Lecture 4

Systems and Convolutions

Ranjay Krishna, Jieyu Zhang

Administrative

A0 is out.

- It is upgraded
- Meant to help you with python and numpy basics
- Learn how to do homeworks and submit them on gradescope.
- It is due today.

A1 is out

- It is graded
- Due Tue, Apr 16

Ranjay Krishna, Jieyu Zhang

Administrative

Recitation sections on fridays

- (optional)
- Fridays 12:30pm-1:20pm
- JHU 102
- It will be recorded

This week: We will go over Python & Numpy basics

So far: 2D discrete system (filters)

S is the **system operator**, defined as a **mapping or assignment** of possible inputs f[n,m] to some possible outputs g[n,m].

$$f[n,m] \to \operatorname{System} \mathcal{S} \to g[n,m]$$

Ranjay Krishna, Jieyu Zhang

So far: Moving Average

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

Original image

Smoothed image

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 5

So far: Image Segmentation

• Use a simple pixel threshold: $g[n,m] = \begin{cases} 255, f[n,m] > 100\\ 0, \text{ otherwise.} \end{cases}$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 6

So far: Properties of systems

Amplitude properties:

Additivity

 $\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$

• Homogeneity

$$\mathcal{S}[\alpha f[n,m]] = \alpha \mathcal{S}[f[n,m]]$$

Superposition

$$\mathcal{S}[\alpha f_i[n,m] + \beta f_j[n,m]] = \alpha \mathcal{S}[f_i[n,m]] + \beta \mathcal{S}[f_j[n,m]]$$

o Stability

If $\forall n, m, |f[n, m]| \leq k \implies |\mathcal{S}[f[n, m]]| \leq ck$ for some constant c and k \circ Invertibility $\mathcal{S}^{-1}\mathcal{S}[f[n, m]] = f[n, m]$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 7

So far: Properties of systems

Spatial properties

○ Causality

for
$$n < n_0, m < m_0$$
, if $f[n, m] = 0 \implies g[n, m] = 0$

• Shift invariance:

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

Ranjay Krishna, Jieyu Zhang

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

Ranjay Krishna, Jieyu Zhang

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

Ranjay Krishna, Jieyu Zhang

$$f[n,m] \to \operatorname{System} \mathcal{S} \to g[n,m]$$

- Linear filtering:
 - Form a new image whose pixels are a weighted sum of original pixel values
 - Use the same set of weights at each point
- **S** is a linear system (function) iff it *S* satisfies

 $S[\alpha f_i[n,m] + \beta f_j[k,l]] = \alpha S[f_i[n,m]] + \beta S[f_j[k,l]]$

superposition property

Ranjay Krishna, Jieyu Zhang

$$f[n,m] \to \mathbb{S}$$
ystem $\mathcal{S} \to g[n,m]$

• Q. Is the moving average a linear system?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

Ranjay Krishna, Jieyu Zhang

$$f[n,m] \to \mathbb{S}$$
ystem $\mathcal{S} \to g[n,m]$

• Q. Is the moving average a linear system?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

• Q. Is thresholding a linear system?

$$g[n,m] = \begin{cases} 1, & f[n,m] > 100\\ 0, & \text{otherwise.} \end{cases}$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 13

$$f[n,m] \to \mathbb{S}$$
ystem $\mathcal{S} \to g[n,m]$

• Q. Is the moving average a linear system?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

- Q. Is thresholding a linear system?
 - Let f1[0,0] = f2[n,m] = 0.4
 - Let T = 0.5

$$g[n,m] = \begin{cases} 1, & f[n,m] > 100 \\ 0, & \text{otherwise.} \end{cases}$$

April 04, 2024

- So, S[f1[0,0]] = S[f2[0,0]] = 0
- But S[f1[0,0] + f2[0,0]] = 1

Ranjay Krishna, Jieyu Zhang

Linear shift invariant (LSI) systems

- Satisfies two properties:
- Superposition property

 $S[\alpha f_i[n,m] + \beta f_j[k,l]] = \alpha S[f_i[n,m]] + \beta S[f_j[k,l]]$

• Shift invariance:

$$f[n - n_0, m - m_0] \xrightarrow{\mathcal{S}} g[n - n_0, m - m_0]$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 15

Moving average system is linear shift invariant (LSI)

- We are going to use this as an example to dive into interesting properties about linear shift-invariant systems.
- Why are linear shift invariant systems important?

