Linear Algebra Primer

Mahtab Bigverdi

Homogeneous system

- In general, a matrix multiplication lets us linearly combine components of a vector

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \times\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a x+b y \\
c x+d y
\end{array}\right]
$$

- This is sufficient for scale, rotate, skew transformations.
- But notice, we can't add a constant!

Homogeneous system

- The (somewhat hacky) solution? Stick a " 1 " at the end of every vector:

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
a x+b y+c \\
d x+e y+f \\
1
\end{array}\right]
$$

- Now we can rotate, scale, and skew like before, AND translate (note how the multiplication works out, above)
- This is called "homogeneous coordinates"

Homogeneous system

- In homogeneous coordinates, the multiplication works out so the rightmost column of the matrix is a vector that gets added.

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
a x+b y+c \\
d x+e y+f \\
1
\end{array}\right]
$$

- Generally, a homogeneous transformation matrix will have a bottom row of [001], so that the result has a " 1 " at the bottom too.

Homogeneous system

- One more thing we might want: to divide the result by something
- For example, we may want to divide by a coordinate, to make things scale down as they get farther away in a camera image
- Matrix multiplication can't actually divide
- So, by convention, in homogeneous coordinates, we'll divide the result by its last coordinate after doing a matrix multiplication

$$
\left[\begin{array}{l}
x \\
y \\
7
\end{array}\right] \Rightarrow\left[\begin{array}{c}
x / 7 \\
y / 7 \\
1
\end{array}\right]
$$

2D Translation

2D Translation using Homogeneous
 Coordinates

2D Translation using Homogeneous
 Coordinates

2D Translation using Homogeneous
 Coordinates

$$
\begin{gathered}
\mathbf{P}=(x, y) \rightarrow(x, y, 1) \\
\mathbf{t}=\left(t_{x}, t_{y}\right) \rightarrow\left(t_{x}, t_{y}, 1\right) \\
\mathbf{P}^{\prime} \rightarrow\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
&
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{gathered}
$$

2D Translation using Homogeneous
 Coordinates

$$
\begin{gathered}
\mathbf{P}=(x, y) \rightarrow(x, y, 1) \\
\mathbf{t}=\left(t_{x}, t_{y}\right) \rightarrow\left(t_{x}, t_{y}, 1\right) \\
\mathbf{P}^{\prime} \rightarrow\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
& &
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
\end{gathered}
$$

2D Translation using Homogeneous

Coordinates

Scaling

Scaling Equation

$$
\begin{aligned}
& \mathbf{P}=(\mathrm{x}, \mathrm{y}) \rightarrow \mathbf{P}^{\prime}=\left(\mathrm{s}_{\mathrm{x}} \mathrm{x}, \mathrm{~s}_{\mathrm{y}} \mathrm{y}\right) \\
& \mathbf{P}=(x, y) \rightarrow(x, y, 1) \\
& \mathbf{P}^{\prime}=\left(s_{x} x, s_{y} y\right) \rightarrow\left(s_{x} x, s_{y} y, 1\right)
\end{aligned}
$$

Scaling Equation

$$
\mathbf{P}=(\mathrm{x}, \mathrm{y}) \rightarrow \mathbf{P}^{\prime}=\left(\mathrm{s}_{\mathrm{x}} \mathrm{x}, \mathrm{~s}_{\mathrm{y}} \mathrm{y}\right)
$$

$\mathbf{P}^{\prime} \rightarrow\left[\begin{array}{c}s_{x} x \\ s_{y} y \\ 1\end{array}\right]=[$

$$
\begin{aligned}
& \mathbf{P}=(x, y) \rightarrow(x, y, 1) \\
& \mathbf{P}^{\prime}=\left(s_{x} x, s_{y} y\right) \rightarrow\left(s_{x} x, s_{y} y, 1\right)
\end{aligned}
$$

$$
\cdots\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Scaling Equation

$$
\begin{aligned}
& \frac{s_{s, y}^{c}}{8} \\
& \mathbf{P}=(\mathrm{x}, \mathrm{y}) \rightarrow \mathbf{P}^{\prime}=\left(\mathrm{s}_{\mathrm{x}} \mathrm{x}, \mathrm{~s}_{\mathrm{y}} \mathrm{y}\right) \\
& \mathbf{P}^{\prime} \rightarrow\left[\begin{array}{c}
s_{x} x \\
s_{y} y \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}_{\mathbf{S}}=\left[\begin{array}{cc}
\mathbf{S}^{\prime} & \mathbf{0} \\
\mathbf{0} & \mathbf{1}
\end{array}\right] \cdot \mathbf{P}=\mathbf{S} \cdot \mathbf{P}
\end{aligned}
$$

