Recitation 9

Exam preparation
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Exam detalls

e Monday, June 3
e 10:30am to 12:20pm
e Location: G20
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Exam overview

e 100 points in total

e 24 points for 12 multiple choice

e 11 points for 11 true false

e 30 points for Segmentation and camera projection
e 15 points for PCA and LDA

e 20 points for video and deep learning

e maybe 10 points extra credit
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The goal of computer vision

= sl 7]|6]|5]|[a]|]3]|2][1]]|o0

\L.t‘ Gare Montparmasse. F895

What we see What a computer sees

Source: S. Narasimhan
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Histogram

Count: 10192 Min: 9
Mean: 133.711 Max: 255
StdDev: 55.391 Mode: 178 (180)

256

Count: 10192 Min: 11
Mean: 104.637 Max: 254
StdDev: 89.862 Mode: 23 (440)

Slide credit: Dr. Mubarak Shah
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Convolution and Cross-correlation

Convolution is an integral that expresses the amount of overlap
of one function as it is shifted over another function

(f *h)[m,n]=)_fTk,[1 i{m—k,n—I]

Cross-correlation compares the similarity of two sets of data
(fxg)m, n]=2>7_ _ D7 _ o fli. j]-gli—m, j—n]

Convolution with Impulse functlon

fln,m] Z kalcbn—km—l]

k=—o0 l=—0c0
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Properties of systems

e Amplitude properties:
o Additivity S[filn,m] + fi[ln,m]] = S[filn, m]] + S[f;[n, m]]

o Homogeneity Slafiln, m]] = aS[fi[n, m]]]

© Superposition Slefiln, m] + Bfj[n, m]] = aS[filn, m]] + BS[f;[n, m]]

o Stability |fln,m]| <k = |g[n,m]| < ck

o Invertibility S7YS[fi[n, m]]] = fln, m]
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Properties of systems

e Spatial properties

o Causality for n < ng,m < myg, if fl[n,m]=0 = g[n,m| =0
e | S
o Shift invariance: fln —ng,m —mo] — g[n —ng, m — m]
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Characterizing edges

* An edge is a place of rapid change in the image intensity
function

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative
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Discrete derivative in 2D

Given function f (x, y)
f (x,y) -
Gradient vector VI (x,y) = 8f((2€,y) B fx
_ o — | Jy

Gradient magnitude ‘Vf(xa J’)‘ - \/fx2 T fy2

—_1(90f ;0
Gradient directon ¢ = tan : (@5/@£)
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Finite differences: example

Original Gradient
Image magnitude
x-direction y-direction




Designing an edge detector

* Criteria for an “optimal” edge detector:

o Good detection: the optimal detector must minimize the probability of false positives
(detecting spurious edges caused by noise), as well as that of false negatives (missing
real edges)

o Good localization: the edges detected must be as close as possible to the true edges

o Single response: the detector must return one point only for each true edge point; that
is, minimize the number of local maxima around the true edge

True Poor robustness Poor

Too many
edge to noise localization

responses
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Canny edge detector

e Suppress Noise
e Compute gradient magnitude and direction
e Apply Non-Maximum Suppression
o Assures minimal response
e Use hysteresis and connectivity analysis to detect edges
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Detecting lines using Hough transform
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RANSAC: Pros and Cons

e Pros:
o General method suited for a wide range of model fitting problems
o Easy to implement and easy to calculate its failure rate
e Cons:
o Only handles a moderate percentage of outliers without cost blowing
up
o Many real problems have high rate of outliers (but sometimes
selective choice of random subsets can help)

e A voting strategy, The Hough transform, can handle high percentage of
outliers
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Requirements for keypoint localization

e Region extraction needs to be repeatable and accurate
o Invariant to translation, rotation, scale changes
o Robust or covariant to out-of-plane (=affine) transformations
o Robust to lighting variations, noise, blur, quantization

e Locality: Features are local, therefore robust to occlusion and clutter.
e Quantity: We need a sufficient number of regions to cover the object.
e Distinctivenes : The regions should contain “interesting” structure.

e Efficiency: Close to real-time performance.

