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Lecture 4
Systems and Convolutions
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Administrative

A0 is out. 
- It is upgraded
- Meant to help you with python and numpy basics
- Learn how to do homeworks and submit them on gradescope.
- It is due today.

A1 is out
- It is graded
- Due Tue, Apr 16
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Recitation sections on fridays
- (optional)
- Fridays 12:30pm-1:20pm
- JHU 102
- It will be recorded

This week:
We will go over Python & Numpy basics

Administrative
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So far: 2D discrete system (filters)

S is the system operator, defined as a mapping or assignment 
of possible inputs f[n,m] to some possible outputs g[n,m].
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So far: Moving Average
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So far: Image Segmentation

● Use a simple pixel threshold:
255,
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● Amplitude properties:
○ Additivity

 
○ Homogeneity

○ Superposition

○ Stability

○ Invertibility

So far: Properties of systems
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So far: Properties of systems
● Spatial properties

○ Causality

○ Shift invariance:

8
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What we will learn today?

9

● Linear shift invariant systems
● Impulse functions
● LSI + impulse response
● Convolutions and Cross-Correlation
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● Linear shift invariant systems
● Impulse functions
● LSI + impulse response
● Convolutions and Cross-Correlation

What we will learn today?
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Linear Systems (filters)

• Linear filtering:
– Form a new image whose pixels are a weighted sum of 

original pixel values

–  Use the same set of weights at each point

• S is a linear system (function) iff it S satisfies

superposition property
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• Q. Is the moving average a linear system?

Linear Systems (filters)
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Linear Systems (filters)

• Q. Is the moving average a linear system?

• Q. Is thresholding a linear system?
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Linear Systems (filters)

• Q. Is the moving average a linear system?

• Q. Is thresholding a linear system?
○ Let f1[0,0] = f2[n,m] = 0.4
○ Let T = 0.5
○ So, S[f1[0,0]] = S[f2[0,0]] = 0
○ But S[f1[0,0] + f2[0,0]] = 1
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Linear shift invariant (LSI) systems

● Satisfies two properties:

 

• Superposition property

• Shift invariance:

15
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● We are going to use this as an example to dive into interesting properties 
about linear shift-invariant systems.

● Why are linear shift invariant systems important?

Our visual system is a 
linear shift invariant system

Moving average system is linear shift invariant (LSI)

16
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Human vision are scale and translation 
invariant

Participants were shown 
some target Korean 
character once and were 
tested on whether they 
can identify the targets 
from other distractors

17

Han et al. Scale and translation-invariance for novel objects in human vision. Nature 2020 [link]

. 

https://www.nature.com/articles/s41598-019-57261-6#:~:text=We%20found%20that%20humans%20have,and%20position%20of%20presented%20objects.
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Very high recognition accuracies

Human vision are scale and translation 
invariant

18

Han et al. Scale and translation-invariance for novel objects in human vision. Nature 2020 [link]

. 

https://www.nature.com/articles/s41598-019-57261-6#:~:text=We%20found%20that%20humans%20have,and%20position%20of%20presented%20objects.
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● Linear shift invariant systems
● Impulse functions
● LSI + impulse response
● Convolutions and Cross-Correlation

What we will learn today?
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2D impulse function

● Let’s look at a special function
● 1 at the origin [0,0].
● 0 everywhere else
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2D impulse function as an image
● Let’s look at a special function
● 1 at the origin [0,0].
● 0 everywhere else
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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● The moving average filter equation again:

● By passing an impulse function into an LSI system, we get it’s impulse 
response.
○ We will use h[n, m] to refer to the impulse response

What happens when we pass an impulse 
function through a LSI systems

Pass in an impulse function Record its response
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What happens when we pass an impulse 
function through a LSI systems

Before we do this, let’s remember 
how we used the moving average 
filter last lecture

23

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Remember the Moving Average filter from last lecture
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Remember the Moving Average filter from last lecture
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Remember the Moving Average filter from last lecture
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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0 0 0 90 90 90 90 90 0 0
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Remember the Moving Average filter from last lecture
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Remember the Moving Average filter from last lecture

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Remember the Moving Average filter from last lecture
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Now let’s do the same thing with an 
impulse function

30

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function
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0 0 0 0 0 0 0
0 ? 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function
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0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function
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0 0 1/9 1/9 1/9 0 0
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function
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0 0 0 0 0 0 0
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0 0 0 0 0 0 0
0 0 0 0 0 0 0



