Keypoint Application: Panorama

Xiaojuan Wang

- Quick review of keypoints and RANSAC
- Panorama formulation
- Matching corresponding keypoints
- Stitching images together with affine transformation

- Quick review of keypoints and RANSAC
- Panorama formulation
- Matching corresponding keypoints
- Stitching images together with affine transformation

What are keypoints?

Reliable, unique points in images which can be used to find corresponding regions in different images of the same scene

Finding keypoints

Harris Corner Detector Use gradient Eigenvalues to find corners at a certain scale Harris-Laplacian Find keypoints using Harris and scale using Laplacian filter **DoG** Use DoG filters to find keypoints across space and scale

Describing keypoints

SIFT Descriptor Keypoints as histogram of normalize gradient orientation **HoG** Region (or image) as histograms of local gradients

- Repeat n times:
 - Sample and form hypothesis
 - Find number of inliers
 - If max_inliers, save model
- Recompute model on inliers

- Repeat n times:
 - Sample and form hypothesis
 - Find number of inliers
 - If max_inliers, save model
- Recompute model on inliers

- Repeat n times:
 - Sample and form hypothesis
 - Find number of inliers
 - If max_inliers, save model
- Recompute model on inliers

- Repeat n times:
 - Sample and form hypothesis
 - Find number of inliers
 - If max_inliers, save model
- Recompute model on inliers

- Repeat n times:
 - Sample and form hypothesis
 - Find number of inliers
 - If max_inliers, save model
- Recompute model on inliers

- Quick review of keypoints and RANSAC
- Panorama formulation
- Matching corresponding keypoints
- Stitching images together with affine transformation

Panorama

Panorama

Key insight: leverage corresponding keypoints

Problem 1: how to match keypoints?

Problem 2: how to fit images?

- Quick review of keypoints and RANSAC
- Panorama formulation
- Matching corresponding keypoints
- Stitching images together with affine transformation

How to know if keypoints are "the same"?

Use keypoint descriptors!

Matching algorithm

- For every keypoint in image_1:
 - Compute the euclidean distance from every keypoint in image_2
 - Sort keypoints by distance
 - If the first keypoint's distance is significantly smaller than the second keypoint's, it's a match!
- Return all eligible matches for keypoints in image_1

Try this with one for-loop!

Matching result

- Quick review of keypoints and RANSAC
- Panorama formulation
- Matching corresponding keypoints
- Stitching images together with affine transformation

Easy case: pictures taken from same angle

Hard case: pictures taken from diff angles

Find transformation between matches

Given:

Find transformation matrix H such that:

$$p2 \cdot H = p1$$

What if we have noisy matches?

Refine transformation matrix with RANSAC!

Pick subset

Fit affine matrix and find inliers

Recompute matrix with all inliers and stitch!

- Quick review of keypoints and RANSAC
- Panorama formulation
- Matching corresponding keypoints
- Stitching images together with affine transformation