Slide credit: Bastian Leibe
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Harris corner detector and second moment matrix

e First, let’'s consider an axis-aligned corner:

M:'le SNii,| [4 0
2L, 2L ] L0 A

Slide credit: David Jacobs
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Harris Detector: Properties

e Translation invariance I\ Nﬂ ) /\
e Rotation invariance g %
e Scale invariance?

A = £

Corner All points will be
classified as edges!

N\

Not invariant to image scale!

Slide credit: Kristen Grauman
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Scale Invariant Detectors

. . |
e Harris-Laplacian® o — !
Find local maximum of: S
o Harris corner detector in S~ ?:l
space (image y o
coordinates) A~ B

o Laplacian in scale — Harris — X

2
o SIFT (Low'e) scale

Find local maximum of: A .. 1

— Difference of Gaussians in space

and scale = /‘DQ
y e l

>

«— DoG — X

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. 1JCV 2004
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SIFT descriptor formation

T, T 7

1 T2 7 7

0 2n

e Using precise gradient locations is fragile. We'd like to allow some
“slop” in the image, and still produce a very similar descriptor

e Create array of orientation histograms (a 4x4 array is shown)

e Put the rotated gradients into their local orientation histograms

o A gradients’s contribution is divided among the nearby histograms based on
distance. If it's halfway between two histogram locations, it gives a half
contribution to both.

o Also, scale down gradient contributions for gradients far from the center

e The SIFT authors found that best results were with 8 orientation bins
per histogram.
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Difference between HoG and SIFT

e HoG is usually used to describe entire images. SIFT is used for key point
matching

e SIFT histrograms are oriented towards the dominant gradient. HoG is not.
e HoG gradients are normalized using neighborhood bins.
e SIFT descriptors use varying scales to compute multiple descriptors.
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Seam Carving

e AssumemxnlImxn’,n'<n (summarization)

e Basic Idea: remove unimportant pixels from the image
o Unimportant = pixels with less “energy”

_ ) 7
B = R el
‘ O vy

e |ntuition for gradient-based energy:
o Preserve strong contours

o Human vision more sensitive to edges — so try remove content
from smoother areas

o Simple enough for producing some nice results
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Gestalt Factors

¢ &_OC Do
e Thesefac ® @@ &

Ranjay Krishna, Jieyu Zhang

Not grouped

Proximity

Similarity

Similarity

Common Fate

Common Region

ifficult

Lecture 19 -

Parallelism

Symmetry

Continuity

Closure
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Image source: Forsyth & Ponce



Conclusions: Agglomerative Clustering
Good

e Simple to implement, widespread application.

e Clusters have adaﬁtive shapes.

e Provides a hierarchy of clusters.

e No need to specify number of clusters in advance.

Bad

e May have imbalanced clusters.

e Still have to choose number of clusters or threshold.
¢ Does not scale well. Runtime of O(n®).

e Can get stuck at a local optima.

Ranjay Krishna, Jieyu Zhang Lecture 19 - Map28, 2024



K-means clustering

0 — o ¢
o - a o o ;

e eoem o | & 9 O =

e o o

. gu o g \3 o

1. Initialize 2. Assign‘ Points to 3. Re-compute | Repeat (2) and (3)
Cluster Centers Clusters Means

e Java demo:

http://home.dei.polimi.it/matteucc/Clustering/tutorial _html/AppletKM.html
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http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_1.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_2.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_3.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_4.svg
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

Feature Space

e Depending on what we choose as the feature space, we can group

pixels in different ways. N
R=255
e Grouping pixels based G=200
on color similarity B=250
J
r N
R=245
| G=220
B=248
N\ J

Slide credit: Kristen Grauman
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Feature Space

e Depending on what we choose as the feature space, we
can group pixels in different ways.

e Grouping pixels based
on texture similarity

ENNNAE
ENNA-
ENNIEZE

Filter bank of
24 filters

e Feature space: filter bank responses (e.g., 24D)

Slide credit: Kristen Grauman
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Segmentation as Clustering

e Depending on what we choose as the feature space, we
can group pixels in different ways.

e Grouping pixels based on
intensity+position similarity

t Intensity

= Way to encode both similarity and proximity.

