CSE455: Computer Vision

Geometric Primitives & Transformations

Fatemeh Ghezloo

Reference: Szeliski 2.1

What is the most popular topic at CVPR?

	Publication	<u>h5-index</u>	<u>h5-median</u>
1.	Nature	467	707
2.	The New England Journal of Medicine	<u>439</u>	876
3.	Science	<u>424</u>	665
4.	IEEE/CVF Conference on Computer Vision and Pattern Recognition	<u>422</u>	681
5.	The Lancet	<u>368</u>	688
6.	Nature Communications	<u>349</u>	456
7.	Advanced Materials	<u>326</u>	415
8.	Cell	<u>316</u>	503
9.	Neural Information Processing Systems	<u>309</u>	503
10.	International Conference on Learning Representations	<u>303</u>	563

h5-index: largest number h such that h articles published in the last 5 years have at least h citations each.

https://scholar.google.com/citations?view_op=top_venues&hl=en

CVPR 2023 by the Numbers

AUTHORS

1,090 246

889 185

813 166

688 153

673 139

631 118

553 126

524 113

485 92

450 89

431 91

420 53

373 83

359 69

349 71

344 54

274 61

155

141 23

129 30

107 24 80 14

72 12

65 14

55 12

PAPERS

Selecting a category below changes the paper list on the right.

SELECT \downarrow Top 10 overall by number of authors

- 1 3D from multi-view and sensors
- 2 Image and video synthesis and generation
- 3 Humans: Face, body, pose, gesture, movement
- 4 Transfer, meta, low-shot, continual, or long-tail learning
- 5 Recognition: Categorization, detection, retrieval
- 6 Vision, language, and reasoning
- 7 Low-level vision
- 8 Segmentation, grouping and shape analysis
- 9 Deep learning architectures and techniques
- 10 Multi-modal learning
- 11 **3D from single images**
- 12 Medical and biological vision, cell microscopy
- 13 Video: Action and event understanding
- 14 Autonomous driving
- 15 Self-supervised or unsupervised representation learning
- 16 Datasets and evaluation
- 17 Scene analysis and understanding
- 18 Adversarial attack and defense
- 19 Efficient and scalable vision
- 20 Computational imaging
- 21 Video: Low-level analysis, motion, and tracking
- 22 Vision applications and systems
- 23 Vision + graphics
- 24 Robotics
- 25 Transparency, fairness, accountability, privacy, ethics in vision
- 26 Explainable computer vision
- 27 Embodied vision: Active agents, simulation
- 28 Document analysis and understanding
- 29 Machine learning (other than deep learning)
- 30 Physics-based vision and shape-from-X

Select • All **PICK INSTITUTIONS** Award Candidate (AII) ▼ Highlight Paper **# AUTHORS # PAPERS** 1,000 800 600 400 200 0 3D from multi-view and sensors Award Candidate Highlight Paper NeuMap: Neural Coordinate Mapping by Auto-Transdecoder for Camera 33 Localization **Object Pose Estimation with Statistical Guarantees: Conformal Keypoint** 76 **Detection and Geometric Uncertainty Propagation** NeuralUDF: Learning Unsigned Distance Fields for Multi-view Reconstruction of 120 Surfaces with Arbitrary Topologies NEF: Neural Edge Fields for 3D Parametric Curve Reconstruction from 143 Multi-view Images Looking Through the Glass: Neural Surface Reconstruction Against High 330 **Specular Reflections** Multi-View Azimuth Stereo via Tangent Space Consistency 357 https://cvpr2023.thecvf.com/Conferences/2023/AcceptedPapers

Why do we care about Geometry?

- Self-driving cars: navigation, collision avoidance
- Robots: navigation, manipulation
- Graphics & AR/VR: augment or generate images
- Photogrammetry (architecture, surveys)
- Pattern Recognition (web, medical imaging, etc)

What will we learn today?

- Why Geometric Vision Matters
- Geometric Primitives in 2D & 3D
- 2D & 3D Transformations

General Advice / Observations

- Fundamentals: need to (eventually) feel easy
- Try to do the math in parallel live in class!
- If not grokking this: practice later, ask on Ed, OH
- Lots of good (hard?) exercises in Szeliski's book

What will we learn today?

Why Geometric Vision Matters

Geometric Primitives in 2D & 3D

2D & 3D Transformations

Images are 2D projections of the 3D world

Simplified Image Formation

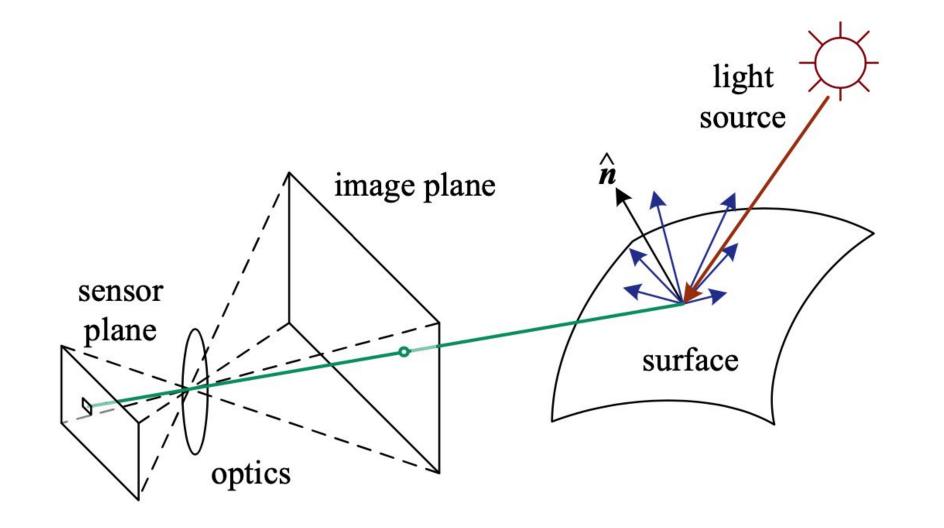
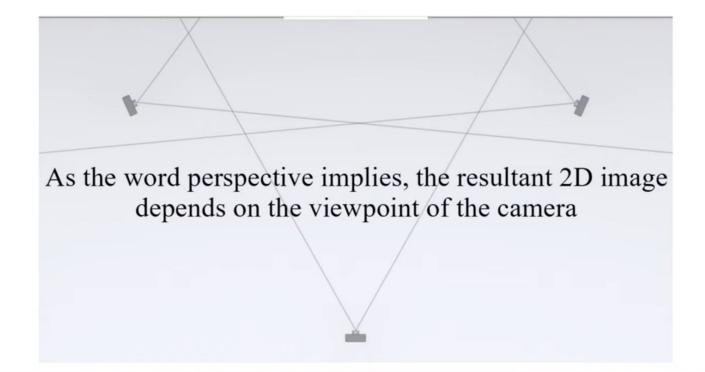


Figure: R. Szeliski

Perspective Projection



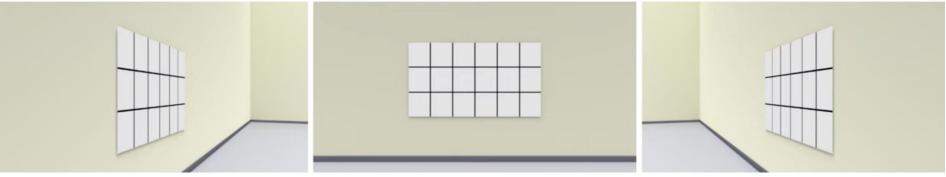


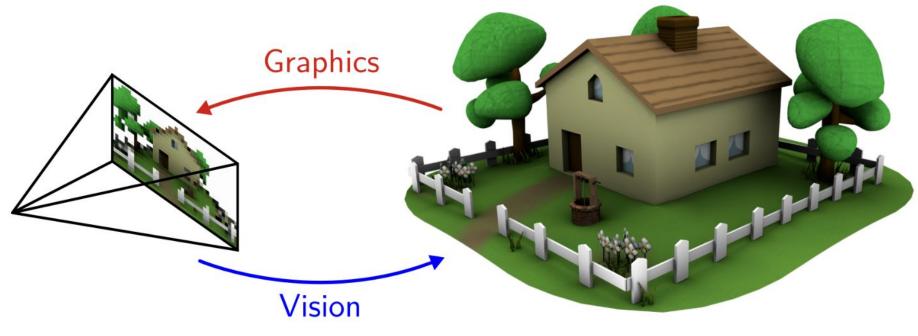
Figure: https://www.youtube.com/@huseyin_ozde...

