Lecture 3

Pixels and Filters

Ranjay Krishna, Jieyu Zhang

Administrative

A0 is out.

- It is upgraded
- Meant to help you with python and numpy basics
- Learn how to do homeworks and submit them on gradescope.

Administrative

Recitation sections on fridays

- (optional)
- Fridays 12:30pm-1:20pm
- JHU 102
- It will be recorded

This week: We will go over Python & Numpy basics

So far: The lossy process through which we see

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 4

So far: The lossy process through which images form

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 5

So far: Grayscale images can be represented as matrices

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 6

So far: Color image can be represented as HxWxC tensors

What we will learn today?

- Image histograms
- Images as functions
- Filters
- Properties of systems

Some background reading: Forsyth and Ponce, Computer Vision, Chapter

Ranjay Krishna, Jieyu Zhang

What we will learn today?

• Image histograms

- Images as functions
- Filters
- Properties of systems

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 9

Starting with grayscale images:

- Histogram captures the distribution of gray levels in the image.
- How frequently each gray level occurs in the image

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 10

Grayscale histograms in code

• Histogram of an image provides the frequency of the brightness (intensity) value in the image.

Here is an efficient implementation of calculating histograms:

def histogram(im): h = np.zeros(255) for row in im.shape[0]: for col in im.shape[1]: val = im[row, col] h[val] += 1

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 11

Visualizing Histograms for patches

Slide credit: Dr. Mubarak

April 02, 2024

Ranjay Krishna, Jieyu Zhang

Histogram – use case

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 13

Slide credit: DrAyubira 2024

Another type of Histogram

x axis represents the width of the image.

Each histogram represents the intensity at a specific height of the image Regions with sharp changes are likely to contain objects

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 14

Histograms are a convenient representation to extract information

Can we develop better transformations than histograms?

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 15

What we will learn today?

- Image histograms
- Images as functions
- Filters
- Properties of systems

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 16

Images are a function!!!

This is a new formalism that will allow us to borrow ideas from signal processing to extract meaningful information.

At every pixel location, we get an intensity value for that pixel.

The world captured by the image continues beyond that confines of the image

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 17

- Digital images are usually discrete:
 - Sample the 2D space on a regular grid
- Represented as a matrix of integer values

pixel intensity

April 02, 2024

		m						
	62	79	23	119	120	05	4	0
	10	10	9	62	12	78	34	0
n 🖡	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Ranjay Krishna, Jieyu Zhang

- The input to the image function is a pixel location, [n m]
- The output to the image function is the pixel intensity

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 19

- The input to the image function is a pixel location, [n m]
- The output to the image function is the pixel intensity

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 20

- The input to the image function is a pixel location, [n m]
- The output to the image function is the pixel intensity

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 21

- The input to the image function is a pixel location, [n m]
- The output to the image function is the pixel intensity

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 22

Images as coordinates

We can represent this function as f. f[n, m] represents the pixel intensity at that value.

$$f[n,m] = \begin{bmatrix} \ddots & \vdots & & \\ & f[-1,-1] & f[-1,0] & f[-1,1] \\ & & & f[0,-1] & \underline{f[0,0]} & f[0,1] & \dots \\ & & & f[1,-1] & f[1,0] & f[1,1] \\ & & & & \vdots & \ddots \end{bmatrix}$$
Notation for f_{liscrete} unctions

n and *m* can be any real valued numbers.

Even negative!!

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 23

We don't have the intensity values for negative indices

$$f[n,m] = \begin{bmatrix} \ddots & \vdots \\ f[-1,-1] & f[-1,0] & f[-1,1] \\ \cdots & f[0,-1] & \frac{f[0,0]}{f[1,0]} & f[0,1] & \cdots \\ f[1,0] & f[1,1] & \vdots & \ddots \end{bmatrix}$$
 n and m can be any real valued numbers. Even negative!!

