Recitation 6

Vivek Jayaram

Recap on Camera Calibrations

- Want to find a way to relate real world coordinates and image coordinates
- Do that with a matrix that transforms between points
- Let's build intuition from the ground up
- What's a domain where you might have an important and well defined real world coordinate system?

Sports!

Gricket Pitch Measurements Guide

Camera Calibration Underlies all Technology in Sports


```
BBCC OAT O|O ECU
```


Let's Start With a Simple Problem

Let's Start With a Simple Problem

Messi scored a goal from here. We have an image and want to know where he is

Object detector says he's at pixel value $(300,600) \ldots$ that's not useful

Now consider 3D

Now consider 3D

$$
\mathbf{K}=\left[\begin{array}{llc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right] \mathrm{K} \text { is called the } \text { camera intrinsics }
$$

Potential Issues?

Potential Issues?

Real world coordinate system isn't aligned with camera coordinate system!

Potential Issues?

Real world coordinate system isn't aligned with camera coordinate system!

Assumes that the camera and world

 share the same coordinate system$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

What if they are different? How do we align them?

https://www.cs.cmu.edu/~16385/s17/Slides/11.1_Camera_matrix.pdf

What happens to points after alignment?

$$
\mathbf{R}\left(\boldsymbol{X}_{w}-\mathbf{C}\right)
$$

Rotate Translate

What is the meaning of each matrix of the camera matrix decomposition?

The story so far

${ }^{\bullet}$ Model the 3D-to-2D camera projection: $\widetilde{\mathbf{x}}^{\mathrm{I}} \sim \mathbf{P} \widetilde{\mathbf{X}}^{\mathrm{W}}$ with $\mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}]$

Calibrate cameras (get $\mathbf{K}[\mathbf{R} \mid \mathbf{t}])$ from N 2D-3D correspondences ($\widetilde{\mathbf{x}}_{i}^{I}, \widetilde{\mathbf{X}}_{i}^{W}$)

- cast constraints (2D-3D correspondences) as a linear system $\mathbf{A} \mathbf{p}=\mathbf{0}$
- total least squares $\left(\operatorname{argmin}_{\mathbf{x}}\|\mathbf{A} \mathbf{p}\|^{2}\right.$ s.t. $\|\mathbf{p}\|^{2}=1$) gives the best approximation
- closed-form solution via the SVD of A (its last right singular vector) \& Cholesky
- refine by minimizing the 2 D reprojection error $\sum_{i}\left\|\operatorname{proj}\left(\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \mathbf{X}_{\mathrm{i}} ; \boldsymbol{\kappa}\right)-\boldsymbol{x}_{i}\right\|^{2}$

Quiz

- Why do we project real world 3D points to image points and not the other way?
- Does a point in an image defined a unique 3D point? What does it define?
- What additional information could you use to know the unique 3D point corresponding to an image?

In general, we don't have 3D measurements...
... but more than 1 image!
What are the geometric constraints governing multiple views of the same scene?
\square 2D correspondences!

Get 3D structure \& motion from 2D correspondences

Correspondence estimation

Feature detection

Feature matching

Why do we care about 3D reconstruction?
-Mapping, Localization, Navigation for Robots, Drones, Cars (cf. also visual SLAM)

- AR (e.g., Hololens) and VR (e.g., Oculus)
- Movies (special FX), Digital Preservation, "Photo Tourism",
- Software: COLMAP (SfM), orb-slam2 / g2o / gtsam (SLAM)
- Hot topic in industry \& academia (top category at CVPR)

Multi-view geometry problems

Recovering structure:

Multi-view geometry problems

Why Are Multiple Cameras Important

 https://twitter.com/overtime/status/1610436277069041664
What will we learn today?

Triangulation

Epipolar geometry

Stereo

Structure-from-Motion (SfM)

What will we learn today?

Triangulation

Epipolar geometry

Stereo

Structure-from-Motion (SfM)

Triangulation

Given projections of a 3D point in two or more images (with known camera matriges. find ine coordinates of the point

Triangulation

Given projections of a 3D point in two or more images (with known camera matrices), find the coordinates of the point

Triangulation

W want to intersect the two visual rays corresponding to \boldsymbol{x} and \boldsymbol{x}^{\prime}
But do they always intersect exactly?
No! Noise in 2D matching or numerical errors

Triangulation: linear approach

Find the shortest segment connecting the two viewing rays
Let \mathbf{X} be the midpoint of that segment: solve for \mathbf{X} !