Our visual system is a linear shift invariant system

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 16

Human vision are scale and translation invariant

 Target
 아 드 피 뤄 춘 선 머 르 타 예 간 방 우 시 켜

 Distractor
 마 므 티 뢔 훈 건 다 브 뎌 메 산 랑 은 지 려

(A)

Participants were shown some target Korean character once and were tested on whether they can identify the targets from other distractors

April 04, 2024

Han et al. Scale and translation-invariance for novel objects in human vision. Nature 2020 [link]

Ranjay Krishna, Jieyu Zhang

Human vision are scale and translation invariant

Very high recognition accuracies

Han et al. Scale and translation-invariance for novel objects in human vision. Nature 2020 [link]

Ranjay Krishna, Jieyu Zhang

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

Ranjay Krishna, Jieyu Zhang

2D impulse function

- Let's look at a special function
- 1 at the origin [0,0].
- 0 everywhere else

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 20

2D impulse function as an image

- Let's look at a special function
- 1 at the origin [0,0].
- 0 everywhere else

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

April 04, 2024

Ranjay Krishna, Jieyu Zhang

What happens when we pass an impulse function through a LSI systems

• The moving average filter equation again: $g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$

• By passing an impulse function into an LSI system, we get it's impulse response.

Lecture 1 - 22

April 04, 2024

• We will use h[n, m] to refer to the impulse response

Ranjay Krishna, Jieyu Zhang

What happens when we pass an impulse function through a LSI systems

Before we do this, let's remember how we used the moving average filter last lecture

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

Ranjay Krishna, Jieyu Zhang

f[<i>n</i> , <i>m</i>]	
--------------------------	--

Courtesy of S. Seitz

Ranjay Krishna, Jieyu Zhang

			L	•	-				
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Ranjay Krishna, Jieyu Zhang

			L		-				
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

f[n,m]

Ranjay Krishna, Jieyu Zhang

		_	L		-	3			
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

f[*n*, *m*]

Ranjay Krishna, Jieyu Zhang

			L		-		_		
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

f[n,m]

April 04, 2024

Ranjay Krishna, Jieyu Zhang

			-		-				
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

f[*n*, *m*]

g[n,m]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Ranjay Krishna, Jieyu Zhang

	0	0	0	0	0	\cap	
	0	0	0	0		0	0
	0	0	0	0		0	0
	0	0	0	0)	0	0
	0	0	0	1	(0	0
	0	0	0	0	(0	0
	0	0	0	0		0	0
	0	0	0	0		0	0

f[n,m]

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[n,m]

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[n,m]

Ranjay Krishna, Jieyu Zhang

		_		_			
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[n,m]

Ranjay Krishna, Jieyu Zhang

		_		_			
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[n,m]

h[n,m]

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	?						

Ranjay Krishna, Jieyu Zhang

		_					
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0						

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	?					

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1/9					

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1/9	?				

Ranjay Krishna, Jieyu Zhang

 		_		_			
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1/9	1/9				

Ranjay Krishna, Jieyu Zhang

							_
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1/9	1/9	1/9	0	0	
0	0	?					

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1/9	1/9	1/9	0	0	
0	0	1/9					

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

 	_						
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1/9	1/9	1/9	0	0	
0	0	1/9	?				

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

 	_						
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1/9	1/9	1/9	0	0	
0	0	1/9	1/9				

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1/9	1/9	1/9	0	0	
0	0	1/9	1/9	1/9	0	0	
0	0	1/9	1/9	1/9	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

Ranjay Krishna, Jieyu Zhang

Impulse response of the 3 by 3 moving average filter

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$h[0,0] = \frac{1}{9}\delta_2[0,0]$$

Ranjay Krishna, Jieyu Zhang

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$h[0,0] = \frac{1}{9}\delta_2[0,0]$$
$$h[0,1] = \frac{1}{9}\delta_2[0,0]$$

Ranjay Krishna, Jieyu Zhang

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$h[0,0] = \frac{1}{9}\delta_2[0,0]$$
$$h[0,1] = \frac{1}{9}\delta_2[0,0]$$

Ranjay Krishna, Jieyu Zhang

Q. For what values of **n** and **m** is h[,] **not** zero?

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$=\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}\delta_{2}[n-k,m-l]$$

The general form for a moving average h[n,m]

