Linear Algebra Primer

Mahtab Bigverdi

Outline

- Vectors and matrices
- Basic Matrix Operations
- Determinants, norms, trace
- Special Matrices
- Transformation Matrices
- Homogeneous coordinates
- Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculus

Outline

- Vectors and matrices
- Basic Matrix Operations
- Determinants, norms, trace
- Special Matrices
- Transformation Matrices
- Homogeneous coordinates
- Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculus

Vectors and matrices are just
collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightness, etc. We'll define some common uses and standard operations on them.

Vector

- A column vector $\mathbf{v} \in \mathbb{R}^{n \times 1}$ where

$$
\mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

- A row vector $\mathbf{v}^{T} \in \mathbb{R}^{1 \times n}$ where

$$
\mathbf{v}^{T}=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]
$$

T denotes the transpose operation

Vector

- We'll default to column vectors in this class

$$
\mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

- You'll want to keep track of the orientation of your vectors when programming in python
- You can transpose a vector V in python by writing V.t. (But in class materials, we will always use V^{\top} to indicate transpose, and we will use V' to mean "V prime")

Vectors have two main uses

- Vectors can represent an offset in 2D or 3D space.
- Points are just vectors from the origin.
- Data (pixels, gradients at an image keypoint, etc) can also be treated as a vector.
- Such vectors don't have a geometric interpretation, but calculations like "distance" can still have value.

Matrix

- A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is an array of numbers with size by , i.e. m rows and n columns.

$$
\mathbf{A}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & & & & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right]
$$

- If $m=n$, we say that \mathbf{A} is square.

Images

$$
=\left[\begin{array}{ccccc}
193 & 180 & 210 & 112 & 125 \\
189 & 8 & 177 & 9 & 114 \\
100 & 71 & 81 \\
167 & 12 & 165 \\
44 & 25 & 242 & 203 & 181 \\
48 & 81 & 98 & 48 & 192
\end{array}\right]
$$

- Python represents an image as a matrix of pixel brightnesses
- Note that the upper left corner is $[y, x]=(0,0)$

Images as both a matrix as well as a vector

Stretch pixels into column

Color Images

- Grayscale images have one number per pixel, and are stored as an $m \times n$ matrix.
- Color images have 3 numbers per pixel - red, green, and blue brightnesses (RGB)
- Stored as an $m \times n \times 3$ matrix

Basic Matrix Operations

- We will discuss:
- Addition
- Scaling
- Dot product
- Multiplication
- Transpose
- Inverse / pseudoinverse
- Determinant / trace

Matrix Operations

- Addition

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
a+1 & b+2 \\
c+3 & d+4
\end{array}\right]
$$

- Can only add a matrix with matching dimensions, or a scalar.

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+7=\left[\begin{array}{ll}
a+7 & b+7 \\
c+7 & d+7
\end{array}\right]
$$

- Scaling

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \times 3=\left[\begin{array}{ll}
3 a & 3 b \\
3 c & 3 d
\end{array}\right]
$$

Vectors

- Norm $\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$.
- More formally, a norm is any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that satisfies 4 properties:
- Non-negativity: For all $x \in \mathbb{R}^{n}, f(x) \geq 0$
- Definiteness: $\mathrm{f}(\mathrm{x})=0$ if and only it $\mathrm{x}=0$.
- Homogeneity: For all. $x \in \mathbb{R}^{n}, t \in \mathbb{R}, f(t x)=|t| f(x)$
- Triangle inequality: For all $x, y \in \mathbb{R}^{n}, f(x+y) \leq f(x)+f(y)$

Norms

- Example Norms

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \quad \quad\|x\|_{\infty}=\max _{i}\left|x_{i}\right|
$$

- General ℓ_{p} norms:

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

Matrix Operations

- Inner product (dot product) of vectors
- Multiply corresponding entries of two vectors and add up the result
$-x \cdot y$ is also $|x||y| \operatorname{Cos}($ the angle between x and y)

$$
\mathbf{x}^{T} \mathbf{y}=\left[\begin{array}{lll}
x_{1} & \ldots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{i=1}^{n} x_{i} y_{i} \quad \text { (scalar) }
$$

Matrix Operations

- Inner product (dot product) of vectors
- If B is a unit vector, then $A \cdot B$ gives the length of A which lies in the direction of B

Matrix Operations

- The product of two matrices

$$
\begin{gathered}
C=A B \in \mathbb{R}^{m \times p} \\
B \in \mathbb{R}^{m \times n} \\
C_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j} \\
C=A B=\left[\begin{array}{ccc}
-a_{1}^{T} & - \\
-a_{2}^{T} & - \\
\vdots \\
- & a_{m}^{T} & -
\end{array}\right]\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
b_{1} & b_{2} & \cdots & b_{p} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
a_{1}^{T} b_{1} & a_{1}^{T} b_{2} & \cdots & a_{1}^{T} b_{p} \\
a_{2}^{T} b_{1} & a_{2}^{T} b_{2} & \cdots & a_{2}^{T} b_{p} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m}^{T} b_{1} & a_{m}^{T} b_{2} & \cdots & a_{m}^{T} b_{p}
\end{array}\right] .
\end{gathered}
$$

Matrix Operations

- Multiplication
- The product $A B$ is:

- Each entry in the result is (that row of A) dot product with (that column of B)
- Many uses, which will be covered later

Matrix Operations

- Multiplication example:

- Each entry of the matrix product is made by taking the dot product of the corresponding row in the left matrix, with the corresponding column in the right one.

$$
0 \cdot 3+2 \cdot 7=14
$$

Matrix Operations

- The product of two matrices

Matrix multiplication is associative: $(A B) C=A(B C)$.
Matrix multiplication is distributive: $A(B+C)=A B+A C$.
Matrix multiplication is, in general, not commutative; that is, it can be the case that $A B \neq B A$. (For example, if $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times q}$, the matrix product $B A$ does not even exist if m and q are not equal!)

Matrix Operations

- Powers
- By convention, we can refer to the matrix product $A A$ as A^{2}, and AAA as A^{3}, etc.
- Obviously only square matrices can be multiplied that way

Matrix Operations

- Transpose - flip matrix, so row 1 becomes column 1

$$
\left[\begin{array}{lll}
0 & 1 & \cdots \\
\hdashline & \ddots
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 1 \\
2 & 3 \\
4 & 5
\end{array}\right]^{T}=\left[\begin{array}{lll}
0 & 2 & 4 \\
1 & 3 & 5
\end{array}\right]
$$

- A useful identity:

$$
(A B C)^{T}=C^{T} B^{T} A^{T}
$$

Matrix Operations

- Determinant
- $\operatorname{det}(\mathbf{A})$ returns a scalar
- Represents area (or volume) of the parallelogram described by the vectors in the rows of the matrix
- For $_{\mathbf{A}}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], \operatorname{det}(\mathbf{A})=a d-b c$
- Properties:

$$
\begin{aligned}
\operatorname{det}(\mathbf{A B}) & =\operatorname{det}(\mathbf{B} \mathbf{A}) \\
\operatorname{det}\left(\mathbf{A}^{-1}\right) & =\frac{1}{\operatorname{det}(\mathbf{A})} \\
\operatorname{det}\left(\mathbf{A}^{T}\right) & =\operatorname{det}(\mathbf{A}) \\
\operatorname{det}(\mathbf{A})=0 & \Leftrightarrow \mathbf{A} \text { is singular }
\end{aligned}
$$

Matrix Operations

- Trace
$\operatorname{tr}(\mathbf{A})=$ sum of diagonal elements
$\operatorname{tr}\left(\left[\begin{array}{ll}1 & 3 \\ 5 & 7\end{array}\right]\right)=1+7=8$
- Invariant to a lot of transformations, so it's used sometimes in proofs. (Rarely in this class though.)
- Properties:

$$
\begin{aligned}
\operatorname{tr}(\mathbf{A B}) & =\operatorname{tr}(\mathbf{B A}) \\
\operatorname{tr}(\mathbf{A}+\mathbf{B}) & =\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B})
\end{aligned}
$$

Matrix Operations

- Vector Norms

$$
\begin{array}{ll}
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| & \|x\|_{\infty}=\max _{i}\left|x_{i}\right| . \\
\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2} .} & \|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
\end{array}
$$

- Matrix norms: Norms can also be defined for matrices, such as

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}^{2}}=\sqrt{\operatorname{tr}\left(A^{T} A\right)} .
$$

Special Matrices

- Identity matrix I
- Square matrix, 1's along diagonal, 0's elsewhere
- I • [another matrix] = [that matrix]

- Diagonal matrix
- Square matrix with numbers along diagonal, O's elsewhere
- A diagonal • [another matrix] scales the rows of that matrix
$\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 2.5\end{array}\right]$

Special Matrices

- Symmetric matrix

$$
\mathbf{A}^{T}=\mathbf{A}
$$

- Skew-symmetric matrix

$$
\left[\begin{array}{lll}
1 & 2 & 5 \\
2 & 1 & 7 \\
5 & 7 & 1
\end{array}\right]
$$

$\mathbf{A}^{T}=-\mathbf{A}$

$$
\left[\begin{array}{ccc}
0 & -2 & -5 \\
2 & 0 & -7 \\
5 & 7 & 0
\end{array}\right]
$$

Outline

- Vectors and matrices
- Basic Matrix Operations
- Determinants, norms, trace
- Special Matrices
- Transformation Matrices
- Homogeneous coordinates
- Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculus

Matrix multiplication can be used to transform vectors. A matrix used in this way is called a transformation matrix.

Transformation

- Matrices can be used to transform vectors in useful ways, through multiplication: $x^{\prime}=A x$
- Simplest is scaling:

$$
\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right] \times\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
s_{x} x \\
s_{y} y
\end{array}\right]
$$

(Verify to yourself that the matrix multiplication works out this way)

Transformation

$$
\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right] \times\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
s_{x} x \\
s_{y} y
\end{array}\right]
$$

Rotation

Rotation

- How can you convert a vector represented in frame " 0 " to a new, rotated coordinate frame " 1 "?

Rotation

- How can you convert a vector represented in frame " 0 " to a new, rotated coordinate frame " 1 "?
- Remember what a vector is: [component in direction of the frame's x axis, component in direction of y axis]

Rotation

- So to rotate it we must produce this vector: [component in direction of new x axis, component in direction of new y axis]
- We can do this easily with dot products!
- New x coordinate is [original vector] dot [the new x axis]
- New y coordinate is [original vector] dot [the new y axis]

Rotation

- Insight: this is what happens in a matrix*vector multiplication
- Result x coordinate is: [original vector] dot [matrix row 1]
- So matrix multiplication can rotate a vectnr n.

Rotation

- Suppose we express a point in the new coordinate system which is rotated left
- If we plot the result in the original coordinate system, we have rotated the point right

- Thus, rotation matrices can be used to rotate vectors. We'll usually think of them in that sense-- as operators to rotate vectors

2D Rotation Matrix Formula

Counter-clockwise rotation by an angle θ

$$
\begin{aligned}
& x^{\prime}=\cos \theta x-\sin \theta y \\
& y^{\prime}=\cos \theta y+\sin \theta x
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\mathbf{P}^{\prime}=\mathbf{R} \mathbf{P}
$$

Transformation Matrices

- Multiple transformation matrices can be used to transform a point:

$$
p^{\prime}=R_{2} R_{1} S p
$$

- The effect of this is to apply their transformations one after the other, from right to left.
- In the example above, the result is $\left(R_{2}\left(R_{1}(S p)\right)\right)$
- The result is exactly the same if we multiply the matrices first, to form a single transformation matrix: $p^{\prime}=\left(R_{2} R_{1} S\right) p$

Homogeneous system

- In general, a matrix multiplication lets us linearly combine componen ts of a vector

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \times\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a x+b y \\
c x+d y
\end{array}\right]
$$

- This is sufficient for scale, rotate, skew transformations.
- But notice, we can't add a constant!

Homogeneous system

- The (somewhat hacky) solution? Stick a " 1 " at the end of every vector:

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
a x+b y+c \\
d x+e y+f \\
1
\end{array}\right]
$$

- Now we can rotate, scale, and skew like before, AND translate (note how the multiplication works out, above)
- This is called "homogeneous coordinates"

Homogeneous system

- In homogeneous coordinates, the multiplication works out so the rightmost column of the matrix is a vector that gets added.

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
a x+b y+c \\
d x+e y+f \\
1
\end{array}\right]
$$

- Generally, a homogeneous transformation matrix will have a bottom row of [001], so that the result has a " 1 " at the bottom too.

Homogeneous system

- One more thing we might want: to divide the result by something
- For example, we may want to divide by a coordinate, to make things scale down as they get farther away in a camera image
- Matrix multiplication can't actually divide
- So, by convention, in homogeneous coordinates, we'll divide the result by its last coordinate after doing a matrix multiplication

$$
\left[\begin{array}{l}
x \\
y \\
7
\end{array}\right] \Rightarrow\left[\begin{array}{c}
x / 7 \\
y / 7 \\
1
\end{array}\right]
$$

2D Translation

2D Translation using Homogeneous
 Coordinates

2D Translation using Homogeneous
 Coordinates

2D Translation using Homogeneous
 Coordinates

$$
\begin{gathered}
\mathbf{P}=(x, y) \rightarrow(x, y, 1) \\
\mathbf{t}=\left(t_{x}, t_{y}\right) \rightarrow\left(t_{x}, t_{y}, 1\right) \\
\mathbf{P}^{\prime} \rightarrow\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
&
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{gathered}
$$

2D Translation using Homogeneous
 Coordinates

$$
\begin{gathered}
\mathbf{P}=(x, y) \rightarrow(x, y, 1) \\
\mathbf{t}=\left(t_{x}, t_{y}\right) \rightarrow\left(t_{x}, t_{y}, 1\right) \\
\mathbf{P}^{\prime} \rightarrow\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
& &
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
\end{gathered}
$$

2D Translation using Homogeneous

Coordinates

Scaling

Scaling Equation

$$
\begin{aligned}
& \mathbf{P}=(\mathrm{x}, \mathrm{y}) \rightarrow \mathbf{P}^{\prime}=\left(\mathrm{s}_{\mathrm{x}} \mathrm{x}, \mathrm{~s}_{\mathrm{y}} \mathrm{y}\right) \\
& \mathbf{P}=(x, y) \rightarrow(x, y, 1) \\
& \mathbf{P}^{\prime}=\left(s_{x} x, s_{y} y\right) \rightarrow\left(s_{x} x, s_{y} y, 1\right)
\end{aligned}
$$

Scaling Equation

$$
\mathbf{P}=(\mathrm{x}, \mathrm{y}) \rightarrow \mathbf{P}^{\prime}=\left(\mathrm{s}_{\mathrm{x}} \mathrm{x}, \mathrm{~s}_{\mathrm{y}} \mathrm{y}\right)
$$

$\mathbf{P}^{\prime} \rightarrow\left[\begin{array}{c}s_{x} x \\ s_{y} y \\ 1\end{array}\right]=[$

$$
\begin{aligned}
& \mathbf{P}=(x, y) \rightarrow(x, y, 1) \\
& \mathbf{P}^{\prime}=\left(s_{x} x, s_{y} y\right) \rightarrow\left(s_{x} x, s_{y} y, 1\right)
\end{aligned}
$$

$$
\cdots\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Scaling Equation

$$
\begin{aligned}
& \frac{s_{s, y}^{c}}{8} \\
& \mathbf{P}=(\mathrm{x}, \mathrm{y}) \rightarrow \mathbf{P}^{\prime}=\left(\mathrm{s}_{\mathrm{x}} \mathrm{x}, \mathrm{~s}_{\mathrm{y}} \mathrm{y}\right) \\
& \mathbf{P}^{\prime} \rightarrow\left[\begin{array}{c}
s_{x} x \\
s_{y} y \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}_{\mathbf{S}}=\left[\begin{array}{cc}
\mathbf{S}^{\prime} & \mathbf{0} \\
\mathbf{0} & \mathbf{1}
\end{array}\right] \cdot \mathbf{P}=\mathbf{S} \cdot \mathbf{P}
\end{aligned}
$$

Scaling \& Translating

Scaling \& Translating

$$
\mathbf{P}^{\prime \prime}=\mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Scaling \& Translating

$$
\begin{aligned}
& \left.\mathbf{P}=\mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \begin{array}{l}
x \\
y \\
1
\end{array}\right]= \\
& \left.=\left[\begin{array}{ccc}
s_{x} & 0 & t_{x} \\
0 & s_{y} & t_{y} \\
0 & 0 & 1
\end{array}\right] \begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
s_{x} x+t_{x} \\
s_{y} y+t_{y} \\
1
\end{array}\right]=\left[\begin{array}{cc}
S & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{aligned}
$$

Translating \& Scaling != Scaling \& Translating

$$
\mathbf{P}^{\prime \prime \prime}=\mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & \mathrm{~s}_{\mathrm{y}} & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathrm{s}_{\mathrm{x}} \mathrm{x}+\mathrm{t}_{\mathrm{x}} \\
\mathrm{~s}_{\mathrm{y}} \mathrm{y}+\mathrm{t}_{\mathrm{y}} \\
1
\end{array}\right]
$$

Translating \& Scaling != Scaling \& Translating

$$
\begin{gathered}
\left.\mathbf{P}^{\prime \prime \prime}=\mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & s_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right] \begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & \mathrm{~s}_{\mathrm{y}} & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathrm{s}_{\mathrm{x}} \mathrm{x}+\mathrm{t}_{\mathrm{x}} \\
\mathrm{~s}_{\mathrm{y}} \mathrm{y}+\mathrm{t}_{\mathrm{y}} \\
1
\end{array}\right] \\
\left.\mathbf{P}^{\prime \prime \prime}=\mathbf{S} \cdot \mathbf{T} \cdot \mathbf{P}=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right] \begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=
\end{gathered}
$$

Translating \& Scaling != Scaling \& Translating

$$
\begin{aligned}
& \mathbf{P}^{\prime \prime \prime}=\left.\mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right] \begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & \mathrm{~s}_{\mathrm{y}} & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathrm{s}_{\mathrm{x}} \mathrm{x}+\mathrm{t}_{\mathrm{x}} \\
\mathrm{~s}_{\mathrm{y}} \mathrm{y}+\mathrm{t}_{\mathrm{y}} \\
1
\end{array}\right] \\
&\left.\mathbf{P}^{\prime \prime \prime}=\mathbf{S} \cdot \mathbf{T} \cdot \mathbf{P}=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right] \begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]= \\
&=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & \mathrm{~s}_{\mathrm{x}} \mathrm{t}_{\mathrm{x}} \\
0 & \mathrm{~s}_{\mathrm{y}} & \mathrm{~s}_{\mathrm{y}} \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathrm{s}_{\mathrm{x}} \mathrm{x}+\mathrm{s}_{\mathrm{x}} \mathrm{t}_{\mathrm{x}} \\
\mathrm{~s}_{\mathrm{y}} \mathrm{y}+\mathrm{s}_{\mathrm{y}} \mathrm{t}_{\mathrm{y}} \\
1
\end{array}\right]
\end{aligned}
$$

Rotation Equations

Counter-clockwise rotation by an angle θ

$$
\begin{aligned}
& x^{\prime}=\cos \theta x-\sin \theta y \\
& y^{\prime}=\cos \theta y+\sin \theta x
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\mathbf{P}^{\prime}=\mathbf{R} \mathbf{P}
$$

Rotation Matrix Properties

$$
\begin{aligned}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=} & {\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] } \\
& \text { A 2D rotation matrix is } 2 \times 2
\end{aligned}
$$

Note: R belongs to the category of normal matrices
and satisfies many interesting properties:

$$
\begin{aligned}
& \mathbf{R} \cdot \mathbf{R}^{\mathrm{T}}=\mathbf{R}^{\mathrm{T}} \cdot \mathbf{R}=\mathbf{I} \\
& \operatorname{det}(\mathbf{R})=1
\end{aligned}
$$

Rotation Matrix Properties

- Transpose of a rotation matrix produces a rotation in the opposite direction

$$
\begin{aligned}
& \mathbf{R} \cdot \mathbf{R}^{\mathrm{T}}=\mathbf{R}^{\mathrm{T}} \cdot \mathbf{R}=\mathbf{I} \\
& \operatorname{det}(\mathbf{R})=1
\end{aligned}
$$

- The rows of a rotation matrix are always mutually perpendicular (a.k.a. orthogonal) unit vectors
- (and so are its columns)

Scaling + Rotation + Translation

$$
\begin{aligned}
& P^{\prime}=(T R S) P \\
& \mathbf{P}^{\prime}=\mathbf{T} \cdot \mathrm{R} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]= \\
& =\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & \mathrm{t}_{\mathrm{x}} \\
\sin \theta & \cos \theta & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1 \\
1
\end{array}\right]= \\
& =\left[\begin{array}{ll}
R & t \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
S & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cc}
R S & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{aligned}
$$

Outline

- Vectors and matrices
- Basic Matrix Operations
- Determinants, norms, trace
- Special Matrices
- Transformation Matrices
- Homogeneous coordinates
- Translation
- Matrix inverse

The inverse of a transformation matrix reverses its effect

- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculate

Inverse

- Given a matrix \mathbf{A}, its inverse \mathbf{A}^{-1} is a matrix such that $\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$
- E.g. $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]^{-1}=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & \frac{1}{3}\end{array}\right]$
- Inverse does not always exist. If \mathbf{A}^{-1} exists, \mathbf{A} is invertible or non-singular. Otherwise, it's singular.
- Useful identities, for matrices that are invertible:

$$
\begin{aligned}
\left(\mathbf{A}^{-1}\right)^{-1} & =\mathbf{A} \\
(\mathbf{A B})^{-1} & =\mathbf{B}^{-1} \mathbf{A}^{-1} \\
\mathbf{A}^{-T} & \triangleq\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}
\end{aligned}
$$

Matrix Operations

- Pseudoinverse
- Fortunately, there are workarounds to solve $\mathrm{AX}=\mathrm{B}$ in these situations. And python can do them!
- Instead of taking an inverse, directly ask python to solve for X in $A X=B$, by typing np.linalg.solve(A, B)
- Python will try several appropriate numerical methods (including the pseudoinverse if the inverse doesn't exist)
- Python will return the value of X which solves the equation
- If there is no exact solution, it will return the closest one
- If there are many solutions, it will return the smallest one

Matrix Operations

- Python example:

$$
\begin{aligned}
& A X=B \\
& A=\left[\begin{array}{ll}
2 & 2 \\
3 & 4
\end{array}\right], B=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \gg \text { import numpy as np } \\
& \gg \mathbf{x}=\text { np.linalg.solve(} \mathbf{A}, \mathbf{B} \text {) } \\
& \mathbf{x ~}=\begin{array}{r}
1.0000 \\
-0.5000
\end{array}
\end{aligned}
$$

Outline

- Vectors and matrices
- Basic Matrix Operations
- Determinants, norms, trace
- Special Matrices
- Transformation Matrices
- Homogeneous coordinates
- Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculate

The rank of a transformation matrix
tells you how many dimensions it transforms a vector to.

Linear independence

- Suppose we have a set of vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$
- If we can express \mathbf{v}_{1} as a linear combination of the other vectors $\mathbf{v}_{2} \ldots \mathbf{v}_{\mathrm{n}^{\prime}}$, then \mathbf{v}_{1} is linearly dependent on the other vectors.
- The direction \mathbf{v}_{1} can be expressed as a combination of the directions $\mathbf{v}_{2} \ldots \mathbf{v}_{\mathrm{n}}$. (E.g. $\mathbf{v}_{1}=.7 \mathbf{v}_{2}-.7 \mathbf{v}_{4}$)

Linear independence

- Suppose we have a set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{n}}$
- If we can express \mathbf{v}_{1} as a linear combination of the other vectors $\mathbf{v}_{2} \ldots \mathbf{v}_{n^{\prime}}$, then \mathbf{v}_{1} is linearly dependent on the other vectors.
- The direction \mathbf{v}_{1} can be expressed as a combination of the directions $\mathbf{v}_{2} \ldots \mathbf{v}_{\mathrm{n}}$. (E.g. $\mathbf{v}_{1}=.7 \mathbf{v}_{2}-.7 \mathbf{v}_{4}$)
- If no vector is linearly dependent on the rest of the set, the set is linearly independent.
- Common case: a set of vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ is always linearly independent if each vector is perpendicular to every other vector (and non-zero)

Linear independence

Linearly independent set Not linearly independent

Matrix rank

- Column/row rank
- Column rank always equals row rank
- Matrix rank

$$
\operatorname{rank}(\mathbf{A}) \triangleq \operatorname{col}-\operatorname{rank}(\mathbf{A})=\operatorname{row}-\operatorname{rank}(\mathbf{A})
$$

Matrix rank

- For transformation matrices, the rank tells you the dimensions of the output
- E.g. if rank of \mathbf{A} is 1 , then the transformation

$$
p^{\prime}=A p
$$

maps points onto a line.

- Here's a matrix with rank 1:

$$
\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right] \times\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+y \\
2 x+2 y
\end{array}\right] \leftarrow \underset{\substack{\text { All points get } \\
\text { mapped to } \\
\text { the line } y=2 x}}{\text { and }}
$$

Matrix rank

- If an $m \times m$ matrix is rank m, we say it's "full rank"
- Maps an $m \times 1$ vector uniquely to another $m \times 1$ vector
- An inverse matrix can be found
- If rank < m, we say it's "singular"
- At least one dimension is getting collapsed. No way to look at the result and tell what the input was
- Inverse does not exist
- Inverse also doesn't exist for non-square matrices

Outline

- Vectors and matrices
- Basic Matrix Operations
- Determinants, norms, trace
- Special Matrices
- Transformation Matrices
- Homogeneous coordinates
- Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors(SVD)
- Matrix Calculus

Eigenvector and Eigenvalue

- An eigenvector \mathbf{x} of a linear transformation A is a non-zero vector that, when A is applied to it, does not change direction.

$$
A x=\lambda x, \quad x \neq 0
$$

Eigenvector and Eigenvalue

- An eigenvector \mathbf{x} of a linear transformation A is a non-zero vector that, when A is applied to it, does not change direction.
- Applying A to the eigenvector only scales the eigenvector by the scalar value λ, called an eigenvalue.

$$
A x=\lambda x, \quad x \neq 0
$$

Eigenvector and Eigenvalue

- We want to find all the eigenvalues of A :

$$
A x=\lambda x, \quad x \neq 0
$$

- Which can we written as:

$$
A x=(\lambda I) x \quad x \neq 0
$$

- Therefore:

$$
(\lambda I-A) x=0, \quad x \neq 0 .
$$

Eigenvector and Eigenvalue

- We can solve for eigenvalues by solving:

$$
(\lambda I-A) x=0, \quad x \neq 0 .
$$

- Since we are looking for non-zero \mathbf{x}, we can instead solve the above equation as:

$$
|(\lambda I-A)|=0 .
$$

Properties

- The trace of a A is equal to the sum of its eigenvalues:

$$
\operatorname{tr} A=\sum_{i=1}^{n} \lambda_{i} .
$$

- The determinant of A is equal to the product of its eigenvalues

$$
|A|=\prod_{i=1}^{n} \lambda_{i} .
$$

- The rank of A is equal to the number of non-zero eigenvalues of A.
- The eigenvalues of a diagonal matrix $D=\operatorname{diag}(\mathrm{d} 1, \ldots \mathrm{dn})$ are just the diagonal entries $\mathrm{d} 1, \ldots \mathrm{dn}$

Spectral theory

- We call an eigenvalue λ and an associated eigenvector an eigenpair.
- The space of vectors where $(A-\lambda I)=0$ is often called the eigenspace of A associated with the eigenvalue λ.
- The set of all eigenvalues of A is called its spectrum:

$$
\sigma(A)=\{\lambda \in \mathbb{C}: \lambda I-A \text { is singular }\} .
$$

Spectral theory

- The magnitude of the largest eigenvalue (in magnitude) is called the spectral radius

$$
\rho(A)=\max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right\}
$$

- Where C is the space of all eigenvalues of A

Spectral theory

- The spectral radius is bounded by infinity norm of a matrix:

$$
\rho(A)=\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{1 / k}
$$

- Proof: Turn to a partner and prove this!

Spectral theory

- The spectral radius is bounded by infinity norm of a matrix:

$$
\rho(A)=\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{1 / k}
$$

- Proof: Let λ and v be an eigenpair of A :

$$
|\lambda|^{k}\|\mathbf{v}\|=\left\|\lambda^{k} \mathbf{v}\right\|=\left\|A^{k} \mathbf{v}\right\| \leq\left\|A^{k}\right\| \cdot\|\mathbf{v}\|
$$

and since $\mathbf{v} \neq 0$ we have

$$
|\lambda|^{k} \leq\left\|A^{k}\right\|
$$

and therefore

$$
\rho(A) \leq\left\|A^{k}\right\|^{\frac{1}{k}}
$$

Diagonalization

- An $n \times n$ matrix A is diagonalizable if it has n linearly independent eigenvectors.
- Most square matrices (in a sense that can be made mathematically rigorous) are diagonalizable:
- Normal matrices are diagonalizable
- Matrices with n distinct eigenvalues are diagonalizable

Lemma: Eigenvectors associated with distinct eigenvalues are linearly independent.

Diagonalization

- An $n \times n$ matrix A is diagonalizable if it has n linearly independent eigenvectors.
- Most square matrices are diagonalizable:
- Normal matrices are diagonalizable
- Matrices with n distinct eigenvalues are diagonalizable

Lemma: Eigenvectors associated with distinct eigenvalues are linearly independent.

Diagonalization

- Eigenvalue equation:

$$
\begin{array}{r}
A V=V D \\
A=V D V^{-1}
\end{array}
$$

- Where D is a diagonal matrix of the eigenvalues

Diagonalization

- Eigenvalue equation:

$$
\begin{array}{r}
A V=V D \\
A=V D V^{-1}
\end{array}
$$

- Assuming all λ_{i} 's are unique:

$$
A=V D V^{T}
$$

- Remember that the inverse of an ortnogonal matrix is just its transpose and the eigenvectors are orthogonal

Symmetric matrices

- Properties:
- For a symmetric matrix A, all the eigenvalues are real.
- The eigenvectors of A are orthonormal.

$$
A=V D V^{T}
$$

Symmetric matrices

- Therefore:

$$
x^{T} A x=x^{T} V D V^{T} x=y^{T} D y=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2}
$$

- where

$$
y=V^{T} x
$$

- So, what can you say about the vector x that satisfies the following optimization?

$$
\max _{x \in \mathbb{R}^{n}} \quad x^{T} A x \quad \text { subject to }\|x\|_{2}^{2}=1
$$

Symmetric matrices

- Therefore:

$$
x^{T} A x=x^{T} V D V^{T} x=y^{T} D y=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2}
$$

- where

$$
y=V^{T} x
$$

- So, what can you say about the vector x that satisfies the following optimization? $\max _{x \in \mathbb{R}^{n}} x^{T} A x \quad$ subject to $\|x\|_{2}^{2}=1$
- Is the same as finding the eigenvector that corresponds to the largest eigenvalue of A .

Some applications of Eigenvalues

- PageRank
- Schrodinger's equation
- PCA
- We are going to use it to compress images in future classes

Outline

- Vectors and matrices
- Basic Matrix Operations
- Determinants, norms, trace
- Special Matrices
- Transformation Matrices
- Homogeneous coordinates
- Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors(SVD)
- Matrix Calculus

Matrix Calculus - The Gradient

- Let a function $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ take as input a matrix A of size $m \times n$ and return a real value.
- Then the gradient of f :

$$
\nabla_{A} f(A) \in \mathbb{R}^{m \times n}=\left[\begin{array}{cccc}
\frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1}} \\
\frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f(A)}{\partial A_{m 1}} & \frac{\partial f(A)}{\partial A_{m 2}} & \cdots & \frac{\partial f(A)}{\partial A_{m n}}
\end{array}\right]
$$

Matrix Calculus - The Gradient

- Every entry in the matrix is: $\left.\nabla_{A} f(A)\right)_{i j}=\frac{\partial f(A)}{\partial A_{i j}}$.
- the size of $\nabla_{A} f(A)$ is always the same as the size of A. So if A is just a vector x :

$$
\nabla_{x} f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x(x)} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]
$$

Exercise

- Example:

For $x \in \mathbb{R}^{n}$, let $f(x)=b^{T} x$ for some known vector $b \in \mathbb{R}^{n}$

- Find:

$$
\frac{\partial f(x)}{\partial x_{k}}=?
$$

$$
f(x)=\left[\begin{array}{llll}
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right]^{T}\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

$$
\nabla_{x} f(x)=?
$$

Exercise

- Example:

For $x \in \mathbb{R}^{n}$, let $f(x)=b^{T} x$ for some known vector $b \in \mathbb{R}^{n}$

$$
\begin{gathered}
f(x)=\sum_{i=1}^{n} b_{i} x_{i} \\
\frac{\partial f(x)}{\partial x_{k}}=\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} b_{i} x_{i}=b_{k} .
\end{gathered}
$$

- From this we can conclude that:

$$
\nabla_{x} b^{T} x=b
$$

Matrix Calculus - The Gradient

- Properties
- $\nabla_{x}(f(x)+g(x))=\nabla_{x} f(x)+\nabla_{x} g(x)$.
- For $t \in \mathbb{R}, \nabla_{x}(t f(x))=t \nabla_{x} f(x)$.

Matrix Calculus - The Hessian

- The Hessian matrix with respect to \mathbf{x}, written $\nabla_{x}^{2} f(x)$ or simply as H:

$$
\nabla_{x}^{2} f(x) \in \mathbb{R}^{n \times n}=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1}\left(x x_{2}\right.} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right]
$$

- The Hessian of n-dimensional vector is the $\mathrm{n} \times \mathrm{n}$ matrix.

Matrix Calculus - The Hessian

- Each entry can be written as: $\left.\quad \nabla_{x}^{2} f(x)\right)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}$.
- Exercise: Why is the Hessian always symmetric?

Matrix Calculus - The Hessian

- Each entry can be written as: $\left.\nabla_{x}^{2} f(x)\right)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}$.
- The Hessian is always symmetric, because

$$
\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f(x)}{\partial x_{j} \partial x_{i}} .
$$

- This is known as Schwarz's theorem: The order of partial derivatives don't matter as long as the second derivative exists and is continuous.

Matrix Calculus - The Hessian

- Note that the hessian is not the gradient of whole gradient of a vector (this is not defined). It is actually the gradient of every entry of the gradient of the vector.

$$
\nabla_{x}^{2} f(x) \in \mathbb{R}^{n \times n}=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{f} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right]
$$

Matrix Calculus - The Hessian

- Eg, the first column is the gradient of $\frac{\partial f(x)}{\partial x_{1}}$

Exercise

- Example:
consider the quadratic function $f(x)=x^{T} A x$

$$
\begin{aligned}
f(x) & =\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j}
\end{aligned}
$$

Exercise

$$
\frac{\partial f(x)}{\partial x_{k}}=\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j}
$$

Exercise

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& =\frac{\partial}{\partial x_{k}}\left[\sum_{i \neq k} \sum_{j \neq k} A_{i j} x_{i} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+\sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right]
\end{aligned}
$$

Divide the summation into 3 parts depending on whether:

- $\mathrm{i}==\mathrm{k}$ or
- $j==k$

Exercise

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& \left.=\frac{\partial}{\partial x_{k}} \sum_{i \neq k} \sum_{j \neq k} A_{i j} x_{i} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+\sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right] \\
& =\sum_{i \neq k} A_{i k} x_{i}+\sum_{j \neq k} A_{k j} x_{j}+2 A_{k k} x_{k}
\end{aligned}
$$

Exercise

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& =\frac{\partial}{\partial x_{k}}\left[\sum_{i \neq k} \sum_{j \neq k} A_{i j} x_{i} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+\sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right] \\
& =\sum_{i \neq k} A_{i k} x_{i}+\sum_{j \neq k} A_{k j} x_{j}+2 A_{k k} x_{k}
\end{aligned}
$$

Exercise

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& =\frac{\partial}{\partial x_{k}}\left[\sum_{i \neq k} \sum_{j \neq k} A_{i j} x_{i} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+\sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right] \\
& =\sum_{i \neq k} A_{i k} x_{i}+\sum_{j \neq k} A_{k j} x_{j}+2 A_{k k} x_{k}
\end{aligned}
$$

Exercise

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& =\frac{\partial}{\partial x_{k}}\left[\sum_{i \neq k} \sum_{j \neq k} A_{i j} x_{i} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+\sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right. \\
& =\sum_{i \neq k} A_{i k} x_{i}+\sum_{j \neq k} A_{k j} x_{j}+2 A_{k k} x_{k}
\end{aligned}
$$

Exercise

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& =\frac{\partial}{\partial x_{k}}\left[\sum_{i \neq k} \sum_{j \neq k} A_{i j} x_{i} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+\sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right] \\
& =\sum_{i \neq k} A_{i k} x_{i}+\sum_{j \neq k} A_{k j} x_{j}+2 A_{k k} x_{k}
\end{aligned}
$$

Exercise

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& =\frac{\partial}{\partial x_{k}}\left[\sum_{i \neq k} \sum_{j \neq k} A_{i j} x_{i} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+\sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right] \\
& =\sum_{i \neq k} A_{i k} x_{i}+\sum_{j \neq k} A_{k j} x_{j}+2 A_{k k} x_{k} \\
& =\sum_{i=1}^{n} A_{i k} x_{i}+\sum_{j=1}^{n} A_{k j} x_{j}=2 \sum_{i=1}^{n} A_{k i} x_{i}
\end{aligned}
$$

Exercise

$$
\begin{gathered}
f(x)=x^{T} A x \\
f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
\frac{\partial^{2} f(x)}{\partial x_{k} \partial x_{\ell}}=\frac{\partial}{\partial x_{k}}\left[\frac{\partial f(x)}{\partial x_{\ell}}\right]=\frac{\partial}{\partial x_{k}}\left[\sum_{i=1}^{n} A_{\ell i} x_{i}\right]
\end{gathered}
$$

Exercise

$$
\begin{gathered}
f(x)=x^{T} A x \\
f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
\frac{\partial^{2} f(x)}{\partial x_{k} \partial x_{\ell}}=\frac{\partial}{\partial x_{k}}\left[\frac{\partial f(x)}{\partial x_{\ell}}\right]=\frac{\partial}{\partial x_{k}}\left[\sum_{i=1}^{n} A_{\ell i} x_{i}\right] \\
= \\
2 A_{\ell k}=2 A_{k \ell}
\end{gathered}
$$

Exercise

$$
\begin{gathered}
f(x)=x^{T} A x \\
f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
\frac{\partial^{2} f(x)}{\partial x_{k} \partial x_{\ell}}=\frac{\partial}{\partial x_{k}}\left[\frac{\partial f(x)}{\partial x_{\ell}}\right]=\frac{\partial}{\partial x_{k}}\left[\sum_{i=1}^{n} 2 A_{k i} x_{i}\right] \\
\left.=2 A_{\ell_{k}}=2 A_{k \ell}\right] \\
\nabla_{x}^{2} f(x)=2 A
\end{gathered}
$$

What we have learned

- Vectors and matrices
- Basic Matrix Operations
- Special Matrices
- Transformation Matrices
- Homogeneous coordinates
- Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculate

