CSE455: Computer Vision

Geometric Primitives \& Transformations

Fatemeh Ghezloo

What is the most popular topic at CVPR?

	Publication	$\underline{\text { h5-index }}$	$\underline{\text { h5-median }}$
1.	Nature	$\underline{467}$	707
2.	The New England Journal of Medicine	$\underline{439}$	876
3.	Science	$\underline{424}$	665
4.	IEEE/CVF Conference on Computer Vision and Pattern Recognition	$\underline{422}$	681
5.	The Lancet	$\underline{368}$	688
6.	Nature Communications	$\underline{349}$	456
7.	Advanced Materials	$\underline{326}$	415
8.	Cell	$\underline{316}$	503
9.	Neural Information Processing Systems	$\underline{309}$	503
10.	International Conference on Learning Representations	$\underline{303}$	563

CVPR 2023 bythe Uumbers

Selecting a category below changes the paper list on the right.
Select
(-) All
Award Candidate
Highlight

PICK INSTITUTIONS (All) \checkmark

SELECT \downarrow Top 10 overall by number of authors \qquad PAPERS

3D from multi-view and sensors
Image and video synthesis and generation
Humans: Face, body, pose, gesture, movement
Transfer, meta, low-shot, continual, or long-tail learning
Recognition: Categorization, detection, retrieval
Vision, language, and reasoning
Low-level vision
Segmentation, grouping and shape analysis
Deep learning architectures and techniques
Multi-modal learning
3D from single images
Medical and biological vision, cell microscopy
3 Video: Action and event understanding
14 Autonomous driving
15 Self-supervised or unsupervised representation learning
16 Datasets and evaluation
17 Scene analysis and understanding
18 Adversarial attack and defense
19 Efficient and scalable vision
20 Computational imaging
21 Video: Low-level analysis, motion, and tracking
22 Vision applications and systems
23 Vision + graphics
24 Robotics
25 Transparency, fairness, accountability, privacy, ethics in vision

\qquad	1,090	246
		Paper

Why do we care about Geometry?

- Self-driving cars: navigation, collision avoidance
- Robots: navigation, manipulation
- Graphics \& AR/VR: augment or generate images
- Photogrammetry (architecture, surveys)
- Pattern Recognition (web, medical imaging, etc)

What will we learn today?

- Why Geometric Vision Matters
- Geometric Primitives in 2D \& 3D
- 2D \& 3D Transformations

General Advice / Observations

- Fundamentals: need to (eventually) feel easy
- Try to do the math in parallel live in class!
- If not grokking this: practice later, ask on Ed, OH
- Lots of good (hard?) exercises in Szeliski's book

What will we learn today?

Why Geometric Vision Matters
Geometric Primitives in 2D \& 3D
2D \& 3D Transformations

Images are
 2D projections of the 3D world

Simplified Image Formation

Figure: R. Szeliski

Perspective Projection

As the word perspective implies, the resultant 2D image depends on the viewpoint of the camera

Can we understand the 3D world from 2D images?

CV is an ill-posed inverse problem
 2D Image
 3D Scene

What will we learn today?

Why Geometric Vision Matters

Geometric Primitives in 2D \& 3D
2D \& 3D Transformations

Points in Cartesian and Homogeneous Coordinates

2D points: $\mathbf{x}=(x, y) \in \mathcal{R}^{2}$ or column vector $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$
3D points: $\mathbf{x}=(x, y, z) \in \mathcal{R}^{3}$ (often noted \mathbf{X} or \mathbf{P})

Homogeneous coordinates: append a 1

$$
\overline{\mathbf{x}}=(x, y, 1) \quad \overline{\mathbf{x}}=(x, y, z, 1)
$$

Why?

Homogeneous coordinates in 2D

2D Projective Space: $\mathcal{P}^{2}=\mathcal{R}^{3}-(0,0,0) \quad$ (same story in 3D with \mathcal{P}^{3})

- heterogeneous \rightarrow homogeneous $\left[\begin{array}{l}x \\ y\end{array}\right] \Rightarrow\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
- homogeneous \rightarrow heterogeneous $\left[\begin{array}{c}x \\ y \\ w\end{array}\right] \Rightarrow\left[\begin{array}{l}x / w \\ y / w\end{array}\right]$
- points differing only by scale are equivalent: $(x, y, w) \sim \lambda(x, y, w)$

$$
\tilde{\mathbf{x}}=(\tilde{x}, \tilde{y}, \tilde{w})=\tilde{w}(x, y, 1)=\tilde{w} \overline{\mathbf{x}}
$$

Homogeneous coordinates in 2D

In homogeneous coordinates, a point and its scaled versions are same

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=w\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right] \quad w \neq 0
$$

Everything is easier in Projective Space

2D Lines:
Representation: $l=(a, b, c)$
Equation: $a x+b y+c=0$
In homogeneous coordinates: $\bar{x}^{T} l=0$
General idea: homogenous coordinates unlock the full power of linear algebra!

Everything is easier in Projective Space

 2D Lines:$$
\begin{aligned}
& \tilde{\mathbf{x}}^{\mathrm{T}} \mathrm{l}=0, \forall \tilde{\mathrm{X}}=(x, y, w) \in P^{2} \\
& \mathrm{l}=\left(\hat{n}_{x}, \hat{n}_{y}, d\right)=(\hat{\mathbf{n}}, d) \text { with }\|\hat{\mathbf{n}}\|=1
\end{aligned}
$$

3D planes: same!

$$
\begin{aligned}
& \tilde{\mathbf{x}}^{\mathrm{T}} \mathrm{~m}=0, \forall \tilde{\mathrm{X}}=(x, y, z, w) \in P^{3} \\
& \mathbf{m}=\left(\hat{n}_{x}, \hat{n}_{y}, \hat{n}_{z}, d\right)=(\hat{\mathbf{n}}, d) \text { with }\|\hat{\mathbf{n}}\|=1
\end{aligned}
$$

Lines in 3D

Two-point parametrization:

$$
\mathbf{r}=(1-\lambda) \mathbf{p}+\lambda \mathbf{q} \quad \tilde{\mathbf{r}}=\mu \tilde{\mathbf{p}}+\lambda \tilde{\mathbf{q}}
$$

Two-plane parametrization:

coordinates $\left(x_{0}, y_{0}\right) \&\left(x_{1}, y_{1}\right)$ of intersection with planes at $z=0,1$ (or other planes)

Cross-product quick reminder

Benefits of Homogeneous Coordinates

- Line - Point duality:
- line between two 2D points: $\tilde{\mathbf{l}}=\tilde{\mathbf{x}}_{1} \times \tilde{\mathbf{x}}_{2}$
- intersection of two 2D lines: $\tilde{\mathbf{x}}=\tilde{\mathbf{l}}_{1} \times \tilde{\mathbf{l}}_{2}$
- Representation of Infinity:
- points at infinity: $(x, y, 0)$; line at infinity: $(0,0,1)$
- Parallel \& vertical lines are easy (take-home: intersect //)
- Makes 2D \& 3D transformations linear!

Questions?

What will we learn today?

Why Geometric Vision Matters

Geometric Primitives in 2D \& 3D
2D \& 3D Transformations

The camera as a coordinate transformation

A camera is a mapping
from:
the 3D world
to:

a 2D image

The camera as a coordinate transformation

A camera is a mapping
from:
the 3D world
to:
2D image
a 2D image

2D to 2D transform
(image warping)

Cameras and objects can move!

(a)

(b)

Figure 2.12 A point is projected into two images: (a) relationship between the 3D point coordinate $(X, Y, Z, 1)$ and the $2 D$ projected point $(x, y, 1, d)$; (b) planar homography induced by points all lying on a common plane $\hat{\mathbf{n}}_{0} \cdot \mathbf{p}+c_{0}=0$.