Ranjay Krishna, Jieyu Zhang

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$=\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}\delta_{2}[n-k,m-l]$$

Q. Why is this the general form?

Ranjay Krishna, Jieyu Zhang

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$=\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}\delta_{2}[n-k,m-l]$$

April 04, 2024

Q. Why is this the general form? As long as n-1, n, or n+1 is 0, the value is 1/9 Same for m

Ranjay Krishna, Jieyu Zhang

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

1

$$=\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}\delta_{2}[n-k,m-l]$$

April 04, 2024

Q. What if we swap n-k for k-n. Does that also work?

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[k-n, l-m]$$

Ranjay Krishna, Jieyu Zhang

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$=\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}\delta_{2}[n-k,m-l]$$

Q. What if we swap n-k for k-n. Does that also work?

 $= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[k-n,l-m]$ Yes because h is symmetric across the origin

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 54

April 04, 2024

Q. What if h was the filter on the right:

h[:, -1] = 0

h[n,m]

(A) =
$$\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k, m-l]$$

(B) =
$$\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[k-n, l-m]$$

Is A correct? Is B correct? Are both correct? Are both wrong?

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 55

April 04, 2024

Q. What if h was the filter on the right:

h[:, -1] = 0

$$h[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=0}^{1} \delta_2[n-k,m-l]$$

Ranjay Krishna, Jieyu Zhang

Q. What if h was the filter on the right:

Because h is not symmetric, we need to invert the range if we invert m-l to l-m

Ranjay Krishna, Jieyu Zhang

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

Ranjay Krishna, Jieyu Zhang

Property of (LSI) systems

- An LSI system is completely specified by its impulse response.
 - \circ For any input f, we can compute g using only the impulse response h. $f[n,m] \xrightarrow{S} g[n,m]$

Property of (LSI) systems

- An LSI system is completely specified by its impulse response.
 - \circ For any input f, we can compute g using only the impulse response h. $f[n,m] \xrightarrow{S} g[n,m]$
 - \circ Let's derive an expression for g in terms of h.

Recall the 3 properties about LSI systems:

1. We know what happens when we send a delta function through an LSI system: (

$$\mathfrak{S}_2[n,m] \rightarrow | \text{System } \mathcal{S} | \rightarrow h[n,m]$$

Ranjay Krishna, Jieyu Zhang

Recall the 3 properties about LSI systems:

1. We know what happens when we send a delta function through an LSI system: $\delta_2[n,m] \rightarrow [\text{System } S] \rightarrow h[n,m]$

2. We also know that LSI systems shift the output if the input is shifted:

$$\delta_2[n-k,m-l] \rightarrow \text{System } \mathcal{S} \rightarrow h[n-k,m-l]$$

Ranjay Krishna, Jieyu Zhang

Recall the 3 properties about LSI systems:

1. We know what happens when we send a delta function through an LSI system: $\delta_2[n,m] \rightarrow [\text{System } S] \rightarrow h[n,m]$

2. We also know that LSI systems shift the output if the input is shifted:

$$\delta_2[n-k,m-l] \rightarrow \text{System } \mathcal{S} \rightarrow h[n-k,m-l]$$

3. Finally, the superposition principle:

 $S\{lpha f_1[n,m]+eta f_2[n,m]\}=lpha S\{f_1[n,m]\}+eta S\{f_2[n,m]\}$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 63

April 04, 2024

Let's say our input *f* is a 3x3 image:

f[0,0]	f[0,1]	f[1,1]		f[0,0]	0	0		0	f[0,1]	0	_	0	0	0
f[1,0]	f[1,1]	f[1,2]	=	0	0	0	+	0	0	0	++	0	0	0
	((0,4)		_	0	0	0		0	0	0		0	0	f[2,2]
f[2,0]	f[2,1]	f[2,2]	_				F		I		F			1

Ranjay Krishna, Jieyu Zhang

Let's say our input *f* is a 3x3 image:

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 65

April 04, 2024

Let's say our input *f* is a 3x3 image:

 $= f[0,0] \cdot \delta_2[n,m] + f[0,1] \cdot \delta_2[n,m-1] + \ldots + f[2,2] \cdot \delta_2[n-2,m-2]$

April 04, 2024

Ranjay Krishna, Jieyu Zhang

• More generally:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

Ranjay Krishna, Jieyu Zhang

• More generally:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

• We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

Ranjay Krishna, Jieyu Zhang

• More generally:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

• We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \frac{f[k,l]}{\delta_2[n-k,m-l]}$$