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 24

- An Image as a function *f* from R² to R^C:
 - if grayscale then C=1, if color then C=3

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 25

- An Image as a function *f* from R² to R^C:
 - if grayscale, C=1, if color, C=3
 - f [n, m] gives the intensity at position [n, m]
 - Has values over a rectangle, with a finite range:
 - *f*: [0,*H*] x [0,*W*]→ [0,255]

```
Domain support
```

range

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 26

- An Image as a function *f* from R² to R^C:
 - if grayscale, C=1, if color, C=3
 - f [n, m] gives the intensity at position [n, m]
 - Has values over a rectangle, with a finite range:
 - *f*: [0,*H*] x [0,*W*]→ [0,255]

Domain support

range

• Doesn't have values outside of the image rectangle

f: [*-inf*,*inf*] x [*-inf*,*inf*] → [0,255]

 we assume that f[n, m] = 0 outside of the image rectangle

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 27

- An Image as a function f from \mathbb{R}^2 to $\mathbb{R}^{\mathbb{C}}$:
 - f [n, m] gives the intensity at position [n, m]
 - Defined over a rectangle, with a finite range:
 - $f: [a,b] \times [c,d] \rightarrow [0,255]$

Domain support range

Ranjay Krishna, Jieyu Zhang

Histograms are a type of image function

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 29

What we will learn today?

- Image histograms
- Images as functions
- Filters
- Properties of systems

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 30

Applications of linear systems or filters

De-noisin

Salt and pepper noise

Super-resolutio

In-paintin

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 31

Systems and Filters

Filtering:

 Forming a new image whose pixel values are transformed from original pixel values

Goals of filters:

- Goal is to extract useful information from images, or transform images into another domain where we can modify/enhance image properties
 - Features (edges, corners, blobs...)
 - super-resolution; in-painting; de-noising

Lecture 1 - 32

Intuition behind linear systems

- We will view linear systems as a type of function that operates over images
- Translating an image or multiplying by a constant leaves the semantic content intact
 - but can reveal interesting patterns

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 33

Aside

- Neural networks and specifically **convolutional** neural networks are a sequence of filters (except they are a non-linear system) that contains multiple individual linear sub-systems.
- (we will learn more about this later in class)

Systems use Filters

- we define a system as a unit that converts an input function f[n,m] into an output (or response) function g[n,m], where (n,m) are the independent variables.
 - In the case for images, (n,m) represents the spatial position in the image.

$$f[n,m] \to \texttt{System } \mathcal{S} \to g[n,m]$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 35

Images produce a 2D matrix with pixel intensities at every location

$$f[n,m] = \begin{bmatrix} \ddots & \vdots & \\ f[-1,-1] & f[0,-1] & f[1,-1] \\ \dots & f[-1,0] & \\ f[-1,1] & f[0,0] & f[1,0] & \dots \\ f[0,1] & f[1,1] & \\ \vdots & \ddots & \end{bmatrix}$$
Notation for discrete functions

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 36

2D discrete system (filters)

S is the **system operator**, defined as a **mapping or assignment** of possible inputs f[n,m] to some possible outputs g[n,m].

$$f[n,m] \to \boxed{\text{System } \mathcal{S}} \to g[n,m]$$

Ranjay Krishna, Jieyu Zhang

2D discrete system (filters)

S is the **system operator**, defined as a mapping or assignment of possible inputs f[n,m] to some possible outputs g[n,m].

$$f[n,m] \to \texttt{System } \mathcal{S} \to g[n,m]$$

Other notations:

$$g = \mathcal{S}[f], \quad g[n,m] = \mathcal{S}\{f[n,m]\}$$
$$f[n,m] \xrightarrow{\mathcal{S}} g[n,m]$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 38

Filter example #1: Moving Average

Original image

Q. What do you think will happen to the photo if we use a moving average filter?

Assume that the moving average replaces each pixel with an average value of itself and all its neighboring pixels.

Ranjay Krishna, Jieyu Zhang

Filter example #1: Moving Average

Original image

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 40

Smoothed image

Visual interpretation of moving average

A moving average over a 3×3 neighborhood window

h is a 3x3 matrix with values 1/9 everywhere.

