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Exam details
● Monday, June 3
● 10:30am to 12:20pm
● Location: G20 
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Exam overview
● 100 points in total
● 24 points for 12 multiple choice
● 11 points for 11 true false
● 30 points for Segmentation and camera projection
● 15 points for PCA and LDA
● 20 points for video and deep learning
● maybe 10 points extra credit
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The goal of computer vision
• To bridge the gap between pixels and “meaning”
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Histogram

12/6/195
Slide credit: Dr. Mubarak Shah
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Convolution and Cross-correlation

Convolution with Impulse function

Convolution is an integral that expresses the amount of overlap 
of one function as it is shifted over another function

Cross-correlation compares the similarity of two sets of data
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Properties of systems

12/6/197

● Amplitude properties:
○ Additivity

○ Homogeneity

○ Superposition

○ Stability

○ Invertibility
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Properties of systems

12/6/198

● Spatial properties
○ Causality

○ Shift invariance:
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Characterizing edges
• An edge is a place of rapid change in the image intensity 

function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

12/6/199
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Discrete derivative in 2D

12/6/1910
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Finite differences: example

12/6/1911

● Which one is the gradient in the x-direction? How about 
y-direction?

Original
Image

Gradient 
magnitude

x-direction y-direction
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Designing an edge detector

• Criteria for an “optimal” edge detector:
○ Good detection: the optimal detector must minimize the probability of false positives 

(detecting spurious edges caused by noise), as well as that of false negatives (missing 
real edges)

○ Good localization: the edges detected must be as close as possible to the true edges
○ Single response: the detector must return one point only for each true edge point; that 

is, minimize the number of local maxima around the true edge

12/6/1912
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Canny edge detector
● Suppress Noise
● Compute gradient magnitude and direction 
● Apply Non-Maximum Suppression

○ Assures minimal response
● Use hysteresis and connectivity analysis to detect edges

12/6/1913
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Detecting lines using Hough transform

12/6/1914



Ranjay Krishna, Jieyu Zhang May 28, 2024Lecture 19 -

RANSAC: Pros and Cons

● Pros:
○ General method suited for a wide range of model fitting problems
○ Easy to implement and easy to calculate its failure rate

● Cons:
○ Only handles a moderate percentage of outliers without cost blowing 

up
○ Many real problems have high rate of outliers (but sometimes 

selective choice of random subsets can help)
● A voting strategy, The Hough transform, can handle high percentage of 

outliers

12/6/1915
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Requirements for keypoint localization

● Region extraction needs to be repeatable and accurate
○ Invariant to translation, rotation, scale changes
○ Robust or covariant to out-of-plane (≈affine) transformations
○ Robust to lighting variations, noise, blur, quantization

● Locality: Features are local, therefore robust to occlusion and clutter.

● Quantity: We need a sufficient number of regions to cover the object.

● Distinctiveness: The regions should contain “interesting” structure.

● Efficiency: Close to real-time performance.
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Harris corner detector and second moment matrix
● First, let’s consider an axis-aligned corner:

● This means: 
○ Dominant gradient directions align with x or y axis
○ If either λ is close to 0, then this is not a corner, so look for 

locations where both are large.

● What if we have a corner that is not aligned with the image axes? 
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Harris Detector: Properties

● Translation invariance
● Rotation invariance
● Scale invariance?

Not invariant to image scale!

All points will be 
classified as edges!

Corner
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Scale Invariant Detectors
● Harris-Laplacian1

Find local maximum of:
○ Harris corner detector in 

space (image 
coordinates)

○ Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”.  IJCV 2004
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• SIFT (Lowe)2

Find local maximum of:
– Difference of Gaussians in space 

and scale
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SIFT descriptor formation

● Using precise gradient locations is fragile. We’d like to allow some 
“slop” in the image, and still produce a very similar descriptor

● Create array of orientation histograms (a 4x4 array is shown)
● Put the rotated gradients into their local orientation histograms

○ A gradients’s contribution is divided among the nearby histograms based on 
distance. If it’s halfway between two histogram locations, it gives a half 
contribution to both.