For given k, l, this is a constant

Ranjay Krishna, Jieyu Zhang

• More generally:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

• We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \frac{f[k,l]}{\delta_2[n-k,m-l]}$$

For given k, I,This is a functionthis is a constantof n, m

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 70

April 04, 2024

• Superposition

$$S\{lpha f_1[n,m]+eta f_2[n,m]\}=lpha S\{f_1[n,m]\}+eta S\{f_2[n,m]\}$$

• We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \frac{f[k,l]}{\delta_2[n-k,m-l]}$$

For given k, I,This is a functionthis is a constantof n, m

Ranjay Krishna, Jieyu Zhang

• Superposition

$$S\{lpha f_1[n,m]+eta f_2[n,m]\}=lpha S\{f_1[n,m]\}+eta S\{f_2[n,m]\}$$

$$\mathcal{S}[\sum_{i} \alpha_{i} f_{i}[n, m]] = \sum_{i} \alpha_{i} \mathcal{S}[f_{i}[n, m]]$$

• We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \frac{f[k,l]}{\delta_2[n-k,m-l]}$$

For given k, I,This is a functionthis is a constantof n, m

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 72

April 04, 2024
Key idea: write down *f* as a sum of impulses

• Superposition:

$$S\{lpha f_1[n,m]+eta f_2[n,m]\}=lpha S\{f_1[n,m]\}+eta S\{f_2[n,m]\}$$

$$\mathcal{S}[\sum_{i} \alpha_{i} f_{i}[n, m]] = \sum_{i} \alpha_{i} \mathcal{S}[f_{i}[n, m]]$$

• We can now use superposition to see what the output g is:

$$\begin{split} f[n,m] &\xrightarrow{S} g[n,m] \\ f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l] \\ & \overbrace{S}{\longrightarrow} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot S\{\delta_2[n-k,m-l]\} \end{split}$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 73

Key idea: write down f as a sum of impulses

• Superposition:

 $S\{lpha f_1[n,m]+eta f_2[n,m]\}=lpha S\{f_1[n,m]\}+eta S\{f_2[n,m]\}$

$$\mathcal{S}[\sum_{i} \alpha_{i} f_{i}[n, m]] = \sum_{i} \alpha_{i} \mathcal{S}[f_{i}[n, m]]$$

• We can now use superposition to see what the output g is:

$$\begin{split} f[n,m] &\xrightarrow{S} g[n,m] \\ f[n,m] &= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l] \\ &\xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot S\{\delta_2[n-k,m-l]\} \end{split}$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 74

Key idea: write down *f* as a sum of impulses

• From previous slide:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$
$$\xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot S\{\delta_2[n-k,m-l]$$

• Using shift invariance, we get a shifted impulse response:

$$S\{\delta_2[n-k, m-l]\} = h[n-k, m-l]$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 75

We can write g as a function of h

• We have:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$
$$\xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot S\{\delta_2[n-k,m-l]$$

• Which means:

$$f[n,m] \xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 76

Linear Shift Invariant (LSI) systems

- An LSI system is completely specified by its impulse response.
 - \circ For any input f, we can compute the output g in terms of the impulse response h. $f[n,m] \xrightarrow{S} q[n,m]$ $f[n,m] \xrightarrow{S} \sum f[k,l] \cdot h[n-k,m-l]$ $k = -\infty l = -\infty$ **Discrete Convolution** ∞ ∞ $f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$

Lecture 1 - 77

April 04, 2024

Ranjay Krishna, Jieyu Zhang

Linear Shift Invariant (LSI) systems

• An LSI system is completely specified by its impulse response.

$$\begin{split} f[n,m] &\stackrel{S}{\to} g[n,m] \\ g[n,m] &= f[n,m] * h[n,m] \\ f[n,m] & * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l] \end{split}$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 78

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 79

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 80

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \frac{h[n-k,m-l]}{k}$$

Kernel *h*[*n*-*k*, *m*-*l*]

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 81

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 82

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 83

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

Output f *h

Image *f[k, l]*

Ranjay Krishna, Jieyu Zhang

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

Output f *h

Image *f[k, l]*

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 85

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

Output f *h

Image *f[k, l]*

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 86

•
$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

Algorithm:

