrm{f}[1,1]$		f[0,0]	0				0	f[0,1]		0		0	0		0
$\mathrm{f}[1,0]$	$\mathrm{f}[1,1]$	$\mathrm{f}[1,2]$	$=$	0	0			+	0	0		0	+ ... +	0	0		0
f[2,0]	$\mathrm{f}[2,1]$	[2]		0	0				0	0		0		0	0		[2,2]

Key idea: write down f as a sum of impulses

Let's say our input f is a 3×3 image:

Key idea: write down f as a sum of impulses

- More generally:

$$
f[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot \delta_{2}[n-k, m-l]
$$

Key idea: write down f as a sum of impulses

- More generally:

$$
f[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot \delta_{2}[n-k, m-l]
$$

- We can now use superposition to see what the output g is:

$$
\begin{aligned}
& f[n, m] \xrightarrow{S} g[n, m] \\
& f[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot \delta_{2}[n-k, m-l]
\end{aligned}
$$

Key idea: write down f as a sum of impulses

- More generally:

$$
f[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot \delta_{2}[n-k, m-l]
$$

- We can now use superposition to see what the output g is:

$$
\begin{aligned}
f[n, m] \xrightarrow{S} g[n, m] \\
f[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \underbrace{\infty[k, l] \cdot \delta_{2}[n-k, m-l]}_{\substack{\text { For given } \mathrm{k}, \mathrm{l}, \\
\text { this is a constant }}}
\end{aligned}
$$

Key idea: write down f as a sum of impulses

- More generally:

$$
f[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot \delta_{2}[n-k, m-l]
$$

- We can now use superposition to see what the output g is:

$$
\begin{aligned}
f[n, m] & \xrightarrow{S} g[n, m] \\
f[n, m]= & \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \underbrace{f[k, l]} \cdot \underbrace{\delta_{2}[n-k, m-l]} \\
& \begin{array}{l}
\text { For given } \mathrm{k}, \mathrm{l}, \\
\text { this is a constant }
\end{array} \quad \begin{array}{l}
\text { This is a function } \\
\text { of } \mathrm{n}, \mathrm{~m}
\end{array}
\end{aligned}
$$

Key idea: write down f as a sum of impulses

- Superposition

$$
S\left\{\alpha f_{1}[n, m]+\beta f_{2}[n, m]\right\}=\alpha S\left\{f_{1}[n, m]\right\}+\beta S\left\{f_{2}[n, m]\right\}
$$

- We can now use superposition to see what the output g is:

$$
\begin{aligned}
& f[n, m] \xrightarrow{S} g[n, m] \\
& f[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot \delta_{2}[n-k, m-l]
\end{aligned}
$$

For given k, I, this is a constant

This is a function of n, m

Key idea: write down f as a sum of impulses

- Superposition

$$
\begin{array}{|l}
S\left\{\alpha f_{1}[n, m]+\beta f_{2}[n, m]\right\}=\alpha S\left\{f_{1}[n, m]\right\}+\beta S\left\{f_{2}[n, m]\right\} \\
\hline \hline \mathcal{S}\left[\sum_{i} \alpha_{i} f_{i}[n, m]\right]=\sum_{i} \alpha_{i} \mathcal{S}\left[f_{i}[n, m]\right]
\end{array}
$$

- We can now use superposition to see what the output g is:

$$
\begin{aligned}
& f[n, m] \xrightarrow{S} g[n, m] \\
& f[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot \delta_{2}[n-k, m-l]
\end{aligned}
$$

This is a function of n, m

Key idea: write down f as a sum of impulses

- Superposition:

$$
\begin{array}{|l}
S\left\{\alpha f_{1}[n, m]+\beta f_{2}[n, m]\right\}=\alpha S\left\{f_{1}[n, m]\right\}+\beta S\left\{f_{2}[n, m]\right\} \\
\hline \hline \mathcal{S}\left[\sum_{i} \alpha_{i} f_{i}[n, m]\right]=\sum_{i} \alpha_{i} \mathcal{S}\left[f_{i}[n, m]\right]
\end{array}
$$

- We can now use superposition to see what the output g is:

$$
\begin{aligned}
f[n, m] & \xrightarrow{S} g[n, m] \\
f[n, m] & =\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot \delta_{2}[n-k, m-l] \\
& \xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot S\left\{\delta_{2}[n-k, m-l]\right\}
\end{aligned}
$$