As for calibration: constraints $\left(\mathbf{x} \sim \mathbf{P X}, \mathbf{x}^{\prime} \sim \mathbf{P}^{\prime} \mathbf{X}\right) \rightarrow \mathbf{A X}=\mathbf{0} \rightarrow$ SVD of \mathbf{A}

Triangulation: non-linear approach

Find \boldsymbol{X} that minimizes the 2D reprojection errors

Triangulation: non-linear approach

Find \boldsymbol{X} that minimizes the 2D reprojection errors

Applications of Triangulation

What will we learn today?

Triangulation

Epipolar geometry

Stereo

Structure-from-Motion (SfM)

Epipolar geometry setup

- Suppose we have two cameras with centers $\boldsymbol{O}, \boldsymbol{0}^{\prime}$
- The baseline is the line connecting the origins

Epipolar geometry setup

- Epipoles $\boldsymbol{e}, \boldsymbol{e}^{\prime}$ are where the baseline intersects the image planes
- Equivalently: epipoles are projections of the other camera in each view

Epipolar geometry setup

Epipolar geometry setup

- Consider a point X, which projects to x and x^{\prime}

Epipolar geometry setup

Epipolar geometry setup

- The plane formed by $\boldsymbol{X}, \boldsymbol{O}$, and \boldsymbol{O}^{\prime} is called an epipolar plane

Epipolar geometry setup

- Epipolar lines connect the epipoles to the projections of X
- Equivalently, they are intersections of the epipolar plane with the imace planec come in nairs (for x and x')

Epipolar geometry setup: Summary

Epipolar constraint

- Suppose we observe a single point x in one image

Epipolar geometry setup

Epipolar constraint

- Where can we find the x^{\prime} corresponding to x in the other image?

Epipolar constraint

- Where can we find the x^{\prime} corresponding to x in the other image?
- Along the epipolar line corresponding to x (projection of visual ray

Epipolar geometry setup

Epipolar constraint

- Similarly, all points in the left image corresponding to x^{\prime} have to lie along the epipolar line corresponding to x^{\prime}

Epipolar constraint

- Similarly, all points in the left image corresponding to x^{\prime} have to lie along the epipolar line corresponding to x^{\prime}

Epipolar constraint

- Potential matches for x have to lie on the matching epipolar line l^{\prime} and viceversa \rightarrow need only to search along 1D epipolar line for matching!

Epipolar constraint

- Whenever two points x and x^{\prime} lie on matching epipolar lines l and l^{\prime}, the visual rays corresponding to them meet in space, i.e., x and x^{\prime} could be projections of the same 3D point \boldsymbol{X}

Epipolar constraint

- Caveat: if x and x^{\prime} satisfy the epipolar constraint, this doesn't mean they have to be projections of the same 3D point

Epipolar constraint: Example

Epipolar Geometry \& Deep Learning

Multi-Frame Self-Supervised Depth Estimation with Transformers (CVPR 2022) Vitor Guizilini, Rares Ambrus, Dian Chen. Sergey Zakharov, Adrien Gaidon Ranjay Krishna, Jieyu Zhang Recitation 6 -

Epipolar Geometry \& Deep Learning

Figure 1. Our DepthFormer architecture achieves state-of-the-art multi-frame self-supervised monocular depth estimation by improving feature matching across images during cost volume generation.

Multi-Frame Self-Supervised Depth Estimation with Transformers (CVPR 2022)

The Epipolar Constraint as an Equation

$\boldsymbol{x}^{\prime T} \boldsymbol{F} \boldsymbol{x}=0$ where $\boldsymbol{F}=\boldsymbol{K}^{\prime-T} \boldsymbol{E} \boldsymbol{K}^{-1}$ is called the Fundamental Matrix and $E=[t]_{\times} R$ is the Essential Matrix ${ }^{[2]}$ $\left(x^{\prime}, y^{\prime}, 1\right)\left[\begin{array}{lll}f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33}\end{array}\right]\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)=0$
[1] Faugeras et al. (1992). Hartlev (1992)

