Recitation 9

Exam preparation
Exam details

- Monday, June 3
- 10:30am to 12:20pm
- Location: G20
Exam overview

- 100 points in total
- 24 points for 12 multiple choice
- 11 points for 11 true false
- 30 points for Segmentation and camera projection
- 15 points for PCA and LDA
- 20 points for video and deep learning
- maybe 10 points extra credit
The goal of computer vision

• To bridge the gap between pixels and “meaning”

<table>
<thead>
<tr>
<th>What we see</th>
<th>What a computer sees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: S. Narasimhan
Histogram

Slide credit: Dr. Mubarak Shah
Convolution and Cross-correlation

Convolution is an integral that expresses the amount of overlap of one function as it is shifted over another function

\[(f \ast h)[m, n] = \sum_{k,l} f[k, l] \cdot h[m - k, n - l]\]

Cross-correlation compares the similarity of two sets of data

\[(f \ast g)[m, n] = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} f[i, j] \cdot g[i - m, j - n]\]

Convolution with Impulse function

\[f[n, m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \cdot \delta_2[n - k, m - l]\]
Properties of systems

- Amplitude properties:
 - Additivity: \(S[f_i[n, m] + f_j[n, m]] = S[f_i[n, m]] + S[f_j[n, m]] \)
 - Homogeneity: \(S[\alpha f_i[n, m]] = \alpha S[f_i[n, m]] \)
 - Superposition: \(S[\alpha f_i[n, m] + \beta f_j[n, m]] = \alpha S[f_i[n, m]] + \beta S[f_j[n, m]] \)
 - Stability: \(|f[n, m]| \leq k \implies |g[n, m]| \leq ck \)
 - Invertibility: \(S^{-1}[S[f_i[n, m]]] = f[n, m] \)
Properties of systems

- Spatial properties
 - Causality
 - for $n < n_0, m < m_0$, if $f[n, m] = 0 \implies g[n, m] = 0$
 - Shift invariance:
 $$f[n - n_0, m - m_0] \xrightarrow{S} g[n - n_0, m - m_0]$$
Characterizing edges

• An edge is a place of rapid change in the image intensity function.
Discrete derivative in 2D

Given function

\[f(x, y) \]

Gradient vector

\[\nabla f(x, y) = \begin{bmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix} \]

Gradient magnitude

\[|\nabla f(x, y)| = \sqrt{f_x^2 + f_y^2} \]

Gradient direction

\[\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \]
Finite differences: example

Original Image

Gradient magnitude

x-direction

y-direction

- Which one is the gradient in the x-direction? How about y-direction?
Designing an edge detector

• Criteria for an “optimal” edge detector:
 ○ **Good detection**: the optimal detector must minimize the probability of false positives (detecting spurious edges caused by noise), as well as that of false negatives (missing real edges)
 ○ **Good localization**: the edges detected must be as close as possible to the true edges
 ○ **Single response**: the detector must return one point only for each true edge point; that is, minimize the number of local maxima around the true edge
Canny edge detector

- Suppress Noise
- Compute gradient magnitude and direction
- Apply Non-Maximum Suppression
 - Assures minimal response
- Use hysteresis and connectivity analysis to detect edges
Detecting lines using Hough transform
RANSAC: Pros and Cons

Pros:
- General method suited for a wide range of model fitting problems
- Easy to implement and easy to calculate its failure rate

Cons:
- Only handles a moderate percentage of outliers without cost blowing up
- Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)

A voting strategy, The Hough transform, can handle high percentage of outliers
Requirements for keypoint localization

- Region extraction needs to be **repeatable** and **accurate**
 - Invariant to translation, rotation, scale changes
 - Robust or covariant to out-of-plane (≈affine) transformations
 - Robust to lighting variations, noise, blur, quantization

- **Locality**: Features are local, therefore robust to occlusion and clutter.

- **Quantity**: We need a sufficient number of regions to cover the object.

- **Distinctiveness**: The regions should contain “interesting” structure.

- **Efficiency**: Close to real-time performance.
Harris corner detector and second moment matrix

- First, let's consider an axis-aligned corner:

\[
M = \begin{bmatrix}
\sum I_x^2 & \sum I_x I_y \\
\sum I_x I_y & \sum I_y^2
\end{bmatrix} = \begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix}
\]
Harris Detector: Properties

- Translation invariance
- Rotation invariance
- Scale invariance?

Not invariant to image scale!
Scale Invariant Detectors

- **Harris-Laplacian**

 Find local maximum of:

 - Harris corner detector in space (image coordinates)
 - Laplacian in scale

- **SIFT (Lowe)**

 Find local maximum of:

 - Difference of Gaussians in space and scale

SIFT descriptor formation

- Using precise gradient locations is fragile. We’d like to allow some “slop” in the image, and still produce a very similar descriptor.
- Create array of orientation histograms (a 4x4 array is shown)
- Put the rotated gradients into their local orientation histograms
 - A gradients’s contribution is divided among the nearby histograms based on distance. If it’s halfway between two histogram locations, it gives a half contribution to both.
 - Also, scale down gradient contributions for gradients far from the center.
- The SIFT authors found that best results were with 8 orientation bins per histogram.
Difference between HoG and SIFT

- HoG is usually used to describe entire images. SIFT is used for key point matching.
- SIFT histograms are oriented towards the dominant gradient. HoG is not.
- HoG gradients are normalized using neighborhood bins.
- SIFT descriptors use varying scales to compute multiple descriptors.
Seam Carving

- Assume $m \times n \neq m \times n'$, $n' < n$

- Basic Idea: remove unimportant pixels from the image
 - Unimportant = pixels with less “energy”

$$E_1(I) = |\frac{\partial}{\partial x}I| + |\frac{\partial}{\partial y}I|.$$

- Intuition for gradient-based energy:
 - Preserve strong contours
 - Human vision more sensitive to edges – so try remove content from smoother areas
 - Simple enough for producing some nice results
Gestalt Factors

- Not grouped
- Proximity
- Similarity
- Similarity
- Common Fate
- Common Region

These factors make intuitive sense, but are very difficult to translate into algorithms.

Image source: Forsyth & Ponce
Conclusions: Agglomerative Clustering

Good
● Simple to implement, widespread application.
● Clusters have adaptive shapes.
● Provides a hierarchy of clusters.
● No need to specify number of clusters in advance.

Bad
● May have imbalanced clusters.
● Still have to choose number of clusters or threshold.
● Does not scale well. Runtime of $O(n^3)$.
● Can get stuck at a local optima.
K-means clustering

1. Initialize Cluster Centers
2. Assign Points to Clusters
3. Re-compute Means
Repeat (2) and (3)

- Java demo:
 http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
Feature Space

- Depending on what we choose as the feature space, we can group pixels in different ways.

- Grouping pixels based on color similarity

- Feature space: color value (3D)

Slide credit: Kristen Grauman
Feature Space

- Depending on what we choose as the *feature space*, we can group pixels in different ways.

- Grouping pixels based on *texture* similarity

- Feature space: filter bank responses (e.g., 24D)
Segmentation as Clustering

- Depending on what we choose as the feature space, we can group pixels in different ways.

- Grouping pixels based on \textit{intensity+position} similarity

⇒ Way to encode both \textit{similarity} and \textit{proximity}.

Slide credit: Kristen Grauman
Mean-Shift Clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode
Summary Mean-Shift

- **Pros**
 - General, application-independent tool
 - Model-free, does not assume any prior shape (spherical, elliptical, etc.) on data clusters
 - Just a single parameter (window size \(h \))
 - \(h \) has a physical meaning (unlike k-means)
 - Finds variable number of modes
 - Robust to outliers

- **Cons**
 - Output depends on window size
 - Window size (bandwidth) selection is not trivial
 - Computationally (relatively) expensive (~2s/image)
 - Does not scale well with dimension of feature space
The machine learning framework

\[y = f(x) \]

- **Training**: given a *training set* of labeled examples \(\{(x_1, y_1), \ldots, (x_N, y_N)\} \), estimate the prediction function \(f \) by minimizing the prediction error on the training set.

- **Testing**: apply \(f \) to a never before seen *test example* \(x \) and output the predicted value \(y = f(x) \).
Nearest Neighbor Classifier

- Assign label of nearest training data point to each test data point

Source: N. Goyal
Bias versus variance trade off
Curse of dimensionality

- Assume 5000 points uniformly distributed in the unit hypercube and we want to apply 5-NN. Suppose our query point is at the origin.
 - In 1-dimension, we must go a distance of $5/5000 = 0.001$ on the average to capture 5 nearest neighbors.
 - In 2 dimensions, we must go $\sqrt{0.001}$ to get a square that contains 0.001 of the volume.
 - In d dimensions, we must go $(0.001)^{1/d}$
Fischer's Linear Discriminant Analysis

Slide inspired by N. Vasconcelos
Bag of features: outline

1. Extract features
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary
4. Represent images by frequencies of “visual words”
Bag of words + pyramids

Locally orderless representation at several levels of spatial resolution
Naïve Bayes

- Classify image using histograms of occurrences on visual words:

\[x_i \]

- if only present/absence of a word is taken into account:

- Naïve Bayes classifier assumes that visual words are conditionally independent given object class

\[x_i \in \{0, 1\} \]

Csurka Bray, Dance & Fan, 2004
Detecting a person with their parts

- For example, a person can be modelled as having a head, left arm, right arm, etc.
- All parts can be modelled relative to the global person detector
Fine-Grained Recognition

What breed is this dog?