Can we understand the 3D world from 2D images?

CV is an **ill-posed** inverse problem

2D Image

3D Scene



Pi	xel	Μ	atr	rix
217	191	252	255	239
102	80	200	146	138
159	94	91	121	138
179	106	136	85	41
115	129	83	112	67
94	114	105	111	89

Objects Material Shape/Geometry Motion Semantics 3D Pose

Slide credit: Andreas Geiger

What will we learn today?

Why Geometric Vision Matters

Geometric Primitives in 2D & 3D

2D & 3D Transformations

Points in Cartesian and Homogeneous Coordinates

2D points:
$$\mathbf{x} = (x, y) \in \mathcal{R}^2$$
 or column vector $\mathbf{x} = \begin{vmatrix} x \\ y \end{vmatrix}$

3D points: $\mathbf{x} = (x, y, z) \in \mathcal{R}^3$ (often noted X or P)

Homogeneous coordinates: append a 1

$$\mathbf{\bar{x}} = (x, y, 1)$$
 $\mathbf{\bar{x}} = (x, y, z, 1)$

Why?

Homogeneous coordinates in 2D

2D Projective Space: $\mathcal{P}^2 = \mathcal{R}^3 - (0, 0, 0)$ (same story in 3D with \mathcal{P}^3)

heterogeneous → homogeneous

$$\left[\begin{array}{c} x\\ y \end{array}\right] \Rightarrow \left[\begin{array}{c} x\\ y\\ 1 \end{array}\right]$$

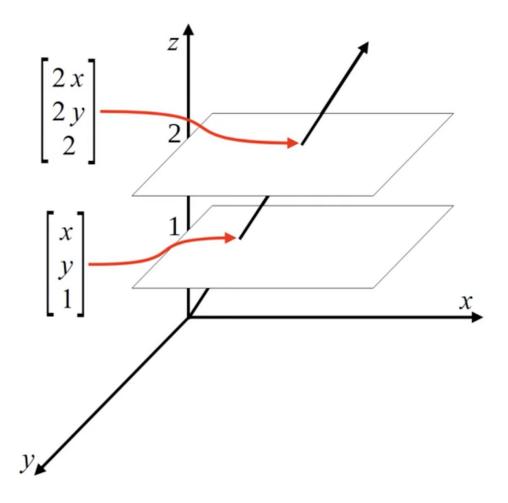
• homogeneous \rightarrow heterogeneous

$$\left[\begin{array}{c} x\\y\\w\end{array}\right] \Rightarrow \left[\begin{array}{c} x/w\\y/w\end{array}\right]$$

• points differing only by scale are *equivalent*: $(x, y, w) \sim \lambda(x, y, w)$

$$\tilde{\mathbf{x}} = (\tilde{x}, \tilde{y}, \tilde{w}) = \tilde{w}(x, y, 1) = \tilde{w}\bar{\mathbf{x}}$$

Homogeneous coordinates in 2D



In homogeneous coordinates, a point and its scaled versions are same

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = w \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} wx \\ wy \\ w \end{bmatrix} \quad w \neq 0$$

Figure: https://www.youtube.com/@huseyin_ozde...

Everything is easier in Projective Space

2D Lines: Representation: l = (a, b, c)Equation: ax + by + c = 0In homogeneous coordinates: $\bar{x}^T l = 0$

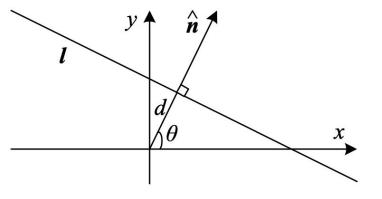
General idea: homogenous coordinates unlock the full power of linear algebra!

Everything is easier in Projective Space

2D Lines:

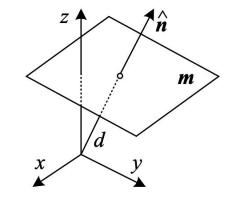
$$\mathbf{\tilde{x}}^{\mathrm{T}}\mathbf{l} = \mathbf{0}, \forall \mathbf{\tilde{x}} = (x, y, w) \in P^2$$

 $\mathbf{l} = (\hat{n}_x, \hat{n}_y, d) = (\mathbf{\hat{n}}, d) \text{ with } \|\mathbf{\hat{n}}\| = 1$



3D planes: same! $\tilde{x}^{T}m = 0, \forall \tilde{x} = (x, y, z, w) \in P^{3}$

$$\mathbf{m} = (\hat{n}_x, \hat{n}_y, \hat{n}_z, d) = (\mathbf{\hat{n}}, d) \text{ with } \|\mathbf{\hat{n}}\| = 1$$



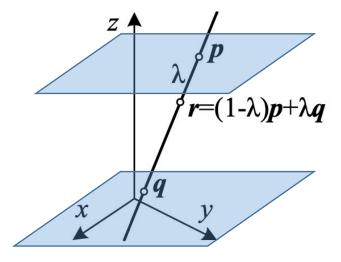
Lines in 3D

Two-point parametrization:

 $\mathbf{r} = (1 - \lambda)\mathbf{p} + \lambda\mathbf{q} \qquad \tilde{\mathbf{r}} = \mu\tilde{\mathbf{p}} + \lambda\tilde{\mathbf{q}}$

Two-plane parametrization:

coordinates $(x_0, y_0) \& (x_1, y_1)$ of intersection with planes at z = 0, 1 (or other planes)



Cross-product quick reminder $\mathbf{a} \times \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta) \mathbf{n}$ $\mathbf{b}_{\theta} |\mathbf{a} \times \mathbf{b}|$ a $\mathbf{a} imes \mathbf{b} = [\mathbf{a}]_ imes \mathbf{b} = egin{bmatrix} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{bmatrix} egin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix}$

Benefits of Homogeneous Coordinates

- Line Point duality:
 - line between two 2D points: $~~ {f ilde l} = {f ilde {f x}}_1 imes {f ilde {f x}}_2$
 - intersection of two 2D lines: $\mathbf{\tilde{x}} = \mathbf{\tilde{l}}_1 \times \mathbf{\tilde{l}}_2$
- Representation of Infinity:
 - points at infinity: (x, y, 0); line at infinity: (0,0,1)
- Parallel & vertical lines are easy (take-home: intersect //)
- Makes 2D & 3D transformations linear!

Questions?

What will we learn today?