2D Transformations Zoo

Figure: R. Szeliski

Transformation = Matrix Multiplication

Scale	Flip across y
$\mathbf{M}=\left[\begin{array}{cc}s_{x} & 0 \\ 0 & s_{y}\end{array}\right]$	$\mathbf{M}=\left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right]$
Rotate	Flip across origin
$\mathbf{M}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$	$\mathbf{M}=\left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right]$
Shear	Identity
$\mathbf{M}=\left[\begin{array}{cc}1 & s_{x} \\ s_{y} & 1\end{array}\right]$	$\mathbf{M}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Scaling

$$
\underset{\mathrm{A}}{\left[\begin{array}{cc}
s_{x} & 0 \\
0 & \\
s_{y}
\end{array}\right]} \times \underset{\mathrm{p}}{\left[\begin{array}{l}
x \\
y
\end{array}\right]}=\underset{\mathrm{p}^{\prime}}{\left[\begin{array}{c}
s_{x} x \\
s_{y} y
\end{array}\right]}
$$

Rotation

y

Slide: K. Kitani

Translation

As a matrix?

Translation with homogeneous coordinates

$$
\begin{aligned}
& p=\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& t=\left[\begin{array}{c}
t_{x} \\
t_{y}
\end{array}\right] \rightarrow\left[\begin{array}{c}
t_{x} \\
t_{y} \\
1
\end{array}\right] \\
& p^{\prime}=T p \\
& p^{\prime} \rightarrow\left[\begin{array}{c}
x+t x \\
y+t y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{I} & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right] p=T p
\end{aligned}
$$

2D Transformations with homogeneous coordinates

Rotate about origin

Translate

Shear in x direction

Scale about origin

Shear in y direction

Figure: Wikipedia

Questions?

2D Transformations Zoo

Figure: R. Szeliski

Euclidean / Rigid Transformation

Euclidean (rigid): rotation + translation

How many degrees of freedom?

$$
\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & t_{x} \\
\sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Similarity Transformation

Similarity: Scaling + rotation + translation $\left[\begin{array}{ccc}a & -b & t_{x} \\ b & a & t_{y} \\ 0 & 0 & 1\end{array}\right]$
How many degrees of freedom?

Similarity Transformation

Similarity: Scaling + rotation + translation $\left[\begin{array}{ccc}a & -b & t_{x} \\ b & a & t_{y} \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\alpha \cos \theta & -\alpha \sin \theta & b_{0} \\ \alpha \sin \theta & \alpha \cos \theta & b_{1} \\ 0 & 0 & 1\end{array}\right]$
How many degrees of freedom?

Affine Transformation

Affine transformations are combinations of

- Arbitrary (4-DOF) linear transformations + translations

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}A_{00} & A_{01} \\ A_{10} & A_{11}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{l}b_{0} \\ b_{1}\end{array}\right]$
$\left[\begin{array}{l}x \\ y\end{array}\right] \quad\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$
Cartesian coordinates

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{c}
A_{00} \\
A_{10} \\
0
\end{array}\right.
$$

$$
\left.\begin{array}{cc}
A_{01} & b_{0} \\
A_{11} & b_{1} \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Homogeneous coordinates

Affine Transformation

Affine transformations are combinations of

- Arbitrary (4-DOF) linear transformations + translations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
A_{00} & A_{01} \\
A_{10} & A_{11}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
b_{0} \\
b_{1}
\end{array}\right]
$$

$\left[\begin{array}{l}x \\ y\end{array}\right] \quad\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$
Cartesian coordinates

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
A_{00} & A_{01} & b_{0} \\
A_{10} & A_{11} & b_{1} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

How many degrees of freedom?

Homogeneous coordinates

Affine Transformation

This matrix is a linear transformation matrix in 3D

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
A_{00} & A_{01} & b_{0} \\
A_{10} & A_{11} & b_{1} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Affine Transformation

This matrix is a linear transformation matrix in 3D

Then this column is the third basis vector of transformed vector space

And what b_{0} and b_{1} do is to change the orientation of that basis vector

Affine Transformation

Affine Transformation

Affine Transformation

Figure: https://www.youtube.com/@huseyin_ozde.

