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Homogeneous system

• In general, a matrix multiplication lets us linearly 
combine components of a vector

– This is sufficient for scale, rotate, skew transformations.

– But notice, we can’t add a constant! ☹



Homogeneous system

– The (somewhat hacky) solution? Stick a “1” at the end of every 
vector:

– Now we can rotate, scale, and skew like before, AND translate 
(note how the multiplication works out, above)

– This is called “homogeneous coordinates”



Homogeneous system
– In homogeneous coordinates, the multiplication works out 

so the rightmost column of the matrix is a vector that gets 
added.

– Generally, a homogeneous transformation matrix will have a 
bottom row of [0 0 1], so that the result has a “1” at the 
bottom too.



Homogeneous system

• One more thing we might want: to divide the result by 
something
– For example, we may want to divide by a coordinate, to make 

things scale down as they get farther away in a camera image
– Matrix multiplication can’t actually divide
– So, by convention, in homogeneous coordinates, we’ll divide the 

result by its last coordinate after doing a matrix multiplication
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Scaling
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Scaling Equation
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Scaling Equation
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P

P’=S∙P
P’’=T∙P’

P’’=T · P’=T ·(S · P)= T · S ·P

Scaling & Translating
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Scaling & Translating
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Scaling & Translating
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Rotation
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Rotation Equations

Counter-clockwise rotation by an 
angle θ
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Rotation Matrix Properties

A 2D rotation matrix is 2x2 

Note: R belongs to the category of normal 
matrices 
and satisfies many interesting properties:



Rotation Matrix Properties

• Transpose of a rotation matrix produces a 
rotation in the opposite direction

• The rows of a rotation matrix are always 
mutually perpendicular (a.k.a. orthogonal) 
unit vectors
– (and so are its columns)



Scaling + Rotation + Translation

P’= (T R S) P

This is the form of the 
general-purpose 
transformation matrix



Outline

• Vectors and matrices
– Basic Matrix Operations
– Determinants, norms, trace
– Special Matrices

• Transformation Matrices
– Homogeneous coordinates
– Translation

• Matrix inverse
• Matrix rank
• Eigenvalues and Eigenvectors
• Matrix Calculate

The inverse of a transformation 
matrix reverses its effect



• Given a matrix A, its inverse A-1  is a matrix such 
that AA-1 = A-1A = I

• E.g.

• Inverse does not always exist. If A-1 exists, A is 
invertible or non-singular. Otherwise, it’s singular.

• Useful identities, for matrices that are invertible:

Inverse



• Pseudoinverse
– Fortunately, there are workarounds to solve AX=B in these 

situations. And python can do them!

– Instead of taking an inverse, directly ask python to solve for X in 
AX=B, by typing np.linalg.solve(A, B)

– Python will try several appropriate numerical methods (including 
the pseudoinverse if the inverse doesn’t exist)

– Python will return the value of X which solves the equation
• If there is no exact solution, it will return the closest one

• If there are many solutions, it will return the smallest one

Matrix Operations



• Python example:

Matrix Operations

>> import numpy as np
>> x = np.linalg.solve(A,B)
x =
    1.0000
   -0.5000



Outline

• Vectors and matrices
– Basic Matrix Operations
– Determinants, norms, trace
– Special Matrices

• Transformation Matrices
– Homogeneous coordinates
– Translation

• Matrix inverse
• Matrix rank
• Eigenvalues and Eigenvectors
• Matrix Calculate

The rank of a transformation matrix 
tells you how many dimensions it 
transforms a vector to.
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Linear independence

• Suppose we have a set of vectors v1, …, vn
• If we can express v

1
 as a linear combination of the other 

vectors v
2
…vn, then v

1
 is linearly dependent on the other 

vectors. 
– The direction v

1
 can be expressed as a combination of the 

directions v
2
…vn. (E.g. v

1
 = .7 v

2 
-.7 v

4
)

• If no vector is linearly dependent on the rest of the set, the 
set is linearly independent.
– Common case: a set of vectors v1, …, vn is always linearly 

independent if each vector is perpendicular to every other 
vector (and non-zero) 



Linear independence

Not linearly independentLinearly independent set



Matrix rank

• Column/row rank

– Column rank always equals row rank

• Matrix rank



Matrix rank
• For transformation matrices, the rank tells you the 

dimensions of the output
• E.g. if rank of A is 1, then the transformation

p’=Ap
maps points onto a line. 

• Here’s a matrix with rank 1:

All points get 
mapped to 
the line y=2x



Matrix rank
• If an m x m matrix is rank m, we say it’s “full rank”
– Maps an m x 1 vector uniquely to another m x 1 vector

– An inverse matrix can be found

• If rank < m, we say it’s “singular”
– At least one dimension is getting collapsed. No way to look at 

the result and tell what the input was

– Inverse does not exist

• Inverse also doesn’t exist for non-square matrices



Outline

• Vectors and matrices
– Basic Matrix Operations
– Determinants, norms, trace
– Special Matrices

• Transformation Matrices
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• Matrix inverse
• Matrix rank
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• Matrix Calculus



Eigenvector and Eigenvalue

• An eigenvector x of a linear transformation A is a non-zero 
vector that, when A is applied to it, does not change 
direction.



Eigenvector and Eigenvalue

• An eigenvector x of a linear transformation A is a non-zero 
vector that, when A is applied to it, does not change 
direction.

• Applying A to the eigenvector only scales the eigenvector by 
the scalar value λ, called an eigenvalue.



Eigenvector and Eigenvalue

• We want to find all the eigenvalues of A:

• Which can we written as:

• Therefore:



Eigenvector and Eigenvalue

• We can solve for eigenvalues by solving:

• Since we are looking for non-zero x, we can instead solve the 
above equation as:



Properties

• The trace of a A is equal to the sum of its eigenvalues:

• The determinant of A is equal to the product of its eigenvalues

• The rank of A is equal to the number of non-zero eigenvalues of 
A.

• The eigenvalues of a diagonal matrix D = diag(d1, . . . dn) are 
just the diagonal entries d1, . . . dn



Spectral theory

• We call an eigenvalue λ and an associated eigenvector 
an eigenpair. 

• The space of vectors where (A − λI) = 0 is often called 
the eigenspace of A associated with the eigenvalue λ. 

• The set of all eigenvalues of A is called its spectrum:



Spectral theory

• The magnitude of the largest eigenvalue (in 
magnitude) is called the spectral radius

– Where C is the space of all eigenvalues of A



Spectral theory

• The spectral radius is bounded by infinity norm of a 
matrix:

• Proof: Turn to a partner and prove this!



Spectral theory

• The spectral radius is bounded by infinity norm of a 
matrix:

• Proof: Let λ and v be an eigenpair of A:



Diagonalization

• An n × n matrix A is diagonalizable if it has n linearly 
independent eigenvectors. 

• Most square matrices (in a sense that can be made 
mathematically rigorous) are diagonalizable: 
– Normal matrices are diagonalizable 
– Matrices with n distinct eigenvalues are diagonalizable

Lemma: Eigenvectors associated with distinct eigenvalues are 
linearly independent.



Diagonalization

• An n × n matrix A is diagonalizable if it has n linearly 
independent eigenvectors. 

• Most square matrices are diagonalizable: 
– Normal matrices are diagonalizable 

– Matrices with n distinct eigenvalues are diagonalizable

Lemma: Eigenvectors associated with distinct eigenvalues are 
linearly independent.



Diagonalization

• Eigenvalue equation:

– Where D is a diagonal matrix of the eigenvalues



Diagonalization

• Eigenvalue equation:

• Assuming all λ
i
’s are unique:

• Remember that the inverse of an orthogonal matrix is just its 
transpose and the eigenvectors are orthogonal



Symmetric matrices

• Properties:
– For a symmetric matrix A, all the eigenvalues are real.

– The eigenvectors of A are orthonormal.



Symmetric matrices

• Therefore:

– where

• So, what can you say about the vector x that satisfies the 
following optimization?



Symmetric matrices

• Therefore:

– where

• So, what can you say about the vector x that satisfies the 
following optimization?
– Is the same as finding the eigenvector that corresponds to the 

largest eigenvalue of A.



Some applications of Eigenvalues

• PageRank 

• Schrodinger’s equation 

• PCA

• We are going to use it to compress images in future classes
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Matrix Calculus – The Gradient

• Let a function                        take as input a matrix A of size 
m × n and return a real value.

• Then the gradient of f:



Matrix Calculus – The Gradient

• Every entry in the matrix is:

• the size of ∇
A
f(A) is always the same as the size of A. So if A 

is just a vector x:



Exercise

• Example:

• Find:



Exercise

• Example:

• From this we can conclude that:



Matrix Calculus – The Gradient

• Properties



Matrix Calculus – The Hessian

• The Hessian matrix with respect to x, written             or 
simply as H:

• The Hessian of n-dimensional vector is the n × n matrix.



Matrix Calculus – The Hessian

• Each entry can be written as:

• Exercise: Why is the Hessian always symmetric?



Matrix Calculus – The Hessian

• Each entry can be written as:

• The Hessian is always symmetric, because

• This is known as Schwarz's theorem: The order of partial 
derivatives don’t matter as long as the second derivative 
exists and is continuous.



Matrix Calculus – The Hessian

• Note that the hessian is not the gradient of whole gradient 
of a vector (this is not defined). It is actually the gradient of 
every entry of the gradient of the vector.



Matrix Calculus – The Hessian

• Eg, the first column is the gradient of 



Exercise

• Example:



Exercise



Exercise

Divide the summation into 3 parts depending on whether:
• i == k or
• j == k



Exercise
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Exercise



What we have learned

• Vectors and matrices
– Basic Matrix Operations
– Special Matrices

• Transformation Matrices
– Homogeneous coordinates
– Translation

• Matrix inverse
• Matrix rank
• Eigenvalues and Eigenvectors
• Matrix Calculate
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