Why Geometric Vision Matters

Geometric Primitives in 2D & 3D

2D & 3D Transformations

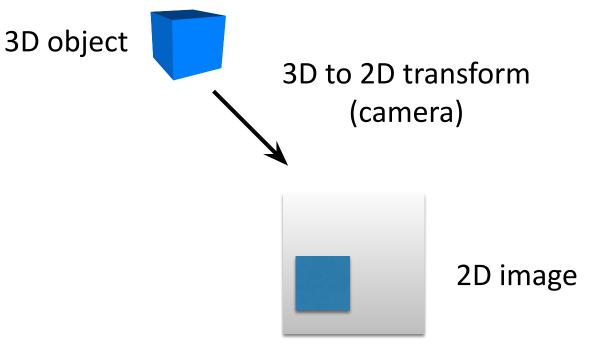
The camera as a coordinate transformation

from:

the 3D world

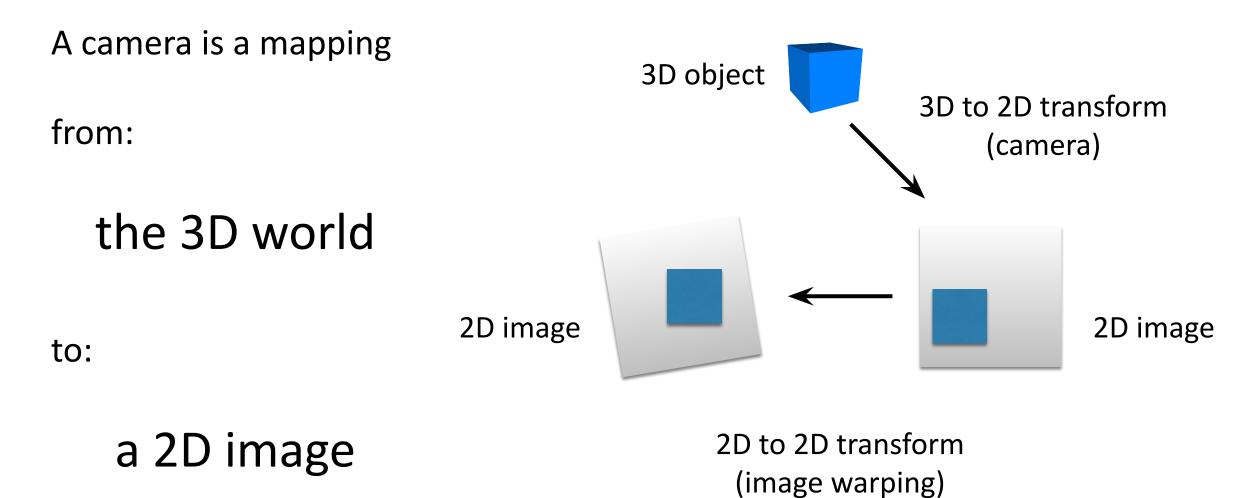
to:

a 2D image



Source: K. Kitani

The camera as a coordinate transformation



Source: K. Kitani

Cameras and objects can move!

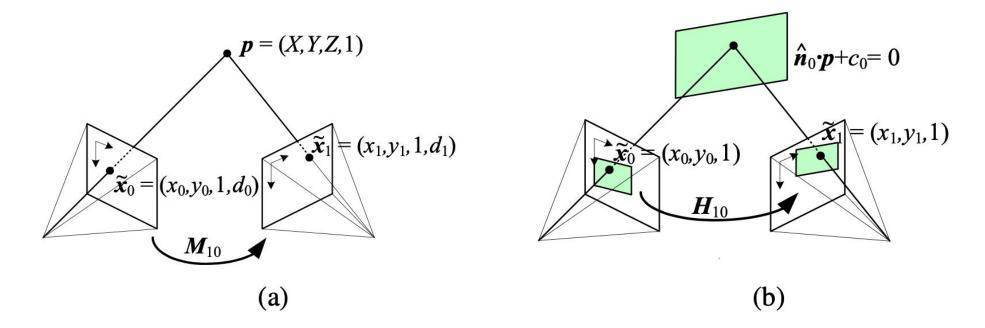


Figure 2.12 A point is projected into two images: (a) relationship between the 3D point coordinate (X, Y, Z, 1) and the 2D projected point (x, y, 1, d); (b) planar homography induced by points all lying on a common plane $\mathbf{\hat{n}}_0 \cdot \mathbf{p} + c_0 = 0$.

2D Transformations Zoo

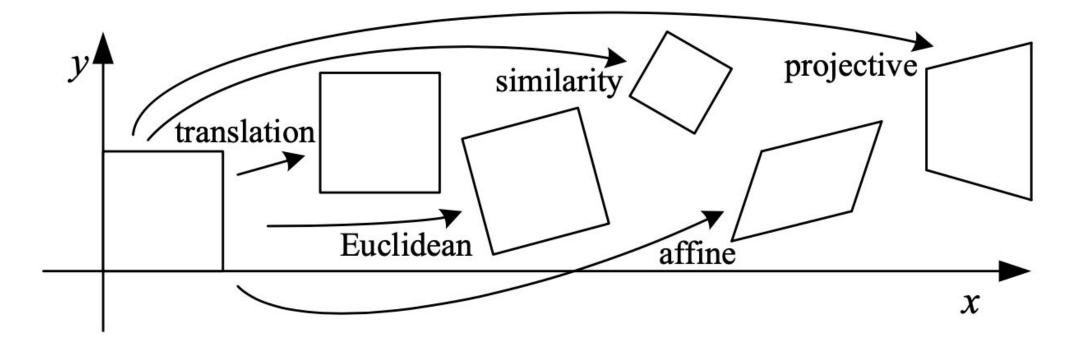
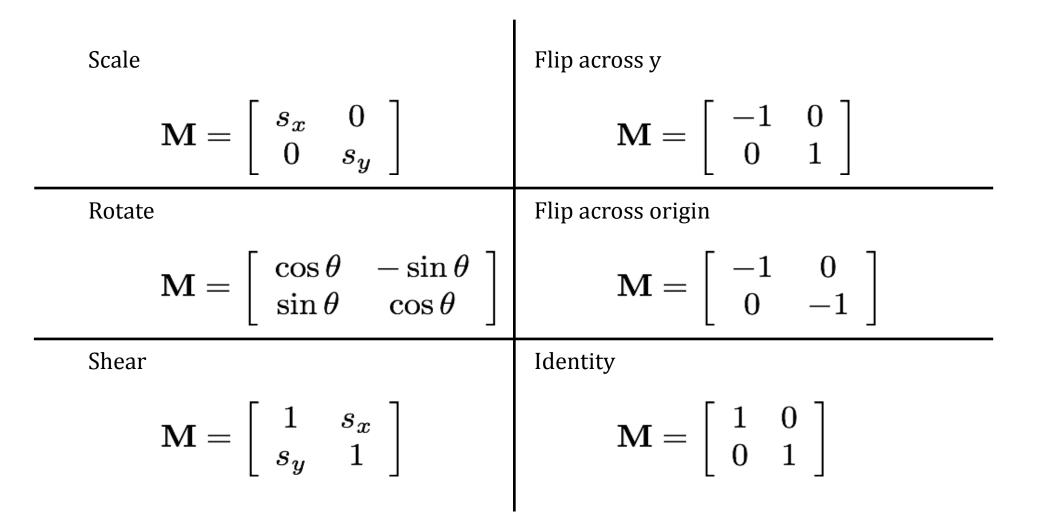
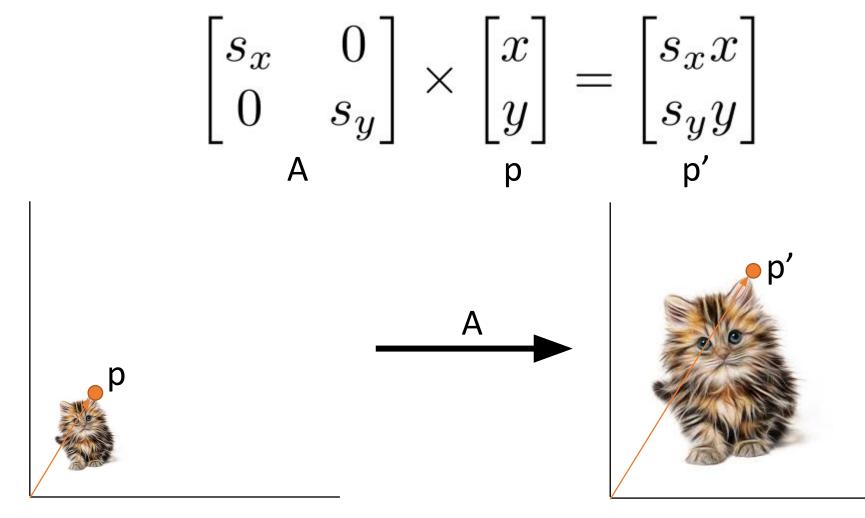