Key: Find the right features.
Points

2D points: $\mathbf{x} = (x, y) \in \mathbb{R}^2$ or column vector $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$

3D points: $\mathbf{x} = (x, y, z) \in \mathbb{R}^3$ (often noted \mathbf{X} or \mathbf{P})

Homogeneous coordinates: append a 1

Why? $\bar{\mathbf{x}} = (x, y, 1)$ \hspace{1cm} $\bar{\mathbf{x}} = (x, y, z, 1)$
Homogeneous coordinates in 2D

2D Projective Space $\mathcal{P}^2 = \mathbb{R}^3 - (0, 0, 0)$
(same story in 3D with \mathcal{P}^3)

- heterogeneous \rightarrow homogeneous
 \[
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 \Rightarrow
 \begin{bmatrix}
 x \\
 y \\
 1
 \end{bmatrix}

- homogeneous \rightarrow heterogeneous
 \[
 \begin{bmatrix}
 x \\
 y \\
 w
 \end{bmatrix}
 \Rightarrow
 \begin{bmatrix}
 x/w \\
 y/w
 \end{bmatrix}

- points differing only by scale are equivalent: $(x, y, w) \sim \lambda (x, y, w)$
 \[
 \tilde{x} = (\tilde{x}, \tilde{y}, \tilde{w}) = \tilde{w}(x, y, 1) = \tilde{w}\overline{x}.
 \]
Camera matrix decomposition

We can decompose the camera matrix like this:

\[P = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \]

(homogeneous) transformation from 2D to 2D, accounting for focal length \(f \) and origin translation (homogeneous) perspective projection from 3D to 2D, assuming image plane at \(z = 1 \) and shared camera/image origin

Also written as: \(P = K[I|0] \) where \(K = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \) K is called the camera intrinsics
Putting it all together

We can write everything into a single projection:

\[\mathbf{x}^I \sim K[I|0] \begin{bmatrix} R & -RC \\ 0 & 1 \end{bmatrix} \mathbf{x}^W = \mathbf{P} \mathbf{x}^W \]

The camera matrix now looks like:

\[\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R & -RC \\ 0 & 1 \end{bmatrix} \]

intrinsic parameters (3 x 3): correspond to camera internals (image-to-image transformation)

perspective projection (3 x 4): maps 3D to 2D points (camera-to-image transformation)

extrinsic parameters (4 x 4): correspond to camera externals (world-to-camera transformation)
General pinhole camera matrix

\[\mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \]

where

\[\mathbf{t} = -\mathbf{R} \mathbf{C} \]

\[\mathbf{P} = \begin{bmatrix} f & 0 & px \\ 0 & f & py \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} r_1 & r_2 & r_3 & t_1 \\ r_4 & r_5 & r_6 & t_2 \\ r_7 & r_8 & r_9 & t_3 \end{bmatrix} \]

\[\text{intrinsic parameters} \quad \text{extrinsic parameters} \]

\[\mathbf{R} = \begin{bmatrix} r_1 & r_2 & r_3 \\ r_4 & r_5 & r_6 \\ r_7 & r_8 & r_9 \end{bmatrix} \quad \mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} \]

3D rotation 3D translation
Estimating optical flow

- Given two subsequent frames, estimate the apparent motion field $u(x,y), v(x,y)$ between them

- Key assumptions
 - **Brightness constancy**: projection of the same point looks the same in every frame
 - **Small motion**: points do not move very far
 - **Spatial coherence**: points move like their neighbors
Lucas Kande optical flow

- Optimal \((u, v)\) satisfies Lucas-Kanade equation

\[
\begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
=
\begin{bmatrix}
\sum I_x I_t \\
\sum I_y I_t
\end{bmatrix}
\]

When is This Solvable?

- \(A^TA\) should be invertible
- \(A^TA\) should not be too small due to noise
 - eigenvalues \(\lambda_1\) and \(\lambda_2\) of \(A^TA\) should not be too small
- \(A^TA\) should be well-conditioned
 - \(\lambda_1/\lambda_2\) should not be too large (\(\lambda_1\) = larger eigenvalue)

Does this remind anything to you?
Tracking

Feature point tracking

Slide credit: Yonsei Univ.
What should you take away from this class?

- A broad understanding of computer vision as a field.
- Learning to use common software packages: jupyter, numpy, scipy.
- Converting ideas into mathematical equations.
- Converting mathematical equations into code.
- Learning to communicate ideas and algorithms in formal writing.
Exam

- Pay attention to formulation and definition eg, what is principal point and principal axis?
Pay attention to calculation

Say what’s eigenvectors and eigenvalues of the matrix A

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$
Exam

- Pay attention to property and property comparison between methods
- Pay attention to why and when we use or not use a method
- Pay attention to assumptions, when they hold or not hold
Good Luck