- Fold h[k, l] about origin to form h[-k, -l]
- Shift the folded results by n, m to form h[n k, m l]
- Multiply *h*[*n* − *k*, *m* − *l*] by *f*[*k*, *l*]
- Sum over all k, l, store result in output position [n, m]

Lecture 1 - 87

April 04, 2024

• Repeat for every *n*, *m*

Ranjay Krishna, Jieyu Zhang

Input

Kernel

Output

-17

-18

17

Slide credit: Song Ho Ahn

Ranjay Krishna, Jieyu Zhang

 $= x[-1,-1] \cdot h[1,1] + x[0,-1] \cdot h[0,1] + x[1,-1] \cdot h[-1,1]$ $+ x[-1,0] \cdot h[1,0] + x[0,0] \cdot h[0,0] + x[1,0] \cdot h[-1,0]$ $+ x[-1,1] \cdot h[1,-1] + x[0,1] \cdot h[0,-1] + x[1,1] \cdot h[-1,-1]$ $= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 + 2 \cdot 0 + 0 \cdot (-1) + 4 \cdot (-2) + 5 \cdot (-1) = -13$

-13	-20	-17
-18	-24	-18
13	20	17

Output

Ranjay Krishna, Jieyu Zhang

Slide credit: Song Ho Ahn

Lecture 1 - 89

1	2	1
<mark>0</mark> 1	<mark>0</mark> 2	<mark>0</mark> 3
-1 4	<mark>-2</mark> 5	-1 6
7	8	9

 $= x[0,-1] \cdot h[1,1] + x[1,-1] \cdot h[0,1] + x[2,-1] \cdot h[-1,1]$ $+ x[0,0] \cdot h[1,0] + x[1,0] \cdot h[0,0] + x[2,0] \cdot h[-1,0]$ $+ x[0,1] \cdot h[1,-1] + x[1,1] \cdot h[0,-1] + x[2,1] \cdot h[-1,-1]$ $= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 0 + 4 \cdot (-1) + 5 \cdot (-2) + 6 \cdot (-1) = -20$

-13	-20	-17
-18	-24	-18
13	20	17

Output

Ranjay Krishna, Jieyu Zhang

Slide credit: Song Ho Ahn

Lecture 1 - 90

 $x[1,-1] \cdot h[1,1] + x[2,-1] \cdot h[0,1] + x[3,-1] \cdot h[-1,1]$ $+ x[1,0] \cdot h[1,0] + x[2,0] \cdot h[0,0] + x[3,0] \cdot h[-1,0]$ $+ x[1,1] \cdot h[1,-1] + x[2,1] \cdot h[0,-1] + x[3,1] \cdot h[-1,-1]$ $= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 + 0 \cdot 0 + 5 \cdot (-1) + 6 \cdot (-2) + 0 \cdot (-1) = -17$

-13	-20	-17
-18	-24	-18
13	20	17

Output

April 04, 2024

Slide credit: Song Ho Ahn

Ranjay Krishna, Jieyu Zhang

 $= x[-1,0] \cdot h[1,1] + x[0,0] \cdot h[0,1] + x[1,0] \cdot h[-1,1]$ $+ x[-1,1] \cdot h[1,0] + x[0,1] \cdot h[0,0] + x[1,1] \cdot h[-1,0]$ $+ x[-1,2] \cdot h[1,-1] + x[0,2] \cdot h[0,-1] + x[1,2] \cdot h[-1,-1]$ $= 0 \cdot 1 + 1 \cdot 2 + 2 \cdot 1 + 0 \cdot 0 + 4 \cdot 0 + 5 \cdot 0 + 0 \cdot (-1) + 7 \cdot (-2) + 8 \cdot (-1) = -18$

-13	-20	-17
-18	-24	-18
13	20	17

Output

April 04, 2024

Slide credit: Song Ho Ahn

Ranjay Krishna, Jieyu Zhang

1	<mark>2</mark> 2	1 3
<mark>0</mark> 4	<mark>0</mark> 5	<mark>0</mark> 6
⁻¹ 7	-2 8	-1 9