Figure: R. Szeliski

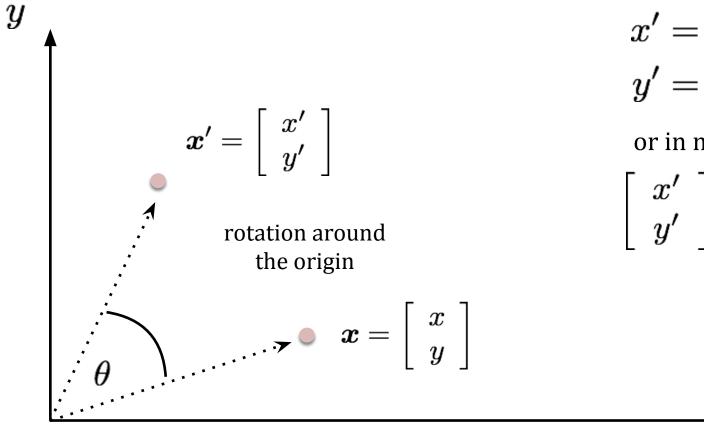
Transformation = Matrix Multiplication



Scaling



Rotation



$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

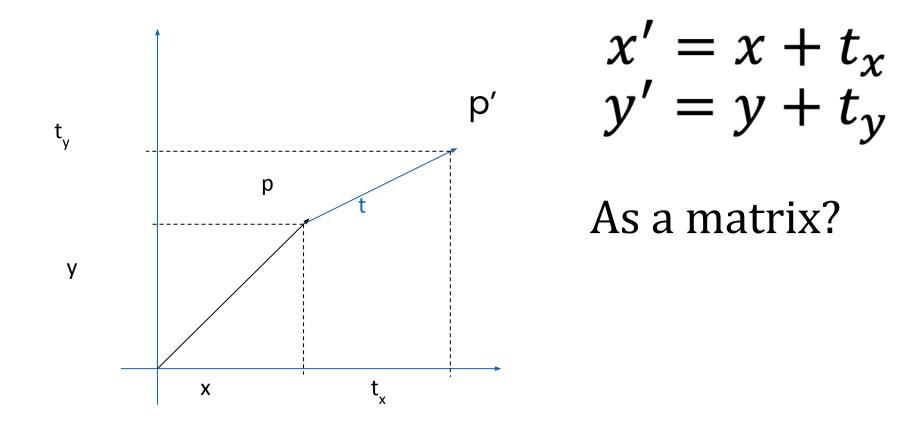
x

or in matrix form:

$$\left[\begin{array}{c} x'\\y'\end{array}\right] = \left[\begin{array}{cc}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{array}\right] \left[\begin{array}{c} x\\y\end{array}\right]$$

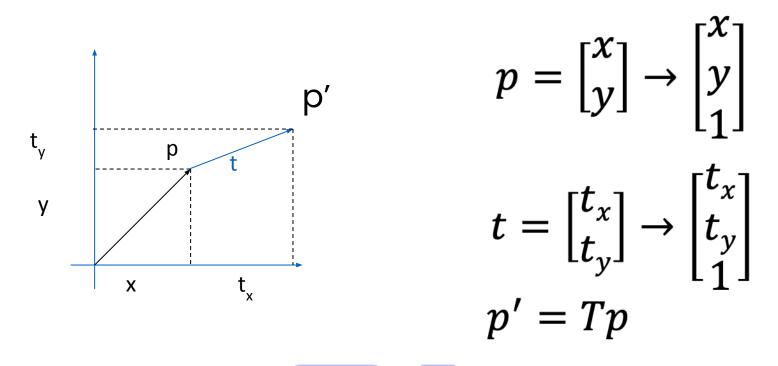
Slide: K. Kitani

Translation



Slide: JC. Niebles

Translation with homogeneous coordinates



$$p' \rightarrow \begin{bmatrix} x + tx \\ y + ty \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} I & t \\ 0 & 1 \end{bmatrix} p = Tp$$

Slide: JC. Niebles

2D Transformations with homogeneous coordinates

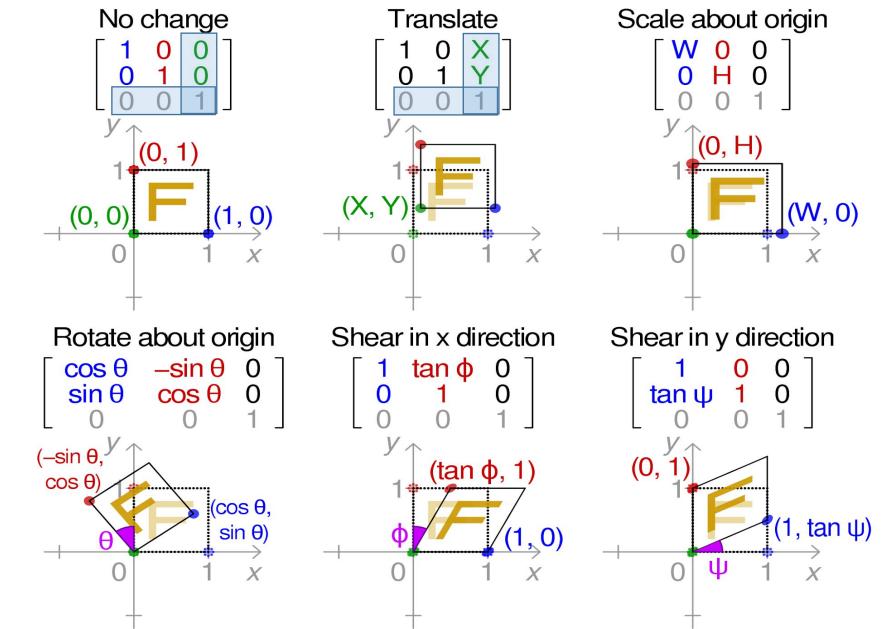


Figure: Wikipedia

Questions?

2D Transformations Zoo

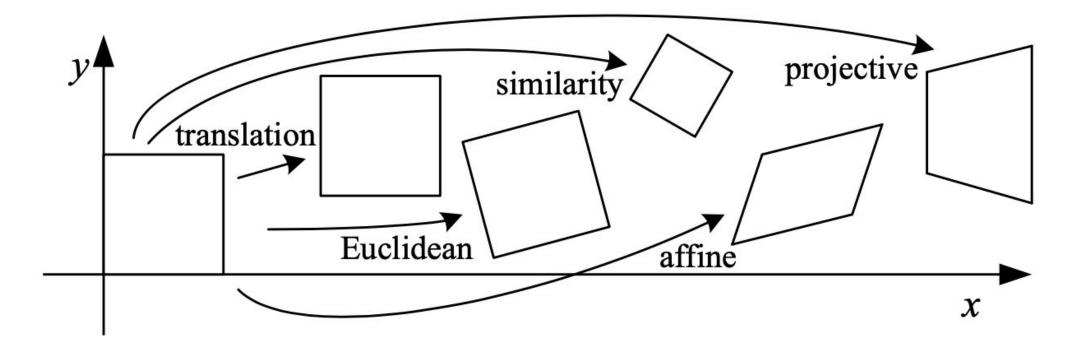


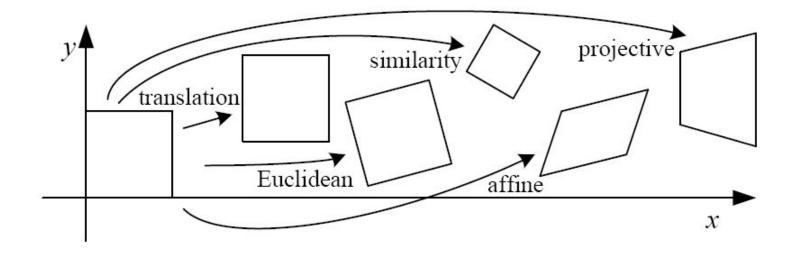
Figure: R. Szeliski

Euclidean / Rigid Transformation

Euclidean (rigid): rotation + translation

$$egin{bmatrix} \cos heta & -\sin heta & t_x \ \sin heta & \cos heta & t_y \ 0 & 0 & 1 \end{bmatrix}$$