Estimating the fundamental matrix - teaser

Estimating the fundamental matrix - teaser

- Given: 2D correspondences $\boldsymbol{x}=(x, y, 1)^{T}$ and $x^{\prime}=\left(x^{\prime}, y^{\prime}, 1\right)^{T}$
- Constraints: $\boldsymbol{x}^{\mathbf{T}} \boldsymbol{F} \boldsymbol{x}=0$ (1 per correspondence, how many needed?)
- Boils down to another homogeneous linear equation $\boldsymbol{A X}=\mathbf{0}$
- Recast once more into total least squares (Sz.A.2.1) due to noise
- SVD gives the solution as usual + enables enforcing rank 2 constraint by replacing smallest singular value with 0
- This "algebraic" algorithm is called "[normalized] 8-point algorithm" (R. Hartley. In defense of the eight-point algorithm. TPAMI 1997)
- As in calibration and homography fitting: non-linear "geometric" optimization (of reprojected distances) is more precise
- Can be made robust to outliers via the RANSAC algorithm

From epipolar geometry to camera calibration

Estimating the fundamental matrix is known as "weak calibration" If we know the calibration matrices ($\mathrm{K}, \mathrm{K}^{\prime}$) of the two cameras, we can estimate the essential matrix: $\boldsymbol{E}=\boldsymbol{K}^{\prime T} \boldsymbol{F} \boldsymbol{K}$

The essential matrix gives us the relative rotation and translation between the cameras, or their extrinsic parameters $\left(\mathbf{E}=[\boldsymbol{t}]_{\times} \boldsymbol{R}\right)$

Alternatively, if the calibration matrices are known (or in practice, if good initial guesses of the intrinsics are available), the five-point algorithm can be used to estimate relative camera pose

What will we learn today?

Triangulation

Epipolar geometry

Stereo

Structure-from-Motion (SfM)

Example configuration: Converging cameras

Example configuration: Converging cameras

- Epipoles are finite, may be visible in the image

Example configuration: Motion parallel to image plane

Where are the epipoles?
What do the epipolar lines look like?

Example configuration: Motion parallel to image plane

Epipoles infinitely far away!
Epipolar lines parallel: "scan lines"

Example configuration: Motion perpendicular to image plane

- Epipole is the "focus of expansion" and coincides with the principal point of the camera
- Epipolar lines go out from principal point

History: Stereograms

to get a seı

Stereograms: Invented by Sir Charles Wheatstone, 1838
Ranjay Krishna, Jieyu Zhang Recitation 6 - hitosi/lenwikiedia MAaty 3, 2024

Depth from convergence

Stereo Matching for Depth Estimation

Given: stereo pair (assumed calibrated)
Wanted: depp

Basic stereo matching algorithm

For each pixel in the first image
Find corresponding epipolar line in the right image: same row!
Examine all pixels on the epipolar line and pick the best match
Triangulate the matches to get depth information

St--. -...a- n-.........................

What will we learn today?

Triangulation

Epipolar geometry

Stereo

Structure-from-Motion (SfM)

Structure-from-Motion
 Given many images, how can we

a) figure out where they were all taken from?
b) build a 3D model of the scene?

N. Snavely, S. Seitz, and R. Szeliski, Photo tourism: Exploring photo collections in 3D, SIGGRAPH 2006. http://phototour.cs.washington.edu/

Geometry of more than two views?

2 views: governed by the 3x3 Fundamental Matrix (how to go from one point in an image to the epipolar line in the 2nd image)

3 views: governed by the $3 \times 3 \times 3$ Trifocal Tensor
4 views: governed by the $3 \times 3 \times 3 \times 3$ Quadrifocal Tensor
After this it starts to get complicated...
\square explicitly solve for camera poses and scene geometry

Large-scale structure_from-motion

Recall: Calibration

Camera 1
$\boldsymbol{K}_{1}, \boldsymbol{R}_{1}, \boldsymbol{t}_{1}$

$$
\begin{gathered}
\text { Camera } 3 \\
\boldsymbol{K}_{3}, \boldsymbol{R}_{3}, \boldsymbol{t}
\end{gathered}
$$

Recall: Triangulation 6 Multi-view Stereo

Structure-from-Motion

Structure-from-Motion

Reconstruction (side)

- Input: images with 2D points $x_{i j}$ in correspondence
- Output (solved simultaneously now!)
- structure: 3D location X_{j} for each point $x_{i j}$
- motion: camera parameters $\boldsymbol{R}_{i}, \boldsymbol{t}_{i}$ \& possibly \boldsymbol{K}_{i}
- Initialize motion from two images using the fundamental matrix
- Initialize structure by triangulation
- For each additional view:
- Determine projection matrix of new camera using all the known 3D points that are visible in its image - calibration

- Initialize motion from two images using the fundamental matrix
- Initialize structure by triangulation
- For each additional view:
- Determine projection matrix of new camera using all the known 3D points that are visible in its image - calibration
- Refine and extend structure: compute newly visible 3D points, re-optimize existing points that are also seen by this camera triangulation

- Initialize motion from two images using the fundamental matrix
- Initialize structure by triangulation
- For each additional view:
- Determine projection matrix of new camera using all the known 3D points that are visible in its image - calibration
- Refine and extend structure: compute newly visible 3D points, re-optimize existing points that are also seen by this camera triangulation

- Refine all cameras \& points jointly: bundle adjustment

Bundle Adjustment

©on-linear method for refining structure $\left(\boldsymbol{X}_{j}\right)$ and motion $\left(\boldsymbol{P}_{i}\right)$ Minimize reprojection error (with lots of bells and whistles):

$$
\sum_{\substack{i=1 \\ \text { visibility flag: is } \\ \text { point } j \text { visible in } \\ \text { view } i \text { ? }}}^{m} W_{i j} d\left(x_{i j}-P_{i}\right.
$$

Incremental SfM in Practice

- Pick a pair of images with lots of inliers (and good EXIF data)
- Initialize intrinsic parameters (focal length, principal point) from EXIF
- Estimate extrinsic parameters (\boldsymbol{R} and \boldsymbol{t}) using five-point algorithm
- Use triangulation to initialize model points
- While remaining images exist
- Find an image with many feature matches with images in the model
- Run RANSAC on feature matches to register new image to model
- Triangulate new points
- Perform bundle adjustment to re-optimize everything
- Optionally, align with GPS from EXIF data or ground control points

Incrementalatrunturn frommmntinn

CคıィィィD

Sparse model of central Rome using 21 K photos produced by COLMAP＇s SfM pipeline．

Dense models of several landmarks produced by COLMAP＇s MVS pipeline．

SfM in the age of Deep Learning

(a) Non-Local feature aggregation on epipolar lines

(b) Performance and efficiency comparison with other MVS approaches

Epipolar Transformer

ET-MVSNet: When Epipolar Constraint Meets Non-local Operators in Multi-View Stereo (ICCV'23)
See also MVSFormer: Multi-View Stereo by Learning Robust Image Features and Temperature-based Depth Ranjay Krishna, Jieyu Zhang Recitation 6 May 3, 2024

Supervising the new with the old: learning SFM from SFM

Maria Klodt ${ }^{[0000-0003-3015-9584]}$ and Andrea Vedaldi ${ }^{[0000-0003-1374-2858]}$

Visual Geometry Group, University of Oxford \{klodt, vedaldi\}@robots.ox.ac.uk

Abstract

Recent work has demonstrated that it is possible to learn deep neural networks for monocular depth and ego-motion estimation from unlabelled video sequences, an interesting theoretical development with numerous advantages in applications. In this paper, we propose a number of improvements to these approaches. First, since such selfsupervised approaches are based on the brightness constancy assumption, which is valid only for a subset of pixels, we propose a probabilistic learning formulation where the network predicts distributions over variables rather than specific values. As these distributions are conditioned on the observed image, the network can learn which scene and object types are likely to violate the model assumptions, resulting in more robust learning. We also propose to build on dozens of years of experience in developing handcrafted structure-from-motion (SFM) algorithms. We do so by using an off-the-shelf SFM system to generate a supervisory signal for the deep neural network. While this signal is also noisy, we show that our probabilistic formulation can learn and account for the defects of SFM, helping to integrate different sources of information and boosting the overall performance of the network.

It

(b) proposed network architecture:
the depth and pose-uncertainty networks are supervised by traditional SfM.

What did we learn today?

Triangulation

from calibrated cameras and 2D correspondences to 3D points
Epipolar geometry
Epipolar constraint,

$$
\boldsymbol{x}^{\prime T} \boldsymbol{F} \boldsymbol{x}=0
$$

Essential \& Fundamental matrices
Stereo (fronto-parallel special case)

Structure-from-Motion (SfM) (many images / video)

Note: this is just an introduction \square for more, take CS231a or get into HZ

Wrapping up Geometric Vision

Homogeneous Coordinates \& Projective Space
2D \& 3D Transforms as Matrix Multiplication
Pinhole Camera Model $P=K[R \mid t]$
Calibration from known 3D-to-2D
correspondences

