Lecture 2

Image formation and Color

Ranjay Krishna, Jieyu Zhang

Administrative

A0 is out.

- It is ungraded
- Meant to help you with python and numpy basics
- Learn how to do homeworks and submit them on gradescope.

Administrative

Recitation sections on fridays

- (optional)
- Fridays 12:30pm-1:20pm
- JHN 102
- It will be recorded

This week: Mahtab will go over Linear algebra recap

So far: Computer vision extracts geometric 3D information from 2D images

Input RGB-D

TRI & GATech's ShaPO (ECCV'22): https://zubair-irshad.github.io/projects/ShAPO.html

Ranjay Krishna, Jieyu Zhang

Lecture 1 -

March 28, 2024

Per-frame 3D Prediction

So far: why is computer vision hard?

It is an ill posed problem

Ranjay Krishna, Jieyu Zhang

Lecture 1 -

6

Today: let's chat about image formation and color?

Q. Why is color important? When does color play a role in helping you make decisions in your day to day?

http://www.hobbylinc.com/gr/pll/pll5019.jpg

Ranjay Krishna, Jieyu Zhang

Why does a visual system need color? (an incomplete list...)

- To identify edible food
- To distinguish material changes from shading changes.

• To group parts of one object together in a scene.

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 8

Fun link to the government's recommendations for visual characteristics of agricultural produce

Ranjay Krishna, Jieyu Zhang

Color standards are important in industry

APL-CP-3 (February 1990) Excessively rough or bark-like russeting in calyx basin or stem cavity of apples - U.S. Extra Fancy, U.S. Fancy, and U.S. No. 1.

ADMENT
Second second

APL-CP-4 (March 1990) Blossom End Rot of apples.

APL-CP-5 (July 2015) Internal Stem Bowl Cracking Scoring guide for injury and damage.

APL-CP-6 (July 2015) Internal Stem Bowl Cracking Scoring guide for serious damage.

APL-1-IDENT (February 1990) ID only: Scald; Soft Scald; Hail Marks.

Index of Official Visual Aids (January 2017)

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 10

IP Color Trademarks

March 28, 2024

CURRENTLY REGISTERED COLOR TRADEMARKS

A color trademark is a non-conventional trademark where at least one color is used to identify the commercial origin of a product or service. A color trademark must meet the same requirements of a conventional trademark. Thus, the color trademark must either be inherently distinctive or have acquired secondary meaning. To be inherently distinctive, the color must be arbitrarily or suggestively applied to a product or service. In contrast, to acquire secondary meaning, consumers must associate the color used on goods or services as originating from a single source. Below is a selection of some currently registered color trademarks in the U.S. Trademark Office:

MARK/COLOR(S)/OWNER:

BANK OF AMERICA 500	THE HOME DEPOT	TARGET
blue, red & grey	orange	red
Bank of America Corporation	Homer TLC, Inc.	Target Brands, Inc.
NATIONAL CAR RENTAL	HONDA	AT&T
green	red	light blue, dark blue and gray
NCR Affiliate Servicer, Inc.	Honda Motor Co., Ltd.	AT&T Corp.
FORD blue Ford Motor Company	M MARATHON brown, orange, yellow Marathon Oil Company	Filed under: Trademark by admin
VISTEON orange Ford Motor Company	M MARATHON gray, black & white Marathon Oil Company	TEENAGE MUTANT NINJA TURTLES MUTANTS & MONSTERS red, green, yellow, black, grey and white Mirage Studios, Inc.
76	COSTCO	VW
red & blue	red	silver, metallic blue, black and white
ConocoPhillips Company	Costco Wholesale Membership, Inc.	Volkswagen Aktiengesellschaft Corp.

Lecture 1 - 11

Ranjay Krishna, Jieyu Zhang

Color histograms for indexing and

Swain and Ballard, <u>Color Indexing</u>, IJCV 1991.

Ranjay Krishna, Jieyu Zhang

Skin detection for content moderation

March 28, 2024

M. Jones and J. Rehg, Statistical Color Models with Application to Skin Deter

Ranjay Krishna, Jieyu Zhang

Image segmentation and retrieval

C. Carson, S. Belongie, H. Greenspan, and Ji. Malik, Blobworld: Image segmentation using Expectation-Maximization and its application to image querying, ICVIS 1999.

blob and feature importance:

blab

Ranjay Krishna, Jieyu Zhang

Robot soccer

M. Sridharan and P. Stone, <u>Towards Eliminating Manual Color Calibration at RoboCup</u>. RoboCup-2005: Robot Soccer World Cup IX, Springer Verlag, 2006

Ranjay Krishna, Jieyu Zhang

Building appearance models for tracking

D. Ramanan, D. Forsyth, and A. Zisserman. <u>Tracking People by</u> <u>Learning their Appearance</u>. PAMI 2007.

March 28, 2024

Ranjay Krishna, Jieyu Zhang

Today's agenda

- Image formation
- Physics of Color
- Color matching
- Color spaces
- Image sampling and quantization

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 19

Today's agenda

- Image formation
- Physics of Color
- Color matching
- Color spaces
- Image sampling and quantization

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 21

Ranjay Krishna, Jieyu Zhang

Color and light

White light: composed of almost equal energy in all wavelengths of the visible spectrum

Newton 1665

Image from http://micro.magnet.fsu.edu/

March 28, 2024

Ranjay Krishna, Jieyu Zhang

Electromagnetic Spectrum & Colors

http://www.yorku.ca/eye/photopik.htm

March 28, 2024

http://hyperphysics.phy-astr.gsu.edu/hbase/vision/specol.html#c2

Ranjay Krishna, Jieyu Zhang

The Physics of Light

Any patch of light can be completely described physically by its **spectrum**.

A spectrum is the number of photons (per time unit) at each wavelength 400 - 700 nm.

March 28, 2024

Ranjay Krishna, Jieyu Zhang

The Physics of Light

Some examples of the spectra of light sources

© Stephen E. Palmer, 2002

March 28, 2024

Ranjay Krishna, Jieyu Zhang

minus red

Q. What color do we get when we

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Lecture 1 - <u>30</u>

Additive color mixing

Colors combine by *adding* color spectra

Light adds to white.

Ranjay Krishna, Jieyu Zhang

Examples of additive color systems

multiple projectors

CRT phosphors

http://www.jegsworks.com http://www.crtprojectors.co.uk/

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 35

Subtractive color mixing

Colors combine by *multiplying* color spectra.

Pigments *remove* color from incident (white) light.

March 28, 2024

Ranjay Krishna, Jieyu Zhang
Examples of subtractive color systems

- Printing on paper
- Crayons
- Photographic film

Ranjay Krishna, Jieyu Zhang

Image Formation

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 38

Image Formation

Ranjay Krishna, Jieyu Zhang

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 40

• Absorption

- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 41

- Absorption
- Diffuse Reflection
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 42

- Absorption
- Diffusion
- Specular Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

Ranjay Krishna, Jieyu Zhang

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 44

- Absorption
- Diffusion
- Reflection
- Transparency

• Refraction

- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 45

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

Ranjay Krishna, Jieyu Zhang

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

March 28, 2024

Ranjay Krishna, Jieyu Zhang

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

Ranjay Krishna, Jieyu Zhang

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

(Specular Interreflection)

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 49

Image Formation

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 50

Image Formation

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 51

Radiometry: some definitions

- Radiance: power emitted per unit area in a direction
- Irradiance: total incident power falling on a surface

Ranjay Krishna, Jieyu Zhang

Radiometry: BRDF

 Bidirectional reflectance distribution function: Model of local reflection that tells how bright a surface appears when viewed from one direction when light falls on it from another.

Ranjay Krishna, Jieyu Zhang

$$BRDF = f(\theta_i, \phi_i, \theta_e, \phi_e) = \frac{L(\theta_e, \phi_e)}{E(\theta_i, \phi_i)}$$
$$BRDF = f(\theta_i, \phi_i, \theta_e, \phi_e, \lambda) = \frac{L(\theta_e, \phi_e, \lambda)}{E(\theta_i, \phi_i, \lambda)}$$

Spectral radiance / spectral irradiance

...extend radiometry terms to incorporate *spectral* units (per unit wavelength)

 $\theta_i, \phi_i, \lambda$ θ_e, ϕ_e, I Horn 1986

March 28, 2024

Ranjay Krishna, Jieyu Zhang

Radiometry: BRDF

- BRDF is a very general notion
 - some surfaces need it (underside of a CD; tiger eye; etc)
 - very hard to measure
 - · illuminate from one direction, view from another, repeat
 - very unstable
 - minor surface damage can change the BRDF
 - e.g. ridges of oil left by contact with the skin can act as lenses
- For many surfaces, light leaving the surface is largely independent of exit angle

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 55

Lambertian Reflectance

- Lambertian/diffuse surfaces
 - Appear equally bright from all viewing directions

http://en.wikipedia.org/wiki/Lambertian_reflectance

Ranjay Krishna, Jieyu Zhang

Simplified rendering models: BRDF reflectance

For diffuse reflections, we replace the BRDF calculation with a wavelength-by-wavelength scalar multiplication

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 57

The Physics of Light

Some examples of the spectra of light sources

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 58

The Physics of Light

Some examples of the <u>reflectance</u> spectra of <u>surfaces</u>

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 59

Some reflectance spectra for different leaves

Albedo is the fraction of light that a surface reflects

Here are the spectral albedoes for several different leaves, with their perceived colors.

Naturally, different colours have different spectral albedo.'

But different spectral albedoes sometimes result in the same perceived color (compare the two whites).

Spectral albedoes are typically quite smooth functions. Source: Measurements by E.Koivisto.

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 60

Today's agenda

- Image formation
- Physics of Color
- Color matching
- Color spaces
- Image sampling and quantization

Ranjay Krishna, Jieyu Zhang

Image Formation

Ranjay Krishna, Jieyu Zhang

Image Formation

Ranjay Krishna, Jieyu Zhang

Why specify color numerically?

- People will describe the same color using different words:
 - Be able to tell if we are talking about the same color
- Accurate color reproduction is commercially valuable
 - Many products are identified by color ("golden" arches)
- Few color names are widely recognized by English speakers
 - About 10; other languages have fewer/more, but not many more.
 - Common to disagree on appropriate color names.
- Color reproduction problems increased by prevalence of digital imaging e.g. digital libraries of art.
 - How to ensure that everyone perceives the same color?
 - What spectral radiances produce the same response from people under simple viewing conditions?

Lecture 1

- 64

March 28, 2024

Ranjay Krishna, Jieyu Zhang

The assumption for color perception

- We know color appearance really depends on:
 - The illumination
 - Your eye's adaptation level
 - The colors and scene interpretation surrounding the observed color.
- But for now we will assume that the spectrum of the light arriving at your eye completely determines the perceived color.

Lecture 1 - 65

March 28, 2024

Ranjay Krishna, Jieyu Zhang

Two types of light-sensitive receptors

Cones

cone-shaped less sensitive operate in high light color vision

Rods

rod-shaped highly sensitive operate at night gray-scale vision

Ranjay Krishna, Jieyu Zhang

What's the machinery in the eye? Human Photoreceptors

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 67

Physiology of Color Vision

Ranjay Krishna, Jieyu Zhang

Human eye photoreceptor spectral sensitivities

Lecture 1 - 69

March 28, 2024

3.3 SPECTRAL SENSITIVITIES OF THE L-, M-, AND S-CONES in the human eye. The measurements are based on a light source at the cornea, so that the wavelength loss due to the cornea, lens, and other inert pigments of the eye plays a role in determining the sensitivity. Source: Stockman and MacLeod, 1993.

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995

Ranjay Krishna, Jieyu Zhang

How we sense light spectra

biophysics: integrate the response over all wavelengths, weighted by the photosensor's sensitivity at each wavelength.

mathematically: take dot product of input spectrum with the cone sensitivity basis vectors. Project the high-dimensional test light into a 3-d space.

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 70

Cone response curves as basis vectors in a 3-d subspace of light power spectra

Ranjay Krishna, Jieyu Zhang

Color matching experiment

4.10 THE COLOR-MATCHING EXPERIMENT. The observer views a bipartite field and adjusts the intensities of the three primary lights to match the appearance of the test light. (A) A top view of the experimental apparatus. (B) The appearance of the stimuli to the observer. After Judd and Wyszecki, 1975.

Lecture 1 - 72

March 28, 2024

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 73

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Color matching with positive amounts of the primaries

Match the sensors' response to the target light to the sum of responses to the primary lights

Ranjay Krishna, Jieyu Zhang

Color matching with a negative amount of primary 1

Match sensors' response to the target light plus some amount of primary light 1 to the response to some of primary light 2

Ranjay Krishna, Jieyu Zhang

handle negative light by adding light to the test.

4.10 THE COLOR-MATCHING EXPERIMENT. The observer views a bipartite field and adjusts the intensities of the three primary lights to match the appearance of the test light. (A) A top view of the experimental apparatus. (B) The appearance of the stimuli to the observer. After Judd and Wyszecki, 1975.

Ranjay Krishna, Jieyu Zhang by Brian Wandell, Sinal Cture 1-82,

Let's add some green light to the test color

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 83

We say a "negative" amount of p₂ was needed to make the match, because we added it to the test color's side.

The primary color amounts needed for

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 84

Color matching superposition (Grassman's laws)

Ranjay Krishna, Jieyu Zhang

To reproduce a color

- 1. Choose a set of **3 primary colors** (three power spectra).
- 2. Determine how much of each **primary needs to be added** to a probe signal to match the test light.

Ranjay Krishna, Jieyu Zhang

test light

Lecture 1 - 86

The assumption for color perception

- We know color appearance really depends on:
 - The illumination
 - Your eye's adaptation level
 - The colors and scene interpretation surrounding the observed color.
- But for now we will assume that the spectrum of the light arriving at your eye completely determines the perceived color.

What is color?

- The result of interaction between physical light in the environment and our visual system.
- A psychological property of our visual experiences when we look at objects and lights, not a physical property of those objects or lights.

Ranjay^sKristina, Jieyu^kZhang

Image Formation

Perceived colors depend on: Light source, Surface properties (BRDF, reflectance), Light reaching the retina, spectral response of the retina (L-,M-, S-cones), Context/scene.

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 89

Image Formation

Acquired pixel colors will depend on: Light source, Surface properties (BRDF, reflectance), Light reaching the sensor, Spectral response of sensor.

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 90

Today's agenda

- Image formation
- Physics of Color
- Color matching
- Color spaces
- Image sampling and quantization

Ranjay Krishna, Jieyu Zhang

Linear color spaces

- Defined by a choice of three primaries
- The coordinates of a color are given by the weights of the primaries used to match it

mixing two lights produces colors that lie along a straight line in color space

mixing three lights produces colors that lie within the triangle they define in color space

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 92

How to compute the weights of the primaries to match any spectral signal

Lecture 1 - 93

March 28, 2024

Matching functions: the amount of each primary needed to match a monochromatic light source at each wavelength

Ranjay Krishna, Jieyu Zhang

RGB space

Primaries are monochromatic lights (for monitors, they correspond to the three types of phosphors) **Subtractive matching** required for some wavelengths

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 94

March 28, 2024

Linear color spaces: CIE XYZ

- Primaries are imaginary, but matching functions are everywhere positive
- The Y parameter corresponds to brightness or *luminance* of a color
- 2D visualization: draw (x,y), where
 x = X/(X+Y+Z), y = Y/(X+Y+Z)

Ranjay Krishna, Jieyu Zhang

Nonlinear color spaces: HSV

• Perceptually meaningful dimensions: Hue, Saturation, Value (Intensity)

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 96

Nonlinear color spaces: HSV

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 97

Today's agenda

- Image formation
- Physics of Color
- Color matching
- Color spaces
- Image sampling and quantization

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 99

Camera Sensor produce discrete outputs

https://commons.wikimedia.org/wiki/File:Mirrorless_Camera_Sensor.jpg

157	153	174	168	150	152	129	151	172	161	155	156	157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154	155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	105	159	181	180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180	206	109	6	124	131	111	120	204	166	15	56	180
194	68	137	251	237	299	239	228	227	87		201	194	68	137	251	237	239	239	228	227	87	n	201
172	105	207	233	233	214	220	239	228	98	-74	206	172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169	188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148	189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190	199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234	205	174	155	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	85	150	79	38	218	241	190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224	190	224	147	108	227	210	127	102	36	101	256	224
190	214	173	66	103	143	95	50	2	109	249	215	190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	٥	6	217	255	211	187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236	183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	95	218	195	206	123	207	177	121	123	200	175	13	96	218
_	le d	1.0.0			+	-+-	ام م	a al .	. 10			~ 1 ~		7n:	Å		1 /:		~ ~		Late		

https://ai.stanford.edu/~syyeung/cvweb/Pictures1/imagematrix.png

Ranjay Krishna, Jieyu Zhang

Types of Images

Ranjay Krishna, Jieyu Zhang

Binary image representation

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 102

Grayscale image representation

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 103

Grayscale image representation

Q. If you used HSV to represent grayscale images, is the slider representing hue? Or saturation? Or value?

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 104

Color image representation

Color image - one channel

R channel

March 28, 2024

Ranjay Krishna, Jieyu Zhang

Types of Images

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 107

Digital Images are sampled

What happens when we zoom into the images we capture?

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 108
Errors due to Sampling

Ranjay Krishna, Jieyu Zhang

Resolution

is a **sampling** parameter, defined in dots per inch (DPI) or equivalent measures of spatial pixel density

Ranjay Krishna, Jieyu Zhang

Lecture 1 - 110

March 28, 2024

Images are Sampled and Quantized

- An image contains discrete number of pixels
 - -Pixel value:
 - •"grayscale"

(or "intensity"): [0,255]

Ranjay Krishna, Jieyu Zhang

Images are Sampled and Quantized

- An image contains discrete number of pixels
 - -Pixel value:
 - •"grayscale"
 - (or "intensity"): [0,255]
 - •"color"
 - -RGB: [R, G, B]

[90, 0, 53]

[249, 215, 203]

March 28, 2024

[213, 60, 67]

Ranjay Krishna, Jieyu Zhang

With this loss of information (from sampling and quantization),

Can we still use images for useful tasks?

Ranjay Krishna, Jieyu Zhang

Summary

- Image formation
- Physics of Color
- Color matching
- Color spaces
- Image sampling and quantization

Ranjay Krishna, Jieyu Zhang