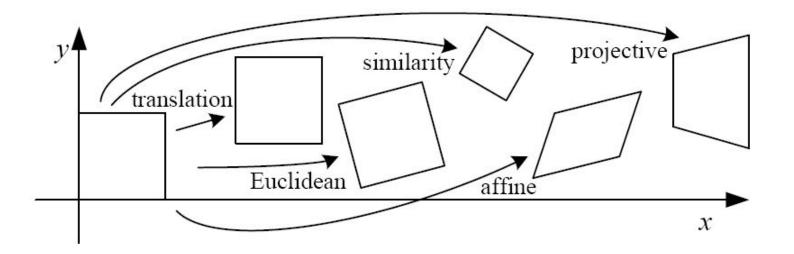
How many degrees of freedom?



Similarity Transformation

Similarity: Scaling + rotation + translation

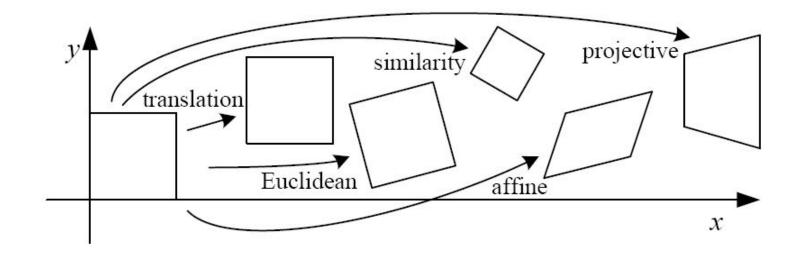
$$\begin{bmatrix} a & -b & t_x \\ b & a & t_y \\ 0 & 0 & 1 \end{bmatrix}$$



Similarity Transformation

Similarity: Scaling + rotation + translation
$$\begin{bmatrix} a & -b & t_x \\ b & a & t_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \alpha \cos\theta & -\alpha \sin\theta & b_0 \\ \alpha \sin\theta & \alpha \cos\theta & b_1 \\ 0 & 0 & 1 \end{bmatrix}$$
How many degrees of freedom?

IICCUUIII Ъ



Affine transformations are combinations of

• Arbitrary (4-DOF) linear transformations + translations

$$\begin{bmatrix} x & ' \\ y & ' \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$

$$\begin{bmatrix} x & ' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \\ A_{10} & A_{11} \\ 0 & 0 \end{bmatrix}$$
Cartesian coordinates Homogeneous coordinates

Source: K. Kitani

 b_1

Affine transformations are combinations of

• Arbitrary (4-DOF) linear transformations + translations

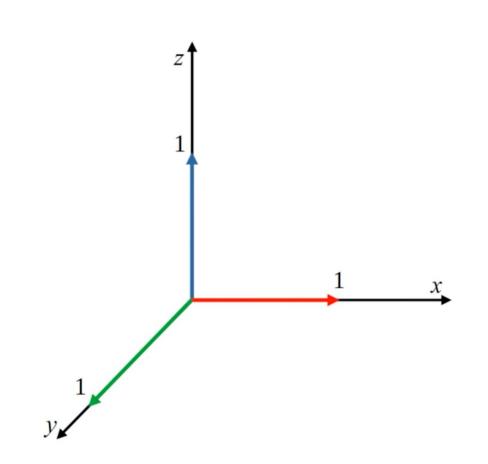
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} x \\ y' \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y' \\ 1 \end{bmatrix}$$
Cartesian

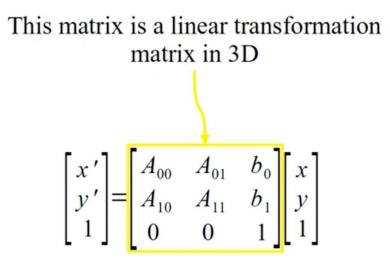
Cartesian coordinates

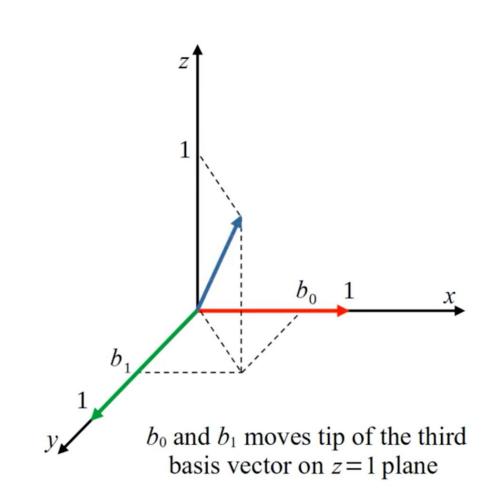
Homogeneous coordinates How many degrees of freedom?

 $\longrightarrow \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} & b_0 \\ A_{10} & A_{11} & b_1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

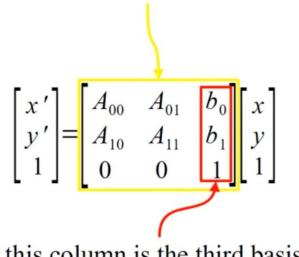
Source: K. Kitani





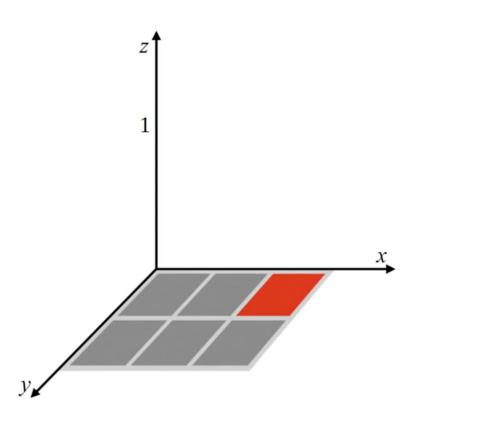


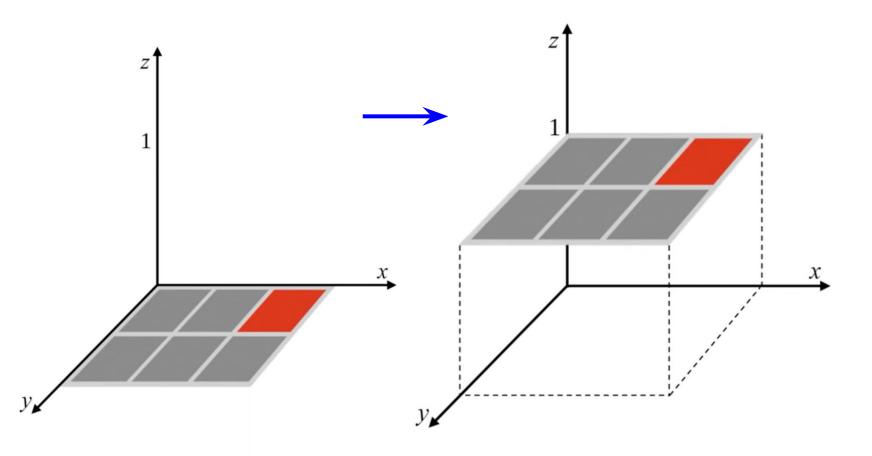
This matrix is a linear transformation matrix in 3D