April 02, 2024

Ranjay Krishna, Jieyu Zhang

The red box is the **h** matrix

0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	0	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	90	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			

f[n m]

Courtesy of S. Seitz

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 42

.[.,,,,,,]												
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	0	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	90	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			

f[*n*,*m*]

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 43

.[,]												
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	0	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	90	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			

f[n,m]

Ranjay Krishna, Jieyu Zhang

.[,]												
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	0	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	90	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			

f[n,m]

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 45

.[.,,]											
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 46

			L		-				
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

g[n,m]

0	10	20	30	30	30	20	10				
0	20	40	60	60	60	40	20				
0	30	60	90	90	90	60	30				
0	30	50	80	80	90	60	30				
0	30	50	80	80	90	60	30				
0	20	30	50	50	60	40	20				
10	20	30	30	30	30	20	10				
10	10	10	0	0	0	0	0				

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 47

Visual interpretation of moving average

A moving average over a 3×3 neighborhood window

h is a 3x3 matrix with values 1/9 everywhere.

Q. Why are the values 1/9?

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 48

Filter example #1: Moving Average

In summary:

- This filter "Replaces" each pixel with an average of its neighborhood.
- Achieve smoothing effect (remove sharp features)

Ranjay Krishna, Jieyu Zhang

How do we represent applying this filter mathematically?

$$f[n,m] \to$$
System $\mathcal{S} \to g[n,m]$

Ranjay Krishna, Jieyu Zhang

How do we represent applying this filter mathematically?

$$f[n,m] \to \boxed{\text{System } S} \to g[n,m]$$
$$g[n,m] = \frac{1}{9} \sum_{k=??}^{??} \sum_{l=??}^{??} f[k,l]$$

April 02, 2024

Q. What values will k take?

Ranjay Krishna, Jieyu Zhang

How do we represent applying this filter mathematically?

$$f[n,m] \to \boxed{\text{System } S} \to g[n,m]$$
$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=??}^{??} f[k,l]$$

k goes from n-1 to n+1

Ranjay Krishna, Jieyu Zhang

How do we represent applying this filter mathematically?

$$f[n,m] \to \boxed{\text{System } S} \to g[n,m]$$
$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=??}^{??} f[k,l]$$

Q. What values will I take?

Ranjay Krishna, Jieyu Zhang

How do we represent applying this filter mathematically?

$$f[n,m] \to \boxed{\text{System } S} \to g[n,m]$$
$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

I goes from m-1 to m+1

Ranjay Krishna, Jieyu Zhang

Math formula for the moving average filter

A moving average over a 3×3 neighborhood window

We can write this operation mathematically:

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

Ranjay Krishna, Jieyu Zhang

We are almost done. Let's rewrite this formula a little bit Let k' = n - k

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

Ranjay Krishna, Jieyu Zhang

We are almost done. Let's rewrite this formula a little bit Let k' = n - k therefore, k = n - k'

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

Now we can replace k in the equation above

Ranjay Krishna, Jieyu Zhang

We are almost done. Let's rewrite this formula a little bit Let k' = n - k therefore, k = n - k'

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

$$g[n,m] = \frac{1}{9} \sum_{n-k'=n-1}^{n-k'=n+1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 58

So now we have this:

$$g[n,m] = \frac{1}{9} \sum_{n-k'=n-1}^{n-k'=n+1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

Ranjay Krishna, Jieyu Zhang

So now we have this:

$$g[n,m] = \frac{1}{9} \sum_{n-k'=n-1}^{n-k'=n+1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

We can simply the equations in red:

$$g[n,m] = \frac{1}{9} \sum_{k'=1}^{k'=-1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 60

So now we have this:

$$g[n,m] = \frac{1}{9} \sum_{k'=1}^{k'=-1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

Remember that summations are just for-loops!!

