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Unsupervised Learning: Autoencoders
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Unsupervised Learning: Variational Autoencoders
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Generative Adversarial Networks: Idea
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Generative Adversarial Networks: Idea
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Generative Adversarial Networks

Real or Fake
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Generative Adversarial Networks

Real or Fake
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Minimax objective function:

min max [Emmm log Do, (2) + Eznp(z) log(1 — D, (Go, (2)))]