○ Also, scale down gradient contributions for gradients far from the center
● The SIFT authors found that best results were with 8 orientation bins 

per histogram.

12/6/1920

0 2π
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Difference between HoG and SIFT
● HoG is usually used to describe entire images. SIFT is used for key point 

matching
● SIFT histrograms are oriented towards the dominant gradient. HoG is not.
● HoG gradients are normalized using neighborhood bins.
● SIFT descriptors use varying scales to compute multiple descriptors.

12/6/1921
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Seam Carving
● Assume m x n 🡪 m x n’, n’<n  (summarization)

● Basic Idea: remove unimportant pixels from the image
○ Unimportant = pixels with less “energy”

● Intuition for gradient-based energy:
○ Preserve strong contours
○ Human vision more sensitive to edges – so try remove content 

from smoother areas
○ Simple enough for producing some nice results

12/6/1922
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Gestalt Factors

● These factors make intuitive sense, but are very difficult to translate into algorithms.
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Conclusions: Agglomerative Clustering

Good
● Simple to implement, widespread application.
● Clusters have adaptive shapes.
● Provides a hierarchy of clusters.
● No need to specify number of clusters in advance.

Bad
● May have imbalanced clusters.
● Still have to choose number of clusters or threshold.
● Does not scale well. Runtime of O(n3).
● Can get stuck at a local optima.

12/6/1924
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K-means clustering

Illustration Source: wikipedia

1. Initialize 
Cluster Centers

2. Assign Points to 
Clusters

3. Re-compute 
Means

Repeat (2) and (3)

● Java demo:
 http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

12/6/1925

http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_1.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_2.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_3.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_4.svg
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
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Feature Space
● Depending on what we choose as the feature space, we can group 

pixels in different ways.

● Grouping pixels based 
on color similarity 

● Feature space: color value (3D) 

R=255
G=200
B=250

R=245
G=220
B=248

R=15
G=189
B=2

R=3
G=12
B=2

R

G
B

Slide credit: Kristen Grauman

12/6/1926
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Feature Space
● Depending on what we choose as the feature space, we 

can group pixels in different ways.

● Grouping pixels based 
on texture similarity

● Feature space: filter bank responses (e.g., 24D) 

Filter bank of 
24 filters

F24

F2

F1

…

Slide credit: Kristen Grauman

12/6/1927
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Segmentation as Clustering
● Depending on what we choose as the feature space, we 

can group pixels in different ways.

● Grouping pixels based on
intensity+position similarity

⇒ Way to encode both similarity and proximity.
Slide credit: Kristen Grauman

X

Intensity

Y

12/6/1928
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Mean-Shift Clustering

● Cluster: all data points in the attraction basin of a 
mode

● Attraction basin: the region for which all 
trajectories lead to the same mode

Slide by Y. Ukrainitz & B. Sarel

12/6/1929
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Summary Mean-Shift
● Pros

○ General, application-independent tool
○ Model-free, does not assume any prior shape (spherical, elliptical, etc.) on data 

clusters
○ Just a single parameter (window size h) 

■ h has a physical meaning (unlike k-means)
○ Finds variable number of modes
○ Robust to outliers

● Cons
○ Output depends on window size
○ Window size (bandwidth) selection is not trivial
○ Computationally (relatively) expensive (~2s/image)
○ Does not scale well with dimension of feature space
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The machine learning framework 

y = f(x)

● Training: given a training set of labeled examples {(x1,y1), 
…, (xN,yN)}, estimate the prediction function f by minimizing 
the prediction error on the training set

● Testing: apply f to a never before seen test example x and 
output the predicted value y = f(x)

output prediction 
function

Image 
feature

Slide credit: L. Lazebnik
12/6/1931
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Nearest Neighbor Classifier

● Assign label of nearest training data point to each test 
data point 

Source: N. Goyal

Training 
images

Test 
image

Compute 
Distance

Choose k of the 
“nearest” records

12/6/1932
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Bias versus variance trade off

12/6/1933
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Curse of dimensionality
● Assume 5000 points uniformly distributed in the unit 

hypercube and we want to apply 5-NN. Suppose our 
query point is at the origin.
○ In 1-dimension, we must go a distance of 5/5000=0.001 on the 

average to capture 5 nearest neighbors.
○ In 2 dimensions, we must go             to get a square that contains 

0.001 of the volume.  
○ In d dimensions, we must go 

12/6/1934
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Fischer's Linear Discriminant Analysis

12/6/1935
Slide inspired by N. Vasconcelos

Between class scatter

Within class scatter
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Bag of features: outline
1. Extract features
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary 
4. Represent images by frequencies of  “visual words” 

36
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Bag of words + pyramids

37
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Naïve Bayes
● Classify image using histograms of occurrences on visual 

words:

● if only present/absence of a word is taken into account:
● Naïve Bayes classifier assumes that visual words are 

conditionally independent given object class

38

Csurka Bray, Dance & Fan, 2004 
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Detecting a person with their parts

12/6/1939

• For example, a person can be modelled as having a head, left 
arm, right arm, etc.

• All parts can be modelled relative to the global person 
detector
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Cardigan Welsh Corgi

…

Pembroke Welsh Corgi

…

Fine-Grained Recognition

?

What breed is this dog?

Key: Find the right features. 

12/6/1940
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Points

2D points:                           or column vector 

3D points:                              (often noted X or P) 

Homogeneous coordinates: append a 1

Why?
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Homogeneous coordinates in 2D

 

42
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(homogeneous) perspective projection 
from 3D to 2D, assuming image plane at 
z = 1 and shared camera/image origin

(homogeneous) transformation 
from 2D to 2D, accounting for

focal length f and origin translation 

Also written as: where K is called the 
camera intrinsics

Camera matrix decomposition
We can decompose the camera matrix like this:

43
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Putting it all together

We can write everything into a single projection:

extrinsic parameters (4 x 4): 
correspond to camera 

externals (world-to-camera 
transformation)

The camera matrix now looks like:

intrinsic parameters (3 x 3): 
correspond to camera 

internals (image-to-image 
transformation)

 
 

perspective projection (3 x 4): 
maps 3D to 2D points

(camera-to-image 
transformation)
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General pinhole camera matrix

extrinsic 
parameters

intrinsic 
parameters

3D rotation 3D translation

where
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Estimating optical flow

● Given two subsequent frames, estimate the apparent motion 
field u(x,y), v(x,y) between them

• Key assumptions
• Brightness constancy:  projection of the same point looks the same in 

every frame

• Small motion:  points do not move very far

• Spatial coherence: points move like their neighbors

I(x,y,t–1) I(x,y,t)
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Lucas Kande optical flow
○ Optimal (u, v) satisfies Lucas-Kanade equation

Does this remind anything to you?

When is This Solvable?
• ATA should be invertible 
• ATA should not be too small due to noise

– eigenvalues λ
1
 and λ 

2
 of ATA should not be too small

• ATA should be well-conditioned
–  λ 

1
/ λ 

2
 should not be too large (λ 

1
 = larger eigenvalue)
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Tracking

12/6/1948

Slide credit: Yonsei Univ. 
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What should you take away from this class?

● A broad understanding of computer vision as a field.

● Learning to use common software packages: jupyter, numpy, scipy.

● Converting ideas into mathematical equations.

● Converting mathematical equations into code.

● Learning to communicate ideas and algorithms in formal writing.
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Exam

● Pay attention to formulation and definition

eg, what is principal point and principal axis?
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Exam

● Pay attention to calculation

say what’s eigenvectors and 
eigenvalues of the matrix A
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Exam

● Pay attention to property and property 

comparison between methods

● Pay attention to why and when we use or not 

use a method

● Pay attention to assumptions, when they 

hold or not hold
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Good Luck