Affine Transformation

Affine Transformation

Affine transformations are combinations of

- Arbitrary (4-DOF) linear transformations + translations

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
A_{00} & A_{01} & b_{0} \\
A_{10} & A_{11} & b_{1} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

Projective Transformation (homography)

Projective transformations are combinations of

- Affine transformations + projective warps

$$
\left.w \begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
A_{00} & A_{01} & b_{0} \\
A_{10} & A_{11} & b_{1} \\
h_{0} & h_{1} & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

How many degrees of freedom?

Projective Transformation (homography)

This matrix is a linear transformation matrix in 3D

Then these two columns are the first and the second basis vectors of transformed vector space

And what h_{0} and h_{1} do is to change the orientation of those basis vectors

Projective Transformation (homography)

Projective Transformation (homography)

Projective Transformation (homography)

Projective Transformation (homography)

When going back to Cartesian coordinates

$$
\begin{aligned}
& \frac{x^{\prime}}{z^{\prime}} \\
& \frac{y^{\prime}}{z^{\prime}}
\end{aligned}
$$

Figure: https://www.youtube.com/@huseyin_ozde..

Projective Transformation (homography)

Original Image

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
h_{0} & h_{1} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
& h_{0}>0, \mathrm{~h}_{1}<0 \text { and }\left|h_{0}\right|>\left|h_{1}\right|
\end{aligned}
$$

Warped Image

Projective Transformation (homography)

Projective transformations are combinations of

- Affine transformations + projective warps

$$
w\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
A_{00} & A_{01} & b_{0} \\
A_{10} & A_{11} & b_{1} \\
h_{0} & h_{1} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

How many degrees of freedom?
Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved

Questions?

Composing Transformations

Transformations $=$ Matrices $=>$ Composition by Multiplication!

$$
p^{\prime}=R_{2} R_{1} S p
$$

In the example above, the result is equivalent to

$$
p^{\prime}=R_{2}\left(R_{1}(S p)\right)
$$

Equivalent to multiply the matrices into single transformation matrix:

$$
p^{\prime}=\left(R_{2} R_{1} S\right) p
$$

Order Matters! Transformations from right to left.

Scaling \& Translating != Translating \& Scaling

$$
p^{\prime \prime}=T S p=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & t_{x} \\
0 & s_{y} & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
s_{x} x+t_{x} \\
s_{y} y+t_{y} \\
1
\end{array}\right]
$$

$$
p^{\prime \prime \prime}=S T p=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & s_{x} t_{x} \\
0 & s_{y} & s_{y} t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
s_{x} x+s_{x} t_{x} \\
s_{y} y+s_{y} t_{y} \\
1
\end{array}\right]
$$

Similarity: Translation + Rotation + Scaling

$$
\begin{gathered}
\mathrm{p}^{\prime}=(\mathrm{T} \mathrm{R} \mathrm{~S}) \mathrm{p} \\
p^{\prime}=T R S p=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & t_{x} \\
\sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
=\left[\begin{array}{ll}
R & t \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
S & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cc}
R S & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{gathered} \begin{aligned}
& \text { This is the form of the }
\end{aligned}
$$

2D Transforms = Matrix Multiplication

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$\left[\begin{array}{ll}\mathbf{I} & \mathbf{t}\end{array}\right]_{2 \times 3}$	2	orientation	
rigid (Euclidean)	$\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right]_{2 \times 3}$	3	lengths	\vee
similarity	$\left[\begin{array}{ll}s \mathbf{R} & \mathbf{t}\end{array}\right]_{2 \times 3}$	4	angles	\checkmark
affine	$[\mathbf{A}]_{2 \times 3}$	6	parallelism	\square
projective	$[\tilde{\mathbf{H}}]_{3 \times 3}$	8	straight lines	

Table 2.1 Hierarchy of $2 D$ coordinate transformations, listing the transformation name, its matrix form, the number of degrees of freedom, what geometric properties it preserves, and a mnemonic icon. Each transformation also preserves the properties listed in the rows below it, i.e., similarity preserves not only angles but also parallelism and straight lines. The $2 \times$ 3 matrices are extended with a third $\left[\mathbf{0}^{T} 1\right]$ row to form a full 3×3 matrix for homogeneous coordinate transformations.