Ranjay Krishna, Jieyu Zhang April 04, 2024Lecture 1 -

Now let’s do the same thing with an 
impulse function
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0 ? 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
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0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function
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Now let’s do the same thing with an 
impulse function
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Now let’s do the same thing with an 
impulse function
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Now let’s do the same thing with an 
impulse function
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Now let’s do the same thing with an 
impulse function
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Now let’s do the same thing with an 
impulse function
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Now let’s do the same thing with an 
impulse function
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Now let’s do the same thing with an 
impulse function
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Now let’s do the same thing with an 
impulse function
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Now let’s do the same thing with an 
impulse function
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Impulse response of the 3 by 3 moving average filter
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47
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Notice that any filter can be written as a summation 
of shifted delta functions
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48

1 11

1 11

1 11

Notice that any filter can be written as a summation 
of shifted delta functions

48



Ranjay Krishna, Jieyu Zhang April 04, 2024Lecture 1 -

49

1 11

1 11

1 11

Notice that any filter can be written as a summation 
of shifted delta functions

Q. For what values of n and m is h[,] not zero?
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50

1 11

1 11

1 11

Notice that any filter can be written as a summation 
of shifted delta functions

The general form for a moving 
average h[n,m]
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Q. Why is this the general form?

51

1 11

1 11

1 11

Notice that any filter can be written as a summation 
of shifted delta functions
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Q. Why is this the general form?
As long as n-1, n, or n+1 is 0, the value is 1/9
Same for m

52

1 11

1 11

1 11

Notice that any filter can be written as a summation 
of shifted delta functions
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Q. What if we swap n-k for k-n. Does that also work?

53

1 11

1 11

1 11

Notice that any filter can be written as a summation 
of shifted delta functions
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Yes because h is symmetric 
across the origin

Q. What if we swap n-k for k-n. Does that also work?

54

1 11

1 11

1 11

Notice that any filter can be written as a summation 
of shifted delta functions
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55

1 10

1 10

1 10

Q. What if h was the filter on the right:

(A)

(B)
Is A correct?
Is B correct?
Are both correct?
Are both wrong?

h[:, -1] = 0
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56

1 10

1 10

1 10

Q. What if h was the filter on the right: h[:, -1] = 0
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57

1 10

1 10

1 10

Q. What if h was the filter on the right: h[:, -1] = 0

Because h is not symmetric, we need to invert 
the range if we invert m-l to l-m
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● Linear shift invariant systems
● Impulse functions
● LSI + impulse response
● Convolutions and Cross-Correlation

What we will learn today?
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Property of (LSI) systems
● An LSI system is completely specified by its impulse response.

○ For any input f, we can compute g using only the impulse response h.

59
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Property of (LSI) systems
● An LSI system is completely specified by its impulse response.

○ For any input f, we can compute g using only the impulse response h.

○ Let’s derive an expression for g in terms of h. 
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Recall the 3 properties about LSI systems:

  

1. We know what happens when we send a delta function through an LSI 
system:

61
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Recall the 3 properties about LSI systems:
1. We know what happens when we send a delta function through an LSI 

system:

2. We also know that LSI systems shift the output if the input is shifted:
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Recall the 3 properties about LSI systems:
1. We know what happens when we send a delta function through an LSI 

system:

2. We also know that LSI systems shift the output if the input is shifted:

3. Finally, the superposition principle:
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Key idea: write down f as a sum of impulses

f[2,2]f[2,1]f[2,0]

f[1,2]f[1,1]f[1,0]

f[1,1]f[0,1]f[0,0]

Let’s say our input f is a 3x3 image:

000

000

00f[0,0]

000

000

0f[0,1]0

f[2,2]00

000

000

= + + … +

64
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Key idea: write down f as a sum of impulses

f[2,2]f[2,1]f[2,0]

f[1,2]f[1,1]f[1,0]

f[1,1]f[0,1]f[0,0]

Let’s say our input f is a 3x3 image:

000

000

00f[0,0]

000

000

0f[0,1]0

f[2,2]00

000

000

= + + … +

000

000

001

000

000

010

100

000

000
=    f[0,0]
✕

 +     f[0,1]
✕

+   …     + f[2,2]✕
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Key idea: write down f as a sum of impulses

f[2,2]f[2,1]f[2,0]

f[1,2]f[1,1]f[1,0]

f[1,1]f[0,1]f[0,0]