Slide credit: Kristen Grauman
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Mean-Shift Clustering

e Cluster: all data points in the attraction basin of a
mode

e Attraction basin: the region for which all
trajectories lead to the same mode

Slide by Y. Ukrainitz & B. Sarel
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Summary Mean-Shift

e Pros
o General, application-independent tool

o Model-free, does not assume any prior shape (spherical, elliptical, etc.) on data
clusters

o Just a single parameter (window size h)

= h has a physical meaning (unlike k-means)
o Finds variable number of modes
o Robust to outliers

e Cons
o Output depends on window size
o Window size (bandwidth) selection is not trivial
o Computationally (relatively) expensive (~2s/image)
o Does not scale well with dimension of feature space

Slide credit: Svetlana Lazebnik
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The machine learning framework

y = 1(x)
LN

output  prediction Image
function feature

e Training: given a fraining set of labeled examples {(x1,y ),
, (X YN )}, estimate the prediction function f by m|n|m|zmg
the predlctlon error on the training set

e Testing: apply f to a never before seen test example x and
output the predicted value y = f(x)
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Nearest Neighbor Classifier

e Assign label of nearest training data point to each test
data point

- - o

B C_ompute

R O . Distance
v T~
Training ’ N
images N LY 7/’ Choose k of the

“nearest” records

Source: N. Goyal
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Bias versus variance trade off

Total Error

Optimum Model Complexity

Variance

Error

~ -
Model Complexity
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Curse of dimensionality

e Assume 5000 points uniformly distributed in the unit
hypercube and we want to apply 5-NN. Suppose our
guery point is at the origin.

o In 1-dimension, we must go a distance of 5/5000=0.001 on the
average to capture 5 nearest neighbors.

o In 2 dimensions, we must go /5407 to get a square that contains
0.001 of the volume.

o In d dimensions, we must go(o,om)”"

[
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Fischer's Linear Discriminant Analysis

— bad projection

Slide inspired by N. Vasconcelos
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Bag of features: outline

Extract features

Learn “visual vocabulary”

Quantize features using visual vocabulary
Represent images by frequencies of “visual words”

s o=




Bag of words + pyramids

Locally orderless
representation at
several levels of
spatial resolution

n . ;-~
|’|H\|i|| MH frio b1

M]&”hhmmu\h i ||J|M! |

level O level 1 level 2
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Nalve Bayes

e Classify image using histograms of occurrences on visual

words:
Ly

o« — ikl

PLONERLS Bl

e if only present/absencc ui a wuiu 1o wancii nit0 @account:

e Nalve Bayes classifier assumes that visual words are
conditionall’ i~~~n~nd~nt given object class

I; € {O, 1}

Csurka Bray, Dance & Fan, 2004
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Detecting a person with their parts

* For example, a person can be modelled as having a head, left

arm, right arm, etc.
* All parts can be modelled relative to the global person

detector

M&§928, 2024
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Fine-Grained Recognition

\
J
\
\_ Pembroke Welsh Corgi ) What breed is this dog

Key: Find the right features.
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Points

2D points: X = (x,¥) € R?  or column vector X =

Y
3D points: x = (x,y,2) € R* (often noted X or P)
Homogeneous coordinates: append a 1
why? X = (x,y, 1) % = (29,2, 1)

Ranjay Krishna, Jieyu Zhang Lecture 19 - May 28, 2024



Homogeneous coordinates in 2D

2D Projective SpaceP? = R> — (0,0,0)  (same story in 3D wittP? )

T

T
* heterogeneous - homogeneous [ }=> Y
1

Y
B T /w
* homogeneous - heterogeneous y | = [ y/w }
w

* points differing only by scale are equivalent: (x,y,w)~ A (x,y,w)

% = (z,9,0) = w(z,y,1) = 0%
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Camera matrix decomposition