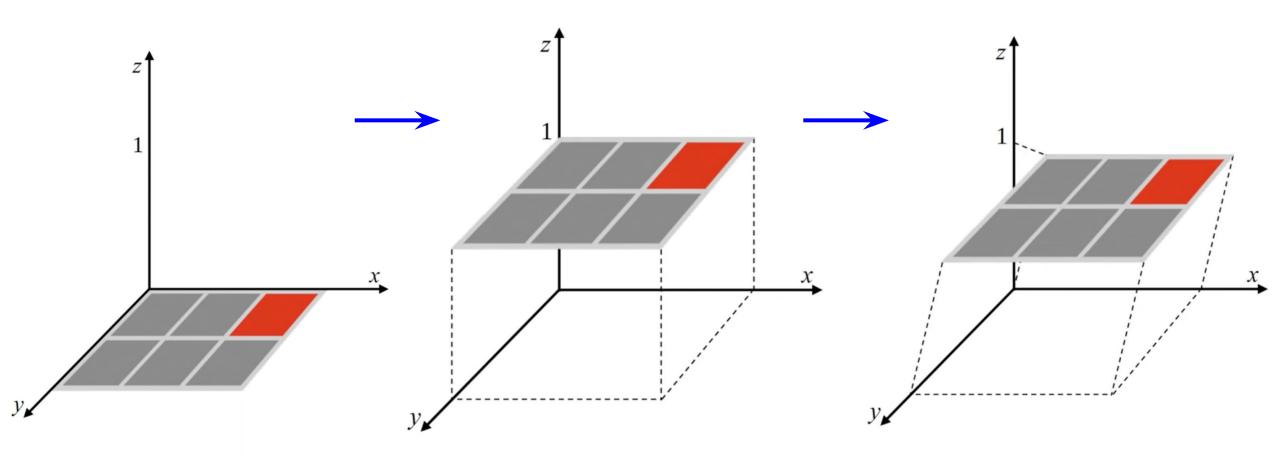


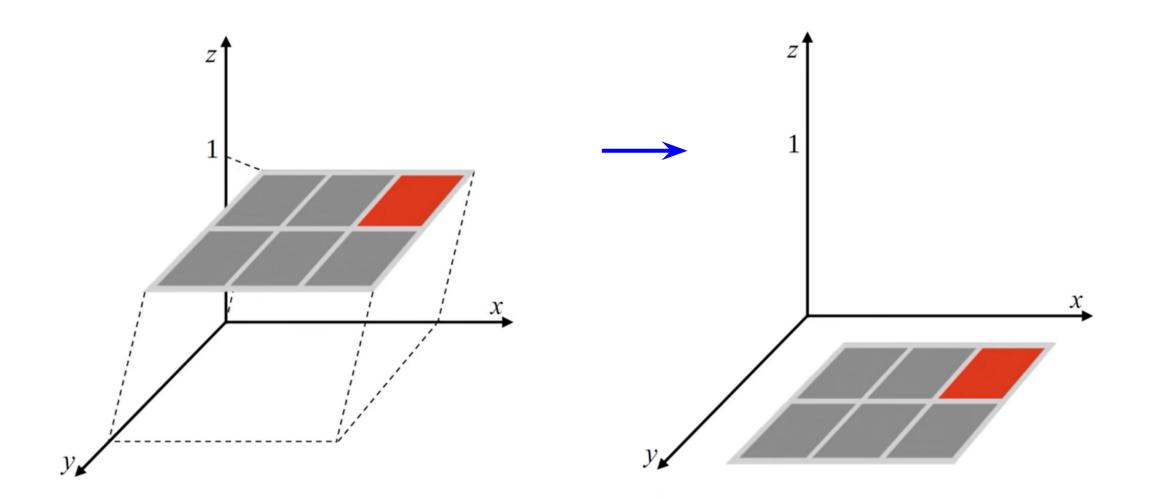
Then this column is the third basis vector of transformed vector space

And what b_0 and b_1 do is to change the orientation of that basis vector







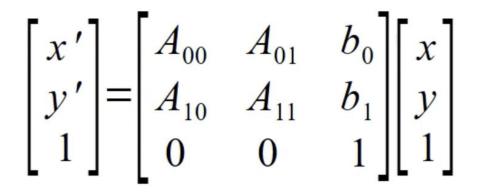


Affine transformations are combinations of

• Arbitrary (4-DOF) linear transformations + translations

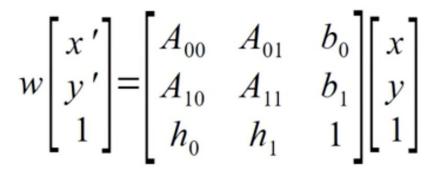
Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved

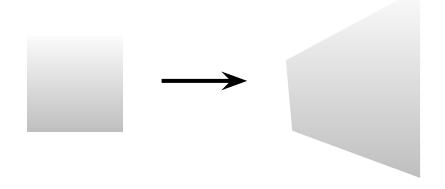


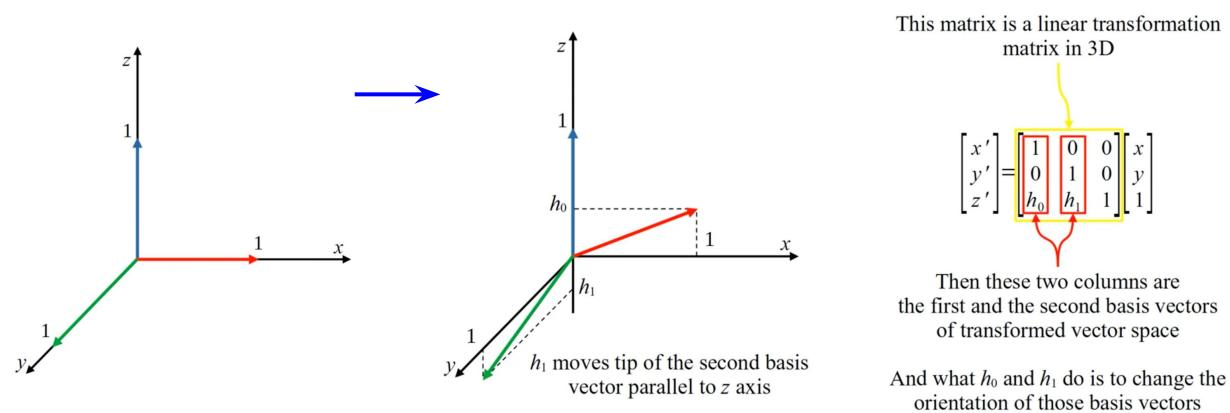
Projective transformations are combinations of

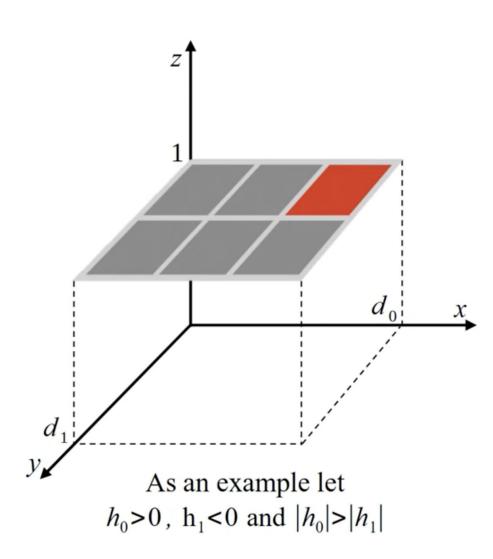
• Affine transformations + projective warps