Ranjay Krishna, Jieyu Zhang

So now we have this:

$$g[n,m] = \frac{1}{9} \sum_{k'=1}^{k'=-1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

Remember that summations are just for-loops!!

$$g[n,m] = \frac{1}{9} \sum_{k'=-1}^{1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 62

One last change: since there are no more k and only k', let's just write k' as k

$$g[n,m] = \frac{1}{9} \sum_{k'=-1}^{1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=m-1}^{m+1} f[n-k,l]$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 63

Let's repeat for I, just like we did for k

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

$$=\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}f[n-k,m-l]$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 64

Filter example #1: Moving Average

Original image

Smoothed image

Ranjay Krishna, Jieyu Zhang

Filter example #2: Image Segmentation

Q. How would you use pixel values to design a filter to segment an image so that you only keep around the edges?

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 66

Filter example #2: Image Segmentation

• Use a simple pixel threshold: $g[n,m] = \begin{cases} 255, f[n,m] > 100\\ 0, & \text{otherwise.} \end{cases}$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 67

Summary so far

- Discrete Systems convert input discrete signals and convert them into something more meaningful.
- There are an infinite number of possible filters we can design.
- What are ways we can category the space of possible systems?

Lecture 1 - 68

What we will learn today?

- Image histograms
- Images as functions
- Filters
- Properties of systems

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 69

Properties of systems

- Amplitude properties:
 - \circ Additivity

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

Ranjay Krishna, Jieyu Zhang

Example question:

Q. Is the moving average filter additive?

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

April 02, 2024

How would you prove it?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

Ranjay Krishna, Jieyu Zhang

Example question:

$$\begin{split} \mathcal{S}[f_i[n,m] + f_j[n,m]] &= \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]] \\ \text{Let } f'[n,m] &= f_i[n,m] + f_j[n,m] \end{split}$$

 $g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 72

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

Let $f'[n,m] = f_i[n,m] + f_j[n,m]$
 $\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f'[n,m]]$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 73

$$\begin{split} \mathcal{S}[f_i[n,m] + f_j[n,m]] &= \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]] \\ \text{Let } f'[n,m] &= f_i[n,m] + f_j[n,m] \\ \mathcal{S}[f_i[n,m] + f_j[n,m]] &= \mathcal{S}[f'[n,m]] \\ &= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f'[n-k,m-l] \end{split}$$

 $g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$

April 02, 2024

Ranjay Krishna, Jieyu Zhang

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

Let $f'[n,m] = f_i[n,m] + f_j[n,m]$
 $\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f'[n,m]]$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f'[n-k,m-l]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} [f_i[n-k,m-l] + f_j[n-k,m-l]]$$

 $g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 75

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

Let $f'[n,m] = f_i[n,m] + f_j[n,m]$

$$\begin{split} \mathcal{S}[f_i[n,m] + f_j[n,m]] &= \mathcal{S}[f'[n,m]] \\ &= \frac{1}{9} \sum_{k=-1}^1 \sum_{l=-1}^1 f'[n-k,m-l] \\ &= \frac{1}{9} \sum_{k=-1}^1 \sum_{l=-1}^1 [f_i[n-k,m-l] + f_j[n-k,m-l]] \\ &= \frac{1}{9} \sum_{k=-1}^1 \sum_{l=-1}^1 [f_i[n-k,m-l] + \frac{1}{9} \sum_{k=-1}^1 \sum_{l=-1}^1 f_j[n-k,m-l]] \end{split}$$

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 76

 $S[f_i[n,m] + f_j[n,m]] = S[f_i[n,m]] + S[f_j[n,m]]$ Let $f'[n,m] = f_i[n,m] + f_j[n,m]$

 $\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f'[n,m]]$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f'[n-k,m-l]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} [f_i[n-k,m-l] + f_j[n-k,m-l]]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f_i[n-k,m-l] + \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f_j[n-k,m-l]]$$

 $= \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$

Lecture 1 - 77

 $h[\cdot,\cdot]$

 $g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$

April 02, 2024

Ranjay Krishna, Jieyu Zhang

- Amplitude properties:
 - \circ Additivity

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

Ranjay Krishna, Jieyu Zhang

• Amplitude properties:

 \circ Additivity

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

 \circ Homogeneity

$$\mathcal{S}[\alpha f[n,m]] = \alpha \mathcal{S}[f[n,m]]$$

Ranjay Krishna, Jieyu Zhang

Another question:

Q. Is the moving average filter homogeneous?

 $\mathcal{S}[\alpha f[n,m]] = \alpha \mathcal{S}[f[n,m]]$

Practice proving it at home using:

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

April 02, 2024

Ranjay Krishna, Jieyu Zhang

• Amplitude properties:

 \circ Additivity

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

• Homogeneity

$$\mathcal{S}[\alpha f[n,m]] = \alpha \mathcal{S}[f[n,m]]$$

• Superposition

 $\mathcal{S}[\alpha f_i[n,m] + \beta f_j[n,m]] = \alpha \mathcal{S}[f_i[n,m]] + \beta \mathcal{S}[f_j[n,m]]$

This is an important property. Make sure you know how to prove if any system has this property

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 81

- Amplitude properties:
 - Stability

If $\forall n, m, |f[n, m]| \leq k \implies |\mathcal{S}[f[n, m]]| \leq ck$ for some constant c and k

Ranjay Krishna, Jieyu Zhang

- Amplitude properties:
 - Stability

If $\forall n, m, |f[n, m]| \leq k \implies |\mathcal{S}[f[n, m]]| \leq ck$ for some constant c and k

Q. Is the moving average filter stable?

Ranjay Krishna, Jieyu Zhang

Proof of stability

Let $\forall n, m, |f[n, m]| \leq k$

Ranjay Krishna, Jieyu Zhang

If $\forall n, m, |f[n,m]| \leq k \implies |\mathcal{S}[f[n,m]]| \leq ck$ for some constant c and k

Proof of stability

Let $\forall n, m, |f[n, m]| \leq k$

$$|\mathcal{S}f[n,m]| = |\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}f[n-k,m-l]|$$

Ranjay Krishna, Jieyu Zhang

Let $\forall n, m, |f[n, m]| \leq k$

$$\begin{aligned} |\mathcal{S}f[n,m]| &= \left|\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}f[n-k,m-l]\right| \\ &\leq \frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}|f[n-k,m-l]| \end{aligned}$$

Ranjay Krishna, Jieyu Zhang

Let $\forall n, m, |f[n, m]| \leq k$

$$\begin{aligned} |\mathcal{S}f[n,m]| &= \left|\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}f[n-k,m-l]\right| \\ &\leq \frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}|f[n-k,m-l]| \\ &\leq \frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}k \end{aligned}$$

Ranjay Krishna, Jieyu Zhang

Let $\forall n, m, |f[n, m]| \leq k$

$$\begin{aligned} |\mathcal{S}f[n,m]| &= |\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l] \\ &\leq \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} |f[n-k,m-l]| \\ &\leq \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} k \\ &\leq \frac{1}{9} (3)(3)k \end{aligned}$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 88

Let $\forall n, m, |f[n, m]| \leq k$

$$\begin{aligned} |\mathcal{S}f[n,m]| &= |\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]| \\ &\leq \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} |f[n-k,m-l]| \\ &\leq \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} k \\ &\leq \frac{1}{9} (3)(3)k \\ &\leq k \end{aligned}$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 89

Let $\forall n, m, |f[n, m]| \leq k$

$$\begin{aligned} |\mathcal{S}f[n,m]| &= \left|\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}f[n-k,m-l]\right| \\ &\leq \frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}|f[n-k,m-l]| \\ &\leq \frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}k \\ &\leq \frac{1}{9}(3)(3)k \\ &\leq k \\ &\leq ck, \text{ where } c = 1 \end{aligned}$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 90

• Amplitude properties:

• Stability

If $\forall n, m, |f[n, m]| \leq k \implies |\mathcal{S}[f[n, m]]| \leq ck$ for some constant c and k

• Invertibility

$$\mathcal{S}^{-1}\mathcal{S}[f[n,m]] = f[n,m]$$

Ranjay Krishna, Jieyu Zhang

• Amplitude properties:

○ Stability

If $\forall n, m, |f[n, m]| \leq k \implies |\mathcal{S}[f[n, m]]| \leq ck$ for some constant c and k

• Invertibility

$$\mathcal{S}^{-1}\mathcal{S}[f[n,m]] = f[n,m]$$

Q. Is the 3x3 moving average filter invertible?

Ranjay Krishna, Jieyu Zhang

- Spatial properties
 - o Causality

for $n < n_0, m < m_0$, if $f[n,m] = 0 \implies g[n,m] = 0$

Ranjay Krishna, Jieyu Zhang

0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

f[n,m]

g[n,m]

Is the moving average filter casual?

for $n < n_0, m < m_0$, if $f[n, m] = 0 \implies g[n, m] = 0$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 94

- Spatial properties
 - \circ Causality

for
$$n < n_0, m < m_0$$
, if $f[n, m] = 0 \implies g[n, m] = 0$

• Shift invariance:

$$f[n - n_0, m - m_0] \xrightarrow{\mathcal{S}} g[n - n_0, m - m_0]$$

Ranjay Krishna, Jieyu Zhang

What does shifting an image look like?

 $f[n - n_0, m - m_0] \xrightarrow{\mathcal{S}} g[n - n_0, m - m_0]$

$$f[n,m] = \begin{bmatrix} \ddots & \vdots \\ f[-1,-1] & f[-1,0] & f[-1,1] \\ \cdots & f[0,-1] & \frac{f[0,0]}{f[1,0]} & f[0,1] & \cdots \\ f[1,-1] & f[1,0] & f[1,1] \\ \vdots & \ddots \end{bmatrix} \end{bmatrix} Original image$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 96

What does shifting an image look like?

 $f[n - n_0, m - m_0] \xrightarrow{\mathcal{S}} g[n - n_0, m - m_0]$

$$f[n,m] = \begin{bmatrix} \ddots & \vdots \\ f[-1,-1] & f[-1,0] & f[-1,1] \\ \dots & f[0,-1] & \underline{f[0,0]} & f[0,1] \\ f[1,-1] & f[1,0] & f[1,1] \\ \vdots & \ddots \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 97

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

f[<i>n</i> ,	m]
---------------	----

g	[n]	m]
Ъ	[""	<i></i>

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

April 02, 2024

Ranjay Krishna, Jieyu Zhang

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

Ranjay Krishna, Jieyu Zhang

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

Let $n' = n - n_0$ and $m' = m - m_0$

Ranjay Krishna, Jieyu Zhang

$$f[n - n_0, m - m_0] \xrightarrow{\mathcal{S}} g[n - n_0, m - m_0]$$

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

Let $n' = n - n_0$ and $m' = m - m_0$
 $g[n - n_0, m - m_0] = g[n',m']$

Ranjay Krishna, Jieyu Zhang

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

Let $n' = n - n_0$ and $m' = m - m_0$
 $g[n-n_0,m-m_0] = g[n',m']$
 $= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n'-k,m'-l]$

Ranjay Krishna, Jieyu Zhang

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

April 02, 2024

Is the moving average system is shift invariant?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

Let $n' = n - n_0$ and $m' = m - m_0$
 $g[n - n_0, m - m_0] = g[n',m']$
 $= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n'-k,m'-l]$
 $= S[f[n',m']]$

Ranjay Krishna, Jieyu Zhang

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

Let $n' = n - n_0$ and $m' = m - m_0$
 $g[n-n_0,m-m_0] = g[n',m']$
 $= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n'-k,m'-l]$
 $= S[f[n',m']]$
 $= S[f[n-n_0,m-m_0]]$

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 104

What we covered today?

- Image histograms
- Images as functions
- Filters
- Properties of systems

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 105

Next time:

Linear systems and convolutions

Ranjay Krishna, Jieyu Zhang