Scaling \& Translating

Scaling \& Translating

$$
\mathbf{P}^{\prime \prime}=\mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Scaling \& Translating

$$
\begin{aligned}
& \left.\mathbf{P}=\mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \begin{array}{l}
x \\
y \\
1
\end{array}\right]= \\
& \left.=\left[\begin{array}{ccc}
s_{x} & 0 & t_{x} \\
0 & s_{y} & t_{y} \\
0 & 0 & 1
\end{array}\right] \begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
s_{x} x+t_{x} \\
s_{y} y+t_{y} \\
1
\end{array}\right]=\left[\begin{array}{cc}
S & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{aligned}
$$

Translating \& Scaling != Scaling \& Translating

$$
\mathbf{P}^{\prime \prime \prime}=\mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & \mathrm{~s}_{\mathrm{y}} & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathrm{s}_{\mathrm{x}} \mathrm{x}+\mathrm{t}_{\mathrm{x}} \\
\mathrm{~s}_{\mathrm{y}} \mathrm{y}+\mathrm{t}_{\mathrm{y}} \\
1
\end{array}\right]
$$

Translating \& Scaling != Scaling \& Translating

$$
\begin{gathered}
\left.\mathbf{P}^{\prime \prime \prime}=\mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & s_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right] \begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & \mathrm{~s}_{\mathrm{y}} & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathrm{s}_{\mathrm{x}} \mathrm{x}+\mathrm{t}_{\mathrm{x}} \\
\mathrm{~s}_{\mathrm{y}} \mathrm{y}+\mathrm{t}_{\mathrm{y}} \\
1
\end{array}\right] \\
\left.\mathbf{P}^{\prime \prime \prime}=\mathbf{S} \cdot \mathbf{T} \cdot \mathbf{P}=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right] \begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=
\end{gathered}
$$

Translating \& Scaling != Scaling \& Translating

$$
\begin{aligned}
& \mathbf{P}^{\prime \prime \prime}=\left.\mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right] \begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & \mathrm{~s}_{\mathrm{y}} & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathrm{s}_{\mathrm{x}} \mathrm{x}+\mathrm{t}_{\mathrm{x}} \\
\mathrm{~s}_{\mathrm{y}} \mathrm{y}+\mathrm{t}_{\mathrm{y}} \\
1
\end{array}\right] \\
&\left.\mathbf{P}^{\prime \prime \prime}=\mathbf{S} \cdot \mathbf{T} \cdot \mathbf{P}=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right] \begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]= \\
&=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & \mathrm{~s}_{\mathrm{x}} \mathrm{t}_{\mathrm{x}} \\
0 & \mathrm{~s}_{\mathrm{y}} & \mathrm{~s}_{\mathrm{y}} \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathrm{s}_{\mathrm{x}} \mathrm{x}+\mathrm{s}_{\mathrm{x}} \mathrm{t}_{\mathrm{x}} \\
\mathrm{~s}_{\mathrm{y}} \mathrm{y}+\mathrm{s}_{\mathrm{y}} \mathrm{t}_{\mathrm{y}} \\
1
\end{array}\right]
\end{aligned}
$$

Rotation Equations

Counter-clockwise rotation by an angle θ

$$
\begin{aligned}
& x^{\prime}=\cos \theta x-\sin \theta y \\
& y^{\prime}=\cos \theta y+\sin \theta x
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\mathbf{P}^{\prime}=\mathbf{R} \mathbf{P}
$$

Rotation Matrix Properties

$$
\begin{aligned}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=} & {\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] } \\
& \text { A 2D rotation matrix is } 2 \times 2
\end{aligned}
$$