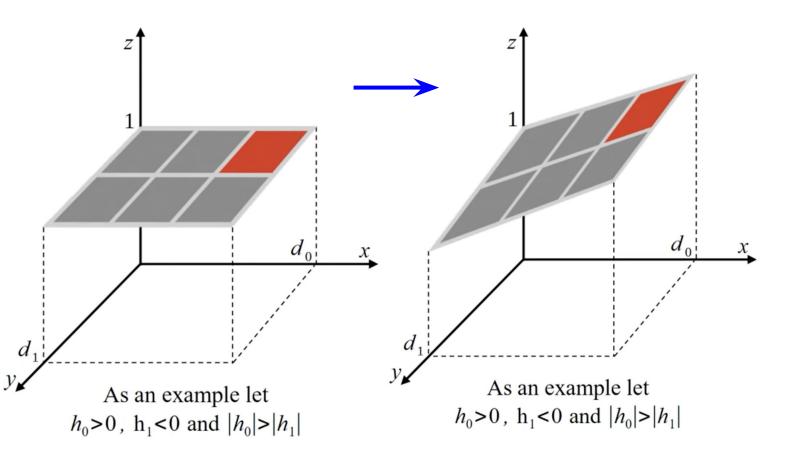


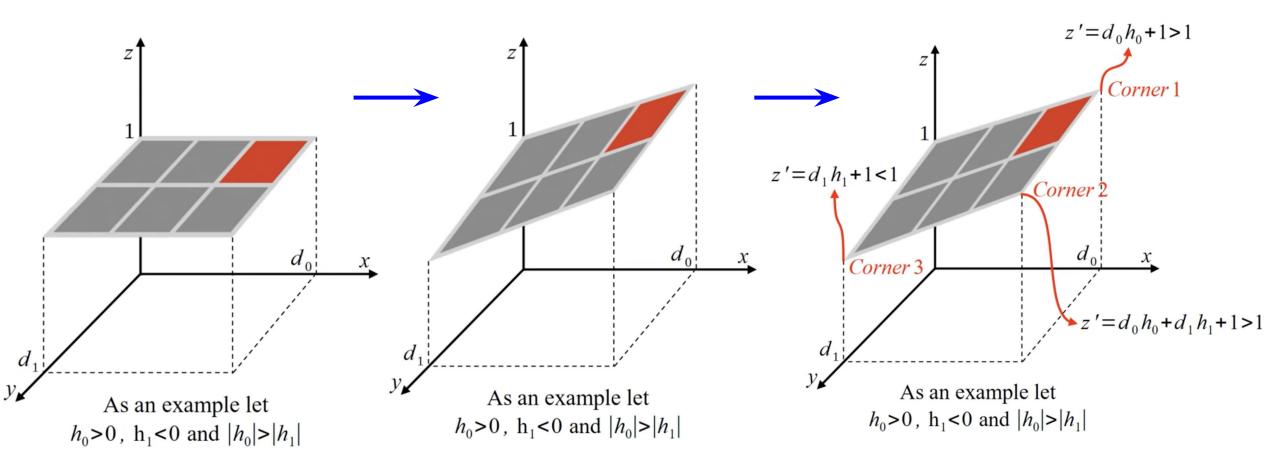
How many degrees of freedom?

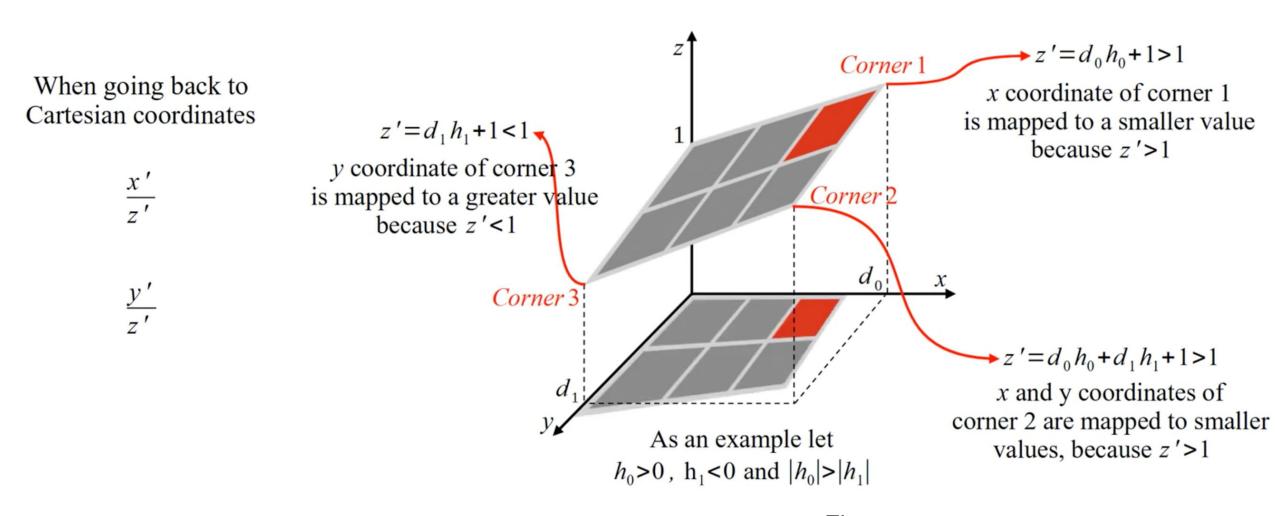


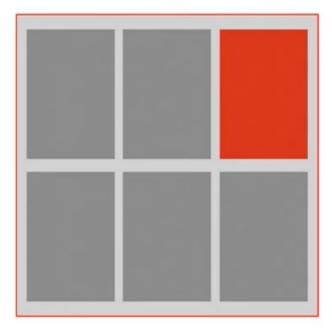








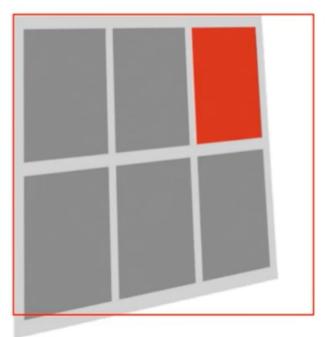




Original Image

$$\begin{bmatrix} x'\\y'\\z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\h_0 & h_1 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$

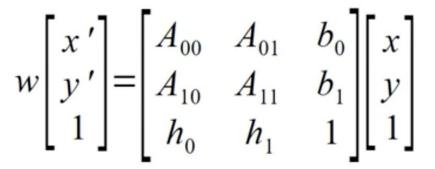
 $h_0 > 0$, $h_1 < 0$ and $|h_0| > |h_1|$



Warped Image

Projective transformations are combinations of

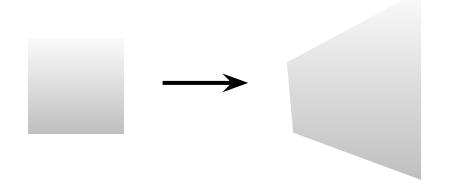
• Affine transformations + projective warps



How many degrees of freedom?

Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved



Questions?

Composing Transformations

Transformations = Matrices => Composition by Multiplication!

$$p' = R_2 R_1 S p$$

In the example above, the result is equivalent to

$$p' = R_2(R_1(Sp))$$

Equivalent to multiply the matrices into single transformation matrix:

$$p' = (R_2 R_1 S) p$$

Order Matters! Transformations from *right to left*.