We can decompose the camera matrix like this:

f 0 ps 1 0 0:0
P=|0 f p, 0 1 0:0
00 1 [[00 1:0

/ \

(homogeneous) transformation (homogeneous) perspective projection
from 2D to 2D, accounting for from 3D to 2D, assuming image plane at
focal length f and origin translation z =1 and shared camera/image origin
f 0 pg
Also written as: P = K[I|O] where K = | 0 f p, |Kiscalledthe
0 0 1 camera intrinsics
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May 28, 2024



Putting it all together

R —RC

We can write everything into a single projection: X "’K[”O] [O 1

The camera matrix now looks like:

P=|0 f p, |[1 | 0] [g _11“:]

001_¢ \

intrinsic parameters (3 x 3): / perspective projection (3 x 4):

extrinsic parameters (4 x 4):

correspond to camera maps 3D to 2D points correspond to camera
internals (image-to-image (camera-to-image externals (world-to-camera
transformation) transformation) transformation)
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General pinhole camera matrix

P = K[th where t = —RC

f 0 pg L T2 T3l
P=|0 f py T4 Ts Te: L2
i 0 O 1 1 L rr Tg Tog : t3 i
intrinsic extrinsic
parameters parameters
1 T T3 Ct
R = Ta Ts T6 t = t2
Ty T8 T9 t3
3D rotation 3D translation
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Estimating optical flow

¢ e °
o o Q )
[(xayat_l) ](xayat)

e Given two subsequent frames, estimate the apparent motion
field u(x,y), v(x,y) between them

e Key assumptions

e Brightness constancy: projection of the same point looks the same in
every frame

¢ Small motion: points do not move very far
e Spatial coherence: points move like their neighbors

Source: Silvio Savarese
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Lucas Kande optical flow

o Optimal (u, v) satisfies Lucas-Kanade equation

Nl SELIy [ [u] _ [ S
/, SLly SELIy || o]~ | S L

AT A Al

When is This Solvable?

e ATA should be invertible
e ATA should not be too small due to noise

— eigenvalues )\1 and A, of ATA should not be too small
e ATA should be well-conditioned

— A,/ A should not be too large (A = larger eigenvalue)

Source: Silvio Savarese

\ Does this remind anything to you?
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Tracking

Feature point tracking

Slide credit: Yonsei Univ.
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What should you take away from this class?

e A broad understanding of computer vision as a field.

e Learning to use common software packages: jupyter, numpy, scipy.
e Converting ideas into mathematical equations.

e Converting mathematical equations into code.

e Learning to communicate ideas and algorithms in formal writing.
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Exam

The (rearranged) pinhole camera

x€

e Pay attention to formulation and definition camera "’?/

center N g — .
\ principal axis
z= principal
point

What is the transformation x = PX?

eg, what is principal point and principal axis?
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Exam

e Pay attention to calculation PCA by SVD
C= lyseyT

e Note that U is (d x d) and orthonormal, and Z? is diagonal.
This is just the eigenvalue decomposition of C

Say What,S eigenvectors and e This means that we can calculate the eigenvectors of C
. . using the eigenvectors of X_
eigenvalues of the matrix A o It follows that

o The eigenvectors of C are the columns of U
o The eigenvalues of C are the diagonal entries of 2 /li2
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Affine transformation = similarity + no restrictions on scaling

Exam

Properties of affine transformations: x! a b c][x
+ arbitrary 6 Degrees Of Freedom y'[=(d e fl|y
* lines map to lines wi [0 0 1w
* parallel lines map to parallel lines
* ratios are preserved
e Pay attention to property and property —>
comparison between methods
e Pay attention to why and when we use or not [ EE—_—-——r—" Lecture 12 - 55 May 2, 2024

use a method

Projective transformation (homography)

o Pay attentlon tO assumptIOnS, When they Properties of projective transformations:

& a b cl|x
* 8 degrees of freedom Yii=|d e flly
hold or not hold * lines map to lines w' g h i|lw
* parallel lines do not necessarily map to parallel lines
* ratios are not necessarily preserved
—
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Good Luck
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