Key idea: write down f as a sum of impulses

- Superposition:

$$
\begin{aligned}
& S\left\{\alpha f_{1}[n, m]+\beta f_{2}[n, m]\right\}=\alpha S\left\{f_{1}[n, m]\right\}+\beta S\left\{f_{2}[n, m]\right\} \\
& \mathcal{S}\left[\sum_{i} \alpha_{i} f_{i}[n, m]\right]=\sum_{i} \alpha_{i} \mathcal{S}\left[f_{i}[n, m]\right]
\end{aligned}
$$

- We can now use superposition to see what the output g is:

$$
\begin{aligned}
f[n, m] & \xrightarrow{S} g[n, m] \\
f[n, m] & =\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot \delta_{2}[n-k, m-l] \\
& \xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot S\left\{\delta_{2}[n-k, m-l]\right\}
\end{aligned}
$$

Key idea: write down f as a sum of impulses

- From previous slide:

$$
\begin{aligned}
f[n, m]= & \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot \delta_{2}[n-k, m-l] \\
& \xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot S\left\{\delta_{2}[n-k, m-l]\right\}
\end{aligned}
$$

- Using shift invariance, we get a shifted impulse response:

$$
S\left\{\delta_{2}[n-k, m-l]\right\}=h[n-k, m-l]
$$

We can write g as a function of h

- We have:

$$
\begin{aligned}
f[n, m] & =\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot \delta_{2}[n-k, m-l] \\
& \xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot S\left\{\delta_{2}[n-k, m-l]\right\}
\end{aligned}
$$

- Which means:

$$
f[n, m] \xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot h[n-k, m-l]
$$

Linear Shift Invariant (LSI) systems

- An LSI system is completely specified by its impulse response.
- For any input f, we can compute the output g in terms of the impulse response h.

$$
\begin{aligned}
& f[n, m] \xrightarrow{S} g[n, m] \\
& f[n, m] \xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot h[n-k, m-l] \\
& f[n, m] * h[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot h[n-k, m-l]
\end{aligned}
$$

Linear Shift Invariant (LSI) systems

- An LSI system is completely specified by its impulse response.

$$
\begin{aligned}
& f[n, m] \xrightarrow{S} g[n, m] \\
& g[n, m]=f[n, m] * h[n, m] \\
& f[n, m] * h[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot h[n-k, m-l]
\end{aligned}
$$

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

2D Discrete Convolution

2D Discrete Convolution

$$
f[n, m] * h[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot h[n-k, m-l]
$$

Kernel $h[n-k, m-l]$

$h[-1,-1]$	$h[-1,0]$	$h[-1,1]$	
$h[0,-1]$	$h[0,0]$	$h[0,1]$	
$h[1,-1]$	$h[1,0]$	$h[1,1]$	

Kernel $h[k, l]$

| $h[1,1]$ | $h[1,0]$ | $h[1,-1]$ | |
| :--- | :--- | :--- | :--- | :--- |
| $h[0,1]$ | $h[0,0]$ | $h[0,-1]$ | |
| $h[-1,1]$ | $h[-1,0]$ | $h[-1,-1]$ | |

Kernel $h[-k,-l]$

			nl $_{n, m)}$						

2D Discrete Convolution

$$
f[n, m] * h[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot[h[n-k, m-l]
$$

Output $f^{*} h$

			$[n, \mathrm{~m}]$						

2D Discrete Convolution

$f[n, m] * h[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot h[n-k, m-l]$

2D Discrete Convolution

$$
f[n, m] * h[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot h[n-k, m-l]
$$

Output f *h									Image $f[k, l]$							
									fio,	F[0,1]						
									f(1,0)							

2D Discrete Convolution

$$
f[n, m] * h[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot h[n-k, m-l]
$$

Output f *									Image $f[k, l]$							
									${ }^{[0,0]}$	f00,1]						
									${ }_{\text {fli, }}$							

2D Discrete Convolution

$$
f[n, m] * h[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot h[n-k, m-l]
$$

Output $f^{*} h$									Image $f[k, l]$								
									fi0,0]	f00,1]							
									${ }_{\text {f1, } 01}$								
									\square								

2D Discrete Convolution

- $f[n, m] * h[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot h[n-k, m-l]$

Algorithm:

- Fold $h[k, l]$ about origin to form $h[-k,-l]$
- Shift the folded results by n, m to form $h[n-k, m-l]$
- Multiply $h[n-k, m-l]$ by $f[k, l]$
- Sum over all k, l, store result in output position [n, m]
- Repeat for every n, m

2D convolution example

1	2	3
4	5	6
7	8	9

Input

Kernel

-13	-20	-17
-18	-24	-18
13	20	17

Output

2D convolution example

$$
\begin{aligned}
= & x[-1,-1] \cdot h[1,1]+x[0,-1] \cdot h[0,1]+x[1,-1] \cdot h[-1,1] \\
& +x[-1,0] \cdot h[1,0]+x[0,0] \cdot h[0,0]+x[1,0] \cdot h[-1,0] \\
& +x[-1,1] \cdot h[1,-1]+x[0,1] \cdot h[0,-1]+x[1,1] \cdot h[-1,-1] \\
= & 0 \cdot 1+0 \cdot 2+0 \cdot 1+0 \cdot 0+1 \cdot 0+2 \cdot 0+0 \cdot(-1)+4 \cdot(-2)+5 \cdot(-1)=-13
\end{aligned}
$$

-13	-20	-17
-18	-24	-18
13	20	17

Output

2D convolution example

$$
\begin{aligned}
= & x[0,-1] \cdot h[1,1]+x[1,-1] \cdot h[0,1]+x[2,-1] \cdot h[-1,1] \\
& +x[0,0] \cdot h[1,0]+x[1,0] \cdot h[0,0]+x[2,0] \cdot h[-1,0] \\
& +x[0,1] \cdot h[1,-1]+x[1,1] \cdot h[0,-1]+x[2,1] \cdot h[-1,-1] \\
= & 0 \cdot 1+0 \cdot 2+0 \cdot 1+1 \cdot 0+2 \cdot 0+3 \cdot 0+4 \cdot(-1)+5 \cdot(-2)+6 \cdot(-1)=-20
\end{aligned}
$$

-13	-20	-17
-18	-24	-18
13	20	17

2D convolution example

$$
\begin{aligned}
= & x[1,-1] \cdot h[1,1]+x[2,-1] \cdot h[0,1]+x[3,-1] \cdot h[-1,1] \\
& +x[1,0] \cdot h[1,0]+x[2,0] \cdot h[0,0]+x[3,0] \cdot h[-1,0] \\
& +x[1,1] \cdot h[1,-1]+x[2,1] \cdot h[0,-1]+x[3,1] \cdot h[-1,-1] \\
= & 0 \cdot 1+0 \cdot 2+0 \cdot 1+2 \cdot 0+3 \cdot 0+0 \cdot 0+5 \cdot(-1)+6 \cdot(-2)+0 \cdot(-1)=-17
\end{aligned}
$$

-13	-20	-17
-18	-24	-18
13	20	17

Output

2D convolution example

$$
\begin{aligned}
= & x[-1,0] \cdot h[1,1]+x[0,0] \cdot h[0,1]+x[1,0] \cdot h[-1,1] \\
& +x[-1,1] \cdot h[1,0]+x[0,1] \cdot h[0,0]+x[1,1] \cdot h[-1,0] \\
& +x[-1,2] \cdot h[1,-1]+x[0,2] \cdot h[0,-1]+x[1,2] \cdot h[-1,-1] \\
= & 0 \cdot 1+1 \cdot 2+2 \cdot 1+0 \cdot 0+4 \cdot 0+5 \cdot 0+0 \cdot(-1)+7 \cdot(-2)+8 \cdot(-1)=-18
\end{aligned}
$$

-13	-20	-17
-18	-24	-18
13	20	17

Output

2D convolution example

	${ }^{2}$	3
${ }^{0} 4$	5	${ }^{0} 6$
${ }^{-1} 7$	${ }^{-2} 8$	${ }^{-1} 9$

$$
\begin{aligned}
= & x[0,0] \cdot h[1,1]+x[1,0] \cdot h[0,1]+x[2,0] \cdot h[-1,1] \\
& +x[0,1] \cdot h[1,0]+x[1,1] \cdot h[0,0]+x[2,1] \cdot h[-1,0] \\
& +x[0,2] \cdot h[1,-1]+x[1,2] \cdot h[0,-1]+x[2,2] \cdot h[-1,-1] \\
= & 1 \cdot 1+2 \cdot 2+3 \cdot 1+4 \cdot 0+5 \cdot 0+6 \cdot 0+7 \cdot(-1)+8 \cdot(-2)+9 \cdot(-1)=-24
\end{aligned}
$$