Let’s say our input f is a 3x3 image:

000

000

00f[0,0]

000

000

0f[0,1]0

f[2,2]00

000

000

= + + … +

000

000

001

000

000

010

100

000

000
=    f[0,0]
✕

 +     f[0,1]
✕

+   …     + f[2,2]✕
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Key idea: write down f as a sum of impulses
● More generally:
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Key idea: write down f as a sum of impulses
● More generally:

● We can now use superposition to see what the output g is:
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Key idea: write down f as a sum of impulses
● More generally:

● We can now use superposition to see what the output g is:

For given k, l, 
this is a constant

69



Ranjay Krishna, Jieyu Zhang April 04, 2024Lecture 1 -

This is a function 
of n, m

Key idea: write down f as a sum of impulses
● More generally:

● We can now use superposition to see what the output g is:

For given k, l, 
this is a constant
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This is a function 
of n, m

Key idea: write down f as a sum of impulses
● Superposition

● We can now use superposition to see what the output g is:

For given k, l, 
this is a constant
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This is a function 
of n, m

Key idea: write down f as a sum of impulses
● Superposition

● We can now use superposition to see what the output g is:

For given k, l, 
this is a constant
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Key idea: write down f as a sum of impulses
● Superposition:

● We can now use superposition to see what the output g is:
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Key idea: write down f as a sum of impulses
● Superposition:

● We can now use superposition to see what the output g is:
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Key idea: write down f as a sum of impulses

● From previous slide:

● Using shift invariance, we get a shifted impulse response:
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We can write g as a function of h
● We have:

● Which means:
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Linear Shift Invariant (LSI) systems
● An LSI system is completely specified by its impulse response.

○ For any input f, we can compute the output g in terms of the impulse response 
h.

Discrete Convolution
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Linear Shift Invariant (LSI) systems
● An LSI system is completely specified by its impulse response.
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● Linear shift invariant systems
● Impulse functions
● LSI + impulse response
● Convolutions and Cross-Correlation

What we will learn today?
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[n,m]

2D Discrete Convolution

Kernel h[k, l]

f[0,0] f[0,1]

f[1,0]

Image f[k, l]Output  f *h

h[-1,0] h[-1,1]h[-1,-1]

h[0,0] h[0,1]h[0,-1]

h[1,0] h[1,1]h[1,-1]
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2D Discrete Convolution

Kernel h[k, l] Kernel h[-k, -l]

Fold Shift

Kernel h[n-k, m-l]

h[n,m]

h[-1,0] h[-1,1]h[-1,-1]

h[0,0] h[0,1]h[0,-1]

h[1,0] h[1,1]h[1,-1]

h[1,0] h[1,-1]h[1,1]

h[0,0] h[0,-1]h[0,1]

h[-1,0] h[-1,-1]h[-1,1]
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2D Discrete Convolution

f[0,0] f[0,1]

f[1,0]

f[n,m]

Kernel h[n-k, m-l]Image f[k, l]Output  f *h

[n,m] h[n,m]
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2D Discrete Convolution

Element-wise multiplication
Image f[k, l] • Kernel h[n-k, m-l]

f[0,0] f[0,1]

f[1,0]

[n,m]

83

Output  f *h Image f[k, l]



Ranjay Krishna, Jieyu Zhang April 04, 2024Lecture 1 -

f[0,0] f[0,1]

f[1,0]

2D Discrete Convolution

Element-wise multiplication
Image f[k, l] • Kernel h[n-k, m-l]

84

Output  f *h Image f[k, l]
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f[0,0] f[0,1]

f[1,0]

2D Discrete Convolution

Element-wise multiplication
Image f[k, l] • Kernel h[n-k, m-l]

85

Output  f *h Image f[k, l]
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f[0,0] f[0,1]

f[1,0]

2D Discrete Convolution

86

Element-wise multiplication
Image f[k, l] • Kernel h[n-k, m-l]

Output  f *h Image f[k, l]
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2D Discrete Convolution
●  
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2D convolution example

Slide credit: Song Ho Ahn
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2D convolution example

Slide credit: Song Ho Ahn

89

89



Ranjay Krishna, Jieyu Zhang April 04, 2024Lecture 1 -

2D convolution example

Slide credit: Song Ho Ahn
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2D convolution example

Slide credit: Song Ho Ahn
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2D convolution example

Slide credit: Song Ho Ahn
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2D convolution example

Slide credit: Song Ho Ahn

93

93



Ranjay Krishna, Jieyu Zhang April 04, 2024Lecture 1 -

2D convolution example

Slide credit: Song Ho Ahn
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Original

?=*

Practice with convolution

95

0 00

1 00

0 00
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Filtered 
(no change)

*

96

Original

=
0 00

1 00

0 00

Practice with convolution
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*

97

Practice with convolution

Original

?=
0 00

0 10

0 00
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Shifted right
By 1 pixel

*

98

Practice with convolution

Original

=
0 00

0 10

0 00
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*

99

Practice with convolution

Original

?=
1 11

1 11

1 11
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Blurry output

*

100

Practice with convolution

Original

=
1 11

1 11

1 11

100



Ranjay Krishna, Jieyu Zhang April 04, 2024Lecture 1 -

- = ?

(Note that filter sums to 1)

Original

101

What happens if a system contains multiple filters?
1 11

1 11

1 11

0 00

2 00

0 00
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-

= +

Original

102

What happens if a system contains multiple filters?
1 11

1 11

1 11

0 00

2 00

0 00

-
1 11

1 11

1 11

0 00

1 00

0 00

0 00

1 00

0 00
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original smoothed (3x3)

– =

Detailed

Detailedoriginal Sharpened

103

= + -
1 11

1 11

1 11

0 00

1 00

0 00

0 00

1 00

0 00

What does blurring take away?
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original smoothed (3x3)

– =

=

Let’s add it back to get a sharpening system:

+

Detailed

Detailedoriginal Sharpened

104

What does blurring take away?
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Convolution in 2D – Sharpening filter

Sharpening system: Accentuates differences with local average

Original

Sharpening system
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Implementation detail: Image support and 
edge effect

•A computer will only convolve finite support signals. 
•  That is: images that are zero for n,m outside some 
rectangular region

• numpy’s convolution performs 2D convolution of finite-support 
signals.

 N1 ×M1

N2 ×M2 

(N1 + N2 − 1) × (M1 +M2 − 1)* =

106
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Image support and edge effect
•A computer will only convolve finite support signals. 
• What happens at the edge?

 f

h

• zero “padding”
• edge value replication
• mirror extension
• more (beyond the scope of this class)

107
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● Linear shift invariant systems
● Impulse functions
● LSI + impulse response
● Convolutions and Cross-Correlation

What we will learn today?
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• Equivalent to a convolution without the flip
• Use it to measure ‘similarity’ between f and h.

109
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C
o

u
rtesy o

f J. 
Fessler

(Cross) correlation – example

110
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(Cross) correlation – example
C

o
u

rtesy o
f J. 

Fessler

111
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numpy’s 
correlate

C
o

u
rtesy o

f J. 
Fessler

C
o

u
rtesy o

f J. 
Fessler

(Cross) correlation – example

112
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(Cross) correlation – example
Lef
t

Righ
t

scanlin
e

N
o

rm
. c

ro
ss

 c
o

rr
. s

co
re
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114
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Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer Graphics and Applications, 1998 copyright 1998, IEEE

Cross Correlation Application: Vision 
system for TV remote control

- uses template matching

115
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Properties of cross correlation
• Associative property:

• Distributive property:

The order doesn’t matter!
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Convolution vs. (Cross) Correlation

● When is correlation equivalent to convolution?
● In other words, Q. when is f**g = f*g? 

117

117



Ranjay Krishna, Jieyu Zhang April 04, 2024Lecture 1 -

Convolution vs. (Cross) Correlation

● A convolution is an integral that expresses the amount of overlap of one 
function as it is shifted over another function. 
○ convolution is a filtering operation

● Correlation compares the similarity of two sets of data. Correlation 
computes a measure of similarity of two input signals as they are shifted 
by one another. The correlation result reaches a maximum at the time 
when the two signals match best .
○ correlation is a measure of relatedness of two signals

118
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● Linear shift invariant systems
● Impulse functions
● LSI + impulse response
● Convolutions and Cross-Correlation

What we will learn today?
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Next time:

Edges and lines
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