Scaling & Translating != Translating & Scaling

$$p'' = TSp = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & t_x \\ 0 & s_y & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x + t_x \\ s_y y + t_y \\ 1 \end{bmatrix}$$

$$p''' = STp = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & s_x t_x \\ 0 & s_y & s_y t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x + s_x t_x \\ s_y y + s_y t_y \\ 1 \end{bmatrix}$$

Similarity: Translation + Rotation + Scaling

transformation matrix

p'= (T R S) p

$$p' = TRSp = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ 0 & 0 \end{bmatrix} \begin{bmatrix} t_x \\ t_y \\ 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} S & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} RS & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
This is the form of the general-purpose

2D Transforms = Matrix Multiplication

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix}_{2 \times 3}$	2	orientation	
rigid (Euclidean)	$\begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}_{2 \times 3}$	3	lengths	\bigcirc
similarity	$\begin{bmatrix} s \mathbf{R} & \mathbf{t} \end{bmatrix}_{2 \times 3}$	4	angles	\bigcirc
affine	$\begin{bmatrix} \mathbf{A} \end{bmatrix}_{2 imes 3}$	6	parallelism	
projective	$\left[\mathbf{ ilde{H}} ight]_{3 imes 3}$	8	straight lines	

Table 2.1 Hierarchy of 2D coordinate transformations, listing the transformation name, its matrix form, the number of degrees of freedom, what geometric properties it preserves, and a mnemonic icon. Each transformation also preserves the properties listed in the rows below it, i.e., similarity preserves not only angles but also parallelism and straight lines. The 2×3 matrices are extended with a third $[\mathbf{0}^T \ 1]$ row to form a full 3×3 matrix for homogeneous coordinate transformations.

Figure: R. Szeliski

3D Transforms = Matrix Multiplication

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix}_{3 \times 4}$	3	orientation	
rigid (Euclidean)	$\begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}_{3 \times 4}$	6	lengths	\bigcirc
similarity	$\begin{bmatrix} s \mathbf{R} & \mathbf{t} \end{bmatrix}_{3 \times 4}$	7	angles	\Diamond
affine	$\begin{bmatrix} \mathbf{A} \end{bmatrix}_{3 imes 4}$	12	parallelism	
projective	$\left[\mathbf{ ilde{H}} ight]_{4 imes 4}$	15	straight lines	

Table 2.2 Hierarchy of 3D coordinate transformations. Each transformation also preserves the properties listed in the rows below it, i.e., similarity preserves not only angles but also parallelism and straight lines. The 3×4 matrices are extended with a fourth $[\mathbf{0}^T \ 1]$ row to form a full 4×4 matrix for homogeneous coordinate transformations. The mnemonic icons are drawn in 2D but are meant to suggest transformations occurring in a full 3D cube.

Figure: R. Szeliski

What did we learn today?

• Geometry is essential to Computer Vision!

What did we learn today?

- Geometry is essential to Computer Vision!
- Geometric Primitives in 2D & 3D
 - Homogeneous coordinates, points, lines, and planes in 2D & 3D

What did we learn today?

- Geometry is essential to Computer Vision!
- Geometric Primitives in 2D & 3D
 - Homogeneous coordinates, points, lines, and planes in 2D & 3D
- 2D & 3D Transformations
 - scaling, translation, rotation, rigid, similarity, affine, homography

Questions?

Appendix

3D Rotations: SO(3) representations

Euler Angles: yaw, pitch, roll (α, β, γ) \rightarrow compose $R(\gamma)R(\beta)R(\alpha)$ (order, axes!)

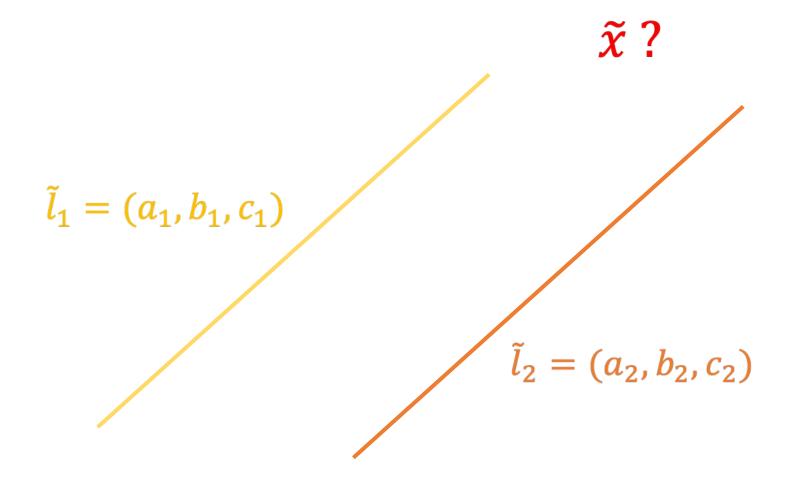
Axis-angle: (\hat{n}, θ) or $\omega = \theta \hat{n}$ → matrix via Rodrigues formula (simple for small θ) $\mathbf{R}(\hat{\mathbf{n}}, \theta) = \mathbf{I} + \sin \theta [\hat{\mathbf{n}}]_{\times} + (1 + \cos \theta) [\hat{\mathbf{n}}]_{\times}^2 \approx \mathbf{I} + [\theta \hat{\mathbf{n}}]_{\times}$ Unit Quaternions: $q = (\overline{x, y, z}, w) = (\sin \frac{\theta}{2} \, \widehat{n}, \cos \frac{\theta}{2}), ||q|| = 1$ \rightarrow continuous, nice algebraic properties, matrix via Rodrigues

$$\mathbf{R}(\mathbf{q}) = \begin{bmatrix} 1 - 2(y^2 + z^2) & 2(xy - zw) & 2(xz + yw) \\ 2(xy + zw) & 1 - 2(x^2 + z^2) & 2(yz - xw) \\ 2(xz - yw) & 2(yz + xw) & 1 - 2(x^2 + y^2) \end{bmatrix}$$

See Szeliski 2.1.3 for more details

Figure: Wikipedia

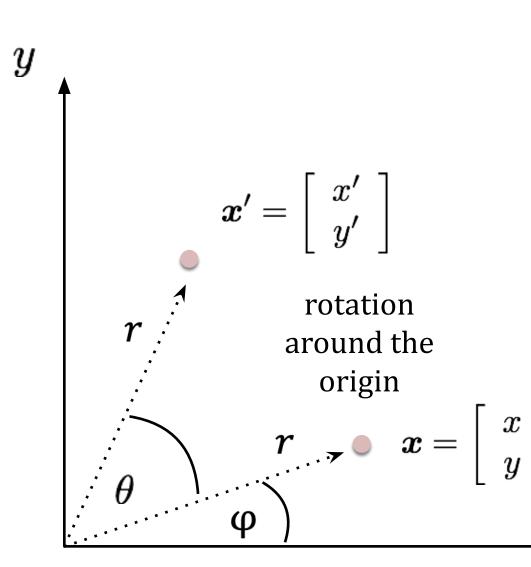
Intersecting Parallel Lines



Intersecting Parallel Lines $\tilde{x} = \tilde{l}_1 \times \tilde{l}_2$ $\tilde{x} \sim (b_1, -a_1, 0)$ $-\frac{a_1}{b_1} = -\frac{a_2}{b_2}$ $\tilde{l}_1 = (a_1, b_1, c_1)$ $(a_2, b_2) = w(a_1, b_1)$ $\tilde{l}_2 = (a_2, b_2, c_2)$

2D planar transformations

Polar coordinates...



 $x = r \cos (\phi)$ $y = r \sin (\phi)$ $x' = r \cos (\phi + \theta)$ $y' = r \sin (\phi + \theta)$

Trigonometric Identity... $x' = r \cos(\phi) \cos(\theta) - r \sin(\phi)$ $\sin(\theta)$ $y' = r \sin(\phi) \cos(\theta) + r \cos(\phi)$ $\sin(\theta)$

Substitute... $x' = x \cos(\theta) - y \sin(\theta)$ $y' = x \sin(\theta) + y \cos(\theta)$