-13	-20	-17
-18	-24	-18
13	20	17

Output

2D convolution example

1	12	${ }^{2} 3$	1
4	${ }^{0} 5$	${ }^{0} 6$	0
7	${ }^{-1} 8$	-2 9	-1

$$
\begin{aligned}
= & x[1,0] \cdot h[1,1]+x[2,0] \cdot h[0,1]+x[3,0] \cdot h[-1,1] \\
& +x[1,1] \cdot h[1,0]+x[2,1] \cdot h[0,0]+x[3,1] \cdot h[-1,0] \\
& +x[1,2] \cdot h[1,-1]+x[2,2] \cdot h[0,-1]+x[3,2] \cdot h[-1,-1] \\
= & 2 \cdot 1+3 \cdot 2+0 \cdot 1+5 \cdot 0+6 \cdot 0+0 \cdot 0+8 \cdot(-1)+9 \cdot(-2)+0 \cdot(-1)=-18
\end{aligned}
$$

-13	-20	-17
-18	-24	-18
13	20	17

Output

Practice with convolution

Practice with convolution

Practice with convolution

Practice with convolution

Practice with convolution

$?$

Practice with convolution

What happens if a system contains multiple filters?

Original

0	0	0
0	2	0
0	0	0

(Note that filter sums to 1)

What happens if a system contains multiple filters?

Original

0	0	0
0	2	0
0	0	0

$\frac{1}{9}$| 1 | 1 | 1 |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

$=$| 0 | 0 | 0 |
| :--- | :--- | :--- |
| 0 | 1 | 0 |
| 0 | 0 | 0 |$+$| 0 | 0 | 0 |
| :--- | :--- | :--- |
| 0 | 1 | 0 |
| 0 | 0 | 0 |$\quad-\frac{1}{9}$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |

What does blurring take away?

Ranjay Krishna, Jieyu Zhang
Lecture 1-103

What does blurring take away?

Let's add it back to get a sharpening system:

Convolution in 2D - Sharpening filter

Sharpening system: Accentuates differences with local average

Implementation detail: Image support and edge effect

-A computer will only convolve finite support signals.

- That is: images that are zero for n, m outside some rectangular region
- numpy's convolution performs 2D convolution of finite-support signals.

Image support and edge effect

-A computer will only convolve finite support signals.

- What happens at the edge?

- zero "padding"
- edge value replication
h
- mirror extension
- more (beyond the scope of this class)

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

(Cross) correlation - symbol: **

Cross correlation of two 2D signals $f[n, m]$ and $h[n, m]$

$$
f[n, m] * * h[n, m]=\sum_{k} \sum_{l} f[k, l] h[n+k, m+l]
$$

- Equivalent to a convolution without the flip
- Use it to measure 'similarity' between f and h.

(Cross) correlation - example

(Cross) correlation - example

(Cross) correlation - example

$g=f+n o i s e$

numpy's correlate

$$
r>0.5
$$

(Cross) correlation - example

Cross Correlation Application: Vision system for TV remote control

- uses template matching

Figure from "Computer Vision for Interactive Computer Graphics," W.Freeman et al, IEEE Computer Graphics and Applications, 1998 copyright 1998, IEEE

Properties of cross correlation

- Associative property:

$$
\left(f * * h_{1}\right) * * h_{2}=f * *\left(h_{1} * * h_{2}\right)
$$

- Distributive property:

$$
f * *\left(h_{1}+h_{2}\right)=\left(f * * h_{1}\right)+\left(f * * h_{2}\right)
$$

The order doesn't matter! $\quad h_{1} * * h_{2}=h_{2} * * h_{1}$

Convolution vs. (Cross) Correlation

- When is correlation equivalent to convolution?
- In other words, Q. when is $f^{* *} g=f^{*} g$?

Convolution vs. (Cross) Correlation

- A convolution is an integral that expresses the amount of overlap of one function as it is shifted over another function.
o convolution is a filtering operation
- Correlation compares the similarity of two sets of data. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best .
- correlation is a measure of relatedness of two signals

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

Next time:

Edges and lines