Note: R belongs to the category of normal matrices
and satisfies many interesting properties:

$$
\begin{aligned}
& \mathbf{R} \cdot \mathbf{R}^{\mathrm{T}}=\mathbf{R}^{\mathrm{T}} \cdot \mathbf{R}=\mathbf{I} \\
& \operatorname{det}(\mathbf{R})=1
\end{aligned}
$$

Rotation Matrix Properties

- Transpose of a rotation matrix produces a rotation in the opposite direction

$$
\begin{aligned}
& \mathbf{R} \cdot \mathbf{R}^{\mathrm{T}}=\mathbf{R}^{\mathrm{T}} \cdot \mathbf{R}=\mathbf{I} \\
& \operatorname{det}(\mathbf{R})=1
\end{aligned}
$$

- The rows of a rotation matrix are always mutually perpendicular (a.k.a. orthogonal) unit vectors
- (and so are its columns)

Scaling + Rotation + Translation

$$
\begin{aligned}
& P^{\prime}=(T R S) P \\
& \mathbf{P}^{\prime}=\mathbf{T} \cdot \mathrm{R} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]= \\
& =\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & \mathrm{t}_{\mathrm{x}} \\
\sin \theta & \cos \theta & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1 \\
1
\end{array}\right]= \\
& =\left[\begin{array}{ll}
R & t \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
S & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cc}
R S & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{aligned}
$$

Outline

- Vectors and matrices
- Basic Matrix Operations
- Determinants, norms, trace
- Special Matrices
- Transformation Matrices
- Homogeneous coordinates
- Translation
- Matrix inverse

The inverse of a transformation matrix reverses its effect

- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculate

Inverse

- Given a matrix \mathbf{A}, its inverse \mathbf{A}^{-1} is a matrix such that $\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$
- E.g. $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]^{-1}=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & \frac{1}{3}\end{array}\right]$
- Inverse does not always exist. If \mathbf{A}^{-1} exists, \mathbf{A} is invertible or non-singular. Otherwise, it's singular.
- Useful identities, for matrices that are invertible:

$$
\begin{aligned}
\left(\mathbf{A}^{-1}\right)^{-1} & =\mathbf{A} \\
(\mathbf{A B})^{-1} & =\mathbf{B}^{-1} \mathbf{A}^{-1} \\
\mathbf{A}^{-T} & \triangleq\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}
\end{aligned}
$$

Matrix Operations

- Pseudoinverse
- Fortunately, there are workarounds to solve $\mathrm{AX}=\mathrm{B}$ in these situations. And python can do them!
- Instead of taking an inverse, directly ask python to solve for X in $A X=B$, by typing np.linalg.solve(A, B)
- Python will try several appropriate numerical methods (including the pseudoinverse if the inverse doesn't exist)
- Python will return the value of X which solves the equation
- If there is no exact solution, it will return the closest one
- If there are many solutions, it will return the smallest one

Matrix Operations

- Python example:

$$
\begin{aligned}
& A X=B \\
& A=\left[\begin{array}{ll}
2 & 2 \\
3 & 4
\end{array}\right], B=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \gg \text { import numpy as np } \\
& \gg \mathbf{x}=\text { np.linalg.solve(} \mathbf{A}, \mathbf{B} \text {) } \\
& \mathbf{x ~}=\begin{array}{r}
1.0000 \\
-0.5000
\end{array}
\end{aligned}
$$

Outline

- Vectors and matrices
- Basic Matrix Operations
- Determinants, norms, trace
- Special Matrices
- Transformation Matrices
- Homogeneous coordinates
- Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculate

The rank of a transformation matrix
tells you how many dimensions it transforms a vector to.