3D Transforms = Matrix Multiplication

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$\left[\begin{array}{ll}\mathbf{I} & \mathbf{t}\end{array}\right]_{3 \times 4}$	3	orientation	
rigid (Euclidean)	$\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right]_{3 \times 4}$	6	lengths	Δ
similarity	$\left[\begin{array}{ll}s \mathbf{R} & \mathbf{t}\end{array}\right]_{3 \times 4}$	7	angles	\bigcirc
affine	$[\mathbf{A}]_{3 \times 4}$	12	parallelism	\square
projective	$[\tilde{\mathbf{H}}]_{4 \times 4}$	15	straight lines	

Table 2.2 Hierarchy of $3 D$ coordinate transformations. Each transformation also preserves the properties listed in the rows below it, i.e., similarity preserves not only angles but also parallelism and straight lines. The 3×4 matrices are extended with a fourth $\left[\mathbf{0}^{T} 1\right]$ row to form a full 4×4 matrix for homogeneous coordinate transformations. The mnemonic icons are drawn in 2D but are meant to suggest transformations occurring in a full 3D cube.

What did we learn today?

- Geometry is essential to Computer Vision!

What did we learn today?

- Geometry is essential to Computer Vision!
- Geometric Primitives in 2D \& 3D
- Homogeneous coordinates, points, lines, and planes in 2D \& 3D

What did we learn today?

- Geometry is essential to Computer Vision!
- Geometric Primitives in 2D \& 3D
- Homogeneous coordinates, points, lines, and planes in 2D \& 3D
- 2D \& 3D Transformations
- scaling, translation, rotation, rigid, similarity, affine, homography

Questions?

Appendix

3D Rotations: SO(3) representations

Euler Angles: yaw, pitch, roll (α, β, γ)
\rightarrow compose $R(\gamma) R(\beta) R(\alpha)$ (order, axes!)

Axis-angle: (\hat{n}, θ) or $\omega=\theta \hat{n}$
\rightarrow matrix via Rodrigues formula (simple for small θ)

$$
\mathbf{R}(\hat{\mathbf{n}}, \theta)=\mathbf{I}+\sin \theta[\hat{\mathbf{n}}]_{\times}+(1-\cos \theta)[\hat{\mathbf{n}}]_{\times}^{2} \approx \mathbf{I}+[\theta \hat{\mathbf{n}}]_{\times}
$$

Unit Quaternions: $\mathrm{q}=(\widehat{x, y, z}, w)=\left(\sin \frac{\theta}{2} \widehat{\boldsymbol{n}}, \cos \frac{\theta}{2}\right),\|q\|=1$
\rightarrow continuous, nice algebraic properties, matrix via Rodrigues

$$
\mathbf{R}(\mathbf{q})=\left[\begin{array}{ccc}
1-2\left(y^{2}+z^{2}\right) & 2(x y-z w) & 2(x z+y w) \\
2(x y+z w) & 1-2\left(x^{2}+z^{2}\right) & 2(y z-x w) \\
2(x z-y w) & 2(y z+x w) & 1-2\left(x^{2}+y^{2}\right)
\end{array}\right]
$$

Intersecting Parallel Lines

Intersecting Parallel Lines

2D planar transformations

Polar coordinates...
$x=r \cos (\varphi)$
$y=r \sin (\varphi)$
$x^{\prime}=r \cos (\varphi+\theta)$
$y^{\prime}=r \sin (\varphi+\theta)$

Trigonometric Identity...
$x^{\prime}=r \cos (\varphi) \cos (\theta)-r \sin (\varphi)$
$\sin (\theta)$
$y^{\prime}=r \sin (\varphi) \cos (\theta)+r \cos (\varphi)$
$\sin (\theta)$

Substitute..

$$
\begin{aligned}
& x^{\prime}=x \cos (\theta)-y \sin (\theta) \\
& y^{\prime}=x \sin (\theta)+y \cos (\theta)
\end{aligned}
$$