 $= x[0,0] \cdot h[1,1] + x[1,0] \cdot h[0,1] + x[2,0] \cdot h[-1,1]$ $+ x[0,1] \cdot h[1,0] + x[1,1] \cdot h[0,0] + x[2,1] \cdot h[-1,0]$ $+ x[0,2] \cdot h[1,-1] + x[1,2] \cdot h[0,-1] + x[2,2] \cdot h[-1,-1]$ $= 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 1 + 4 \cdot 0 + 5 \cdot 0 + 6 \cdot 0 + 7 \cdot (-1) + 8 \cdot (-2) + 9 \cdot (-1) = -24$

-13	-20	-17
-18	-24	-18
13	20	17

Output

April 04, 2024

Ranjay Krishna, Jieyu Zhang

Slide credit: Song Ho Ahn

 $= x[1,0] \cdot h[1,1] + x[2,0] \cdot h[0,1] + x[3,0] \cdot h[-1,1]$ $+ x[1,1] \cdot h[1,0] + x[2,1] \cdot h[0,0] + x[3,1] \cdot h[-1,0]$ $+ x[1,2] \cdot h[1,-1] + x[2,2] \cdot h[0,-1] + x[3,2] \cdot h[-1,-1]$ $= 2 \cdot 1 + 3 \cdot 2 + 0 \cdot 1 + 5 \cdot 0 + 6 \cdot 0 + 0 \cdot 0 + 8 \cdot (-1) + 9 \cdot (-2) + 0 \cdot (-1) = -18$

-13	-20	-17
-18	-24	-18
13	20	17

Output

April 04, 2024

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

What happens if a system contains multiple filters?

Original

(Note that filter sums to 1)

April 04, 2024

Ranjay Krishna, Jieyu Zhang

What happens if a system contains multiple filters?

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 102

What does blurring take away?

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 103

What does blurring take away?

Let's add it back to get a sharpening system:

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 104

Convolution in 2D – Sharpening filter

Original

Sharpening system: Accentuates differences with local average

Ranjay Krishna, Jieyu Zhang

Implementation detail: Image support and edge effect

- •A computer will only convolve finite support signals.
 - That is: images that are zero for n,m outside some rectangular region
- numpy's convolution performs 2D convolution of finite-support signals.

Image support and edge effect

- •A computer will only convolve finite support signals.
- What happens at the edge?

- zero "padding"
- edge value replication
- mirror extension
 - **MORE** (beyond the scope of this class)

Ranjay Krishna, Jieyu Zhang

What we will learn today?

Lecture 1 - 108

April 04, 2024

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

Ranjay Krishna, Jieyu Zhang
(Cross) correlation – symbol: **

Cross correlation of two 2D signals f[n,m] and h[n,m]

$$f[n,m] ** h[n,m] = \sum_{k} \sum_{l} f[k,l]h[n+k,m+l]$$

Lecture 1 - 109

April 04, 2024

- Equivalent to a convolution without the flip
- Use it to measure 'similarity' between f and h.

(Cross) correlation – example

Courtesy of J Fessler

Ranjay Krishna, Jieyu Zhang

(Cross) correlation – example g=f+noise g > 0.5 f g > 0.5f g > 0.

Courtesy of J Fessler

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 111

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 112

(Cross) correlation – example

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 113

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 114

Cross Correlation Application: Vision system for TV remote control

- uses template matching

Figure from "Computer Vision for Interactive Computer Graphics," W.Freeman et al, IEEE Computer Graphics and Applications, 1998 copyright 1998, IEEE

Ranjay Krishna, Jieyu Zhang

Properties of cross correlation

• Associative property:

$$(f * * h_1) * * h_2 = f * * (h_1 * * h_2)$$

• Distributive property:

$$f \ast \ast (h_1 + h_2) = (f \ast \ast h_1) + (f \ast \ast h_2)$$

Lecture 1 - 116

April 04, 2024

The order doesn't matter! $h_1 * * h_2 = h_2 * * h_1$

Convolution vs. (Cross) Correlation

- When is correlation equivalent to convolution?
- In other words, Q. when is f**g = f*g?

Convolution vs. (Cross) Correlation

 A <u>convolution</u> is an integral that expresses the amount of overlap of one function as it is shifted over another function.

convolution is a filtering operation

• <u>Correlation</u> compares the *similarity* of *two* sets of *data*. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best .

Lecture 1 - 118

April 04, 2024

correlation is a measure of relatedness of two signals

What we will learn today?

Lecture 1 - 119

<u>April 04, 2024</u>

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

Next time:

Edges and lines

Ranjay Krishna, Jieyu Zhang