Linear independence

- Suppose we have a set of vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$
- If we can express \mathbf{v}_{1} as a linear combination of the other vectors $\mathbf{v}_{2} \ldots \mathbf{v}_{\mathrm{n}^{\prime}}$, then \mathbf{v}_{1} is linearly dependent on the other vectors.
- The direction \mathbf{v}_{1} can be expressed as a combination of the directions $\mathbf{v}_{2} \ldots \mathbf{v}_{\mathrm{n}}$. (E.g. $\mathbf{v}_{1}=.7 \mathbf{v}_{2}-.7 \mathbf{v}_{4}$)

Linear independence

- Suppose we have a set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{n}}$
- If we can express \mathbf{v}_{1} as a linear combination of the other vectors $\mathbf{v}_{2} \ldots \mathbf{v}_{n^{\prime}}$, then \mathbf{v}_{1} is linearly dependent on the other vectors.
- The direction \mathbf{v}_{1} can be expressed as a combination of the directions $\mathbf{v}_{2} \ldots \mathbf{v}_{\mathrm{n}}$. (E.g. $\mathbf{v}_{1}=.7 \mathbf{v}_{2}-.7 \mathbf{v}_{4}$)
- If no vector is linearly dependent on the rest of the set, the set is linearly independent.
- Common case: a set of vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ is always linearly independent if each vector is perpendicular to every other vector (and non-zero)

Linear independence

Linearly independent set Not linearly independent

Matrix rank

- Column/row rank
- Column rank always equals row rank
- Matrix rank

$$
\operatorname{rank}(\mathbf{A}) \triangleq \operatorname{col}-\operatorname{rank}(\mathbf{A})=\operatorname{row}-\operatorname{rank}(\mathbf{A})
$$

Matrix rank

- For transformation matrices, the rank tells you the dimensions of the output
- E.g. if rank of \mathbf{A} is 1 , then the transformation

$$
p^{\prime}=A p
$$

maps points onto a line.

- Here's a matrix with rank 1:

$$
\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right] \times\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+y \\
2 x+2 y
\end{array}\right] \leftarrow \underset{\substack{\text { All points get } \\
\text { mapped to } \\
\text { the line } y=2 x}}{\text { and }}
$$

Matrix rank

- If an $m \times m$ matrix is rank m, we say it's "full rank"
- Maps an $m \times 1$ vector uniquely to another $m \times 1$ vector
- An inverse matrix can be found
- If rank < m, we say it's "singular"
- At least one dimension is getting collapsed. No way to look at the result and tell what the input was
- Inverse does not exist
- Inverse also doesn't exist for non-square matrices

Outline

- Vectors and matrices
- Basic Matrix Operations
- Determinants, norms, trace
- Special Matrices
- Transformation Matrices
- Homogeneous coordinates
- Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors(SVD)
- Matrix Calculus

Eigenvector and Eigenvalue

- An eigenvector \mathbf{x} of a linear transformation A is a non-zero vector that, when A is applied to it, does not change direction.

$$
A x=\lambda x, \quad x \neq 0
$$

Eigenvector and Eigenvalue

- An eigenvector \mathbf{x} of a linear transformation A is a non-zero vector that, when A is applied to it, does not change direction.
- Applying A to the eigenvector only scales the eigenvector by the scalar value λ, called an eigenvalue.

$$
A x=\lambda x, \quad x \neq 0
$$

Eigenvector and Eigenvalue

- We want to find all the eigenvalues of A :

$$
A x=\lambda x, \quad x \neq 0
$$

- Which can we written as:

$$
A x=(\lambda I) x \quad x \neq 0
$$

- Therefore:

$$
(\lambda I-A) x=0, \quad x \neq 0 .
$$

Eigenvector and Eigenvalue

- We can solve for eigenvalues by solving:

$$
(\lambda I-A) x=0, \quad x \neq 0 .
$$

- Since we are looking for non-zero \mathbf{x}, we can instead solve the above equation as:

$$
|(\lambda I-A)|=0 .
$$

Properties

- The trace of a A is equal to the sum of its eigenvalues:

$$
\operatorname{tr} A=\sum_{i=1}^{n} \lambda_{i} .
$$

- The determinant of A is equal to the product of its eigenvalues

$$
|A|=\prod_{i=1}^{n} \lambda_{i} .
$$

- The rank of A is equal to the number of non-zero eigenvalues of A.
- The eigenvalues of a diagonal matrix $D=\operatorname{diag}(\mathrm{d} 1, \ldots \mathrm{dn})$ are just the diagonal entries $\mathrm{d} 1, \ldots \mathrm{dn}$

Spectral theory

- We call an eigenvalue λ and an associated eigenvector an eigenpair.
- The space of vectors where $(A-\lambda I)=0$ is often called the eigenspace of A associated with the eigenvalue λ.
- The set of all eigenvalues of A is called its spectrum:

$$
\sigma(A)=\{\lambda \in \mathbb{C}: \lambda I-A \text { is singular }\} .
$$

Spectral theory

- The magnitude of the largest eigenvalue (in magnitude) is called the spectral radius

$$
\rho(A)=\max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right\}
$$

- Where C is the space of all eigenvalues of A

Spectral theory

- The spectral radius is bounded by infinity norm of a matrix:

$$
\rho(A)=\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{1 / k}
$$

- Proof: Turn to a partner and prove this!

Spectral theory

- The spectral radius is bounded by infinity norm of a matrix:

$$
\rho(A)=\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{1 / k}
$$

- Proof: Let λ and v be an eigenpair of A :

$$
|\lambda|^{k}\|\mathbf{v}\|=\left\|\lambda^{k} \mathbf{v}\right\|=\left\|A^{k} \mathbf{v}\right\| \leq\left\|A^{k}\right\| \cdot\|\mathbf{v}\|
$$

and since $\mathbf{v} \neq 0$ we have

$$
|\lambda|^{k} \leq\left\|A^{k}\right\|
$$

and therefore

$$
\rho(A) \leq\left\|A^{k}\right\|^{\frac{1}{k}}
$$

Diagonalization

- An $n \times n$ matrix A is diagonalizable if it has n linearly independent eigenvectors.
- Most square matrices (in a sense that can be made mathematically rigorous) are diagonalizable:
- Normal matrices are diagonalizable
- Matrices with n distinct eigenvalues are diagonalizable

Lemma: Eigenvectors associated with distinct eigenvalues are linearly independent.

Diagonalization

- An $n \times n$ matrix A is diagonalizable if it has n linearly independent eigenvectors.
- Most square matrices are diagonalizable:
- Normal matrices are diagonalizable
- Matrices with n distinct eigenvalues are diagonalizable

Lemma: Eigenvectors associated with distinct eigenvalues are linearly independent.

Diagonalization

- Eigenvalue equation:

$$
\begin{array}{r}
A V=V D \\
A=V D V^{-1}
\end{array}
$$

- Where D is a diagonal matrix of the eigenvalues

Diagonalization

- Eigenvalue equation:

$$
\begin{array}{r}
A V=V D \\
A=V D V^{-1}
\end{array}
$$

- Assuming all λ_{i} 's are unique:

$$
A=V D V^{T}
$$

- Remember that the inverse of an ortnogonal matrix is just its transpose and the eigenvectors are orthogonal

Symmetric matrices

- Properties:
- For a symmetric matrix A, all the eigenvalues are real.
- The eigenvectors of A are orthonormal.

$$
A=V D V^{T}
$$

Symmetric matrices

- Therefore:

$$
x^{T} A x=x^{T} V D V^{T} x=y^{T} D y=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2}
$$

- where

$$
y=V^{T} x
$$

- So, what can you say about the vector x that satisfies the following optimization?

$$
\max _{x \in \mathbb{R}^{n}} \quad x^{T} A x \quad \text { subject to }\|x\|_{2}^{2}=1
$$

Symmetric matrices

- Therefore:

$$
x^{T} A x=x^{T} V D V^{T} x=y^{T} D y=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2}
$$

- where

$$
y=V^{T} x
$$

- So, what can you say about the vector x that satisfies the following optimization? $\max _{x \in \mathbb{R}^{n}} x^{T} A x \quad$ subject to $\|x\|_{2}^{2}=1$
- Is the same as finding the eigenvector that corresponds to the largest eigenvalue of A .

Some applications of Eigenvalues

- PageRank
- Schrodinger's equation
- PCA
- We are going to use it to compress images in future classes

Outline

- Vectors and matrices
- Basic Matrix Operations
- Determinants, norms, trace
- Special Matrices
- Transformation Matrices
- Homogeneous coordinates
- Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors(SVD)
- Matrix Calculus

Matrix Calculus - The Gradient

- Let a function $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ take as input a matrix A of size $m \times n$ and return a real value.
- Then the gradient of f :

$$
\nabla_{A} f(A) \in \mathbb{R}^{m \times n}=\left[\begin{array}{cccc}
\frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1}} \\
\frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f(A)}{\partial A_{m 1}} & \frac{\partial f(A)}{\partial A_{m 2}} & \cdots & \frac{\partial f(A)}{\partial A_{m n}}
\end{array}\right]
$$

Matrix Calculus - The Gradient

- Every entry in the matrix is: $\left.\nabla_{A} f(A)\right)_{i j}=\frac{\partial f(A)}{\partial A_{i j}}$.
- the size of $\nabla_{A} f(A)$ is always the same as the size of A. So if A is just a vector x :

$$
\nabla_{x} f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x(x)} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]
$$

Exercise

- Example:

For $x \in \mathbb{R}^{n}$, let $f(x)=b^{T} x$ for some known vector $b \in \mathbb{R}^{n}$

- Find:

$$
\frac{\partial f(x)}{\partial x_{k}}=?
$$

$$
f(x)=\left[\begin{array}{llll}
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right]^{T}\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

$$
\nabla_{x} f(x)=?
$$

Exercise

- Example:

For $x \in \mathbb{R}^{n}$, let $f(x)=b^{T} x$ for some known vector $b \in \mathbb{R}^{n}$

$$
\begin{gathered}
f(x)=\sum_{i=1}^{n} b_{i} x_{i} \\
\frac{\partial f(x)}{\partial x_{k}}=\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} b_{i} x_{i}=b_{k} .
\end{gathered}
$$

- From this we can conclude that:

$$
\nabla_{x} b^{T} x=b
$$

Matrix Calculus - The Gradient

- Properties
- $\nabla_{x}(f(x)+g(x))=\nabla_{x} f(x)+\nabla_{x} g(x)$.
- For $t \in \mathbb{R}, \nabla_{x}(t f(x))=t \nabla_{x} f(x)$.

Matrix Calculus - The Hessian

- The Hessian matrix with respect to \mathbf{x}, written $\nabla_{x}^{2} f(x)$ or simply as H:

$$
\nabla_{x}^{2} f(x) \in \mathbb{R}^{n \times n}=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1}\left(x x_{2}\right.} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right]
$$

- The Hessian of n-dimensional vector is the $\mathrm{n} \times \mathrm{n}$ matrix.

Matrix Calculus - The Hessian

- Each entry can be written as: $\left.\quad \nabla_{x}^{2} f(x)\right)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}$.
- Exercise: Why is the Hessian always symmetric?

Matrix Calculus - The Hessian

- Each entry can be written as: $\left.\nabla_{x}^{2} f(x)\right)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}$.
- The Hessian is always symmetric, because

$$
\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f(x)}{\partial x_{j} \partial x_{i}} .
$$

- This is known as Schwarz's theorem: The order of partial derivatives don't matter as long as the second derivative exists and is continuous.

Matrix Calculus - The Hessian

- Note that the hessian is not the gradient of whole gradient of a vector (this is not defined). It is actually the gradient of every entry of the gradient of the vector.

$$
\nabla_{x}^{2} f(x) \in \mathbb{R}^{n \times n}=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{f} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right]
$$

Matrix Calculus - The Hessian

- Eg, the first column is the gradient of $\frac{\partial f(x)}{\partial x_{1}}$

Exercise

- Example:
consider the quadratic function $f(x)=x^{T} A x$

$$
\begin{aligned}
f(x) & =\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j}
\end{aligned}
$$

Exercise

$$
\frac{\partial f(x)}{\partial x_{k}}=\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j}
$$

Exercise

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& =\frac{\partial}{\partial x_{k}}\left[\sum_{i \neq k} \sum_{j \neq k} A_{i j} x_{i} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+\sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right]
\end{aligned}
$$

Divide the summation into 3 parts depending on whether:

- $\mathrm{i}==\mathrm{k}$ or
- $j==k$

Exercise

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& \left.=\frac{\partial}{\partial x_{k}} \sum_{i \neq k} \sum_{j \neq k} A_{i j} x_{i} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+\sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right] \\
& =\sum_{i \neq k} A_{i k} x_{i}+\sum_{j \neq k} A_{k j} x_{j}+2 A_{k k} x_{k}
\end{aligned}
$$

Exercise

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& =\frac{\partial}{\partial x_{k}}\left[\sum_{i \neq k} \sum_{j \neq k} A_{i j} x_{i} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+\sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right] \\
& =\sum_{i \neq k} A_{i k} x_{i}+\sum_{j \neq k} A_{k j} x_{j}+2 A_{k k} x_{k}
\end{aligned}
$$

Exercise

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& =\frac{\partial}{\partial x_{k}}\left[\sum_{i \neq k} \sum_{j \neq k} A_{i j} x_{i} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+\sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right] \\
& =\sum_{i \neq k} A_{i k} x_{i}+\sum_{j \neq k} A_{k j} x_{j}+2 A_{k k} x_{k}
\end{aligned}
$$

Exercise

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& =\frac{\partial}{\partial x_{k}}\left[\sum_{i \neq k} \sum_{j \neq k} A_{i j} x_{i} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+\sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right. \\
& =\sum_{i \neq k} A_{i k} x_{i}+\sum_{j \neq k} A_{k j} x_{j}+2 A_{k k} x_{k}
\end{aligned}
$$

Exercise

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& =\frac{\partial}{\partial x_{k}}\left[\sum_{i \neq k} \sum_{j \neq k} A_{i j} x_{i} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+\sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right] \\
& =\sum_{i \neq k} A_{i k} x_{i}+\sum_{j \neq k} A_{k j} x_{j}+2 A_{k k} x_{k}
\end{aligned}
$$

Exercise

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& =\frac{\partial}{\partial x_{k}}\left[\sum_{i \neq k} \sum_{j \neq k} A_{i j} x_{i} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+\sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right] \\
& =\sum_{i \neq k} A_{i k} x_{i}+\sum_{j \neq k} A_{k j} x_{j}+2 A_{k k} x_{k} \\
& =\sum_{i=1}^{n} A_{i k} x_{i}+\sum_{j=1}^{n} A_{k j} x_{j}=2 \sum_{i=1}^{n} A_{k i} x_{i}
\end{aligned}
$$

Exercise

$$
\begin{gathered}
f(x)=x^{T} A x \\
f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
\frac{\partial^{2} f(x)}{\partial x_{k} \partial x_{\ell}}=\frac{\partial}{\partial x_{k}}\left[\frac{\partial f(x)}{\partial x_{\ell}}\right]=\frac{\partial}{\partial x_{k}}\left[\sum_{i=1}^{n} A_{\ell i} x_{i}\right]
\end{gathered}
$$

Exercise

$$
\begin{gathered}
f(x)=x^{T} A x \\
f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
\frac{\partial^{2} f(x)}{\partial x_{k} \partial x_{\ell}}=\frac{\partial}{\partial x_{k}}\left[\frac{\partial f(x)}{\partial x_{\ell}}\right]=\frac{\partial}{\partial x_{k}}\left[\sum_{i=1}^{n} A_{\ell i} x_{i}\right] \\
= \\
2 A_{\ell k}=2 A_{k \ell}
\end{gathered}
$$

Exercise

$$
\begin{gathered}
f(x)=x^{T} A x \\
f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
\frac{\partial^{2} f(x)}{\partial x_{k} \partial x_{\ell}}=\frac{\partial}{\partial x_{k}}\left[\frac{\partial f(x)}{\partial x_{\ell}}\right]=\frac{\partial}{\partial x_{k}}\left[\sum_{i=1}^{n} 2 A_{k i} x_{i}\right] \\
\left.=2 A_{\ell_{k}}=2 A_{k \ell}\right] \\
\nabla_{x}^{2} f(x)=2 A
\end{gathered}
$$

What we have learned

- Vectors and matrices
- Basic Matrix Operations
- Special Matrices
- Transformation Matrices
- Homogeneous coordinates
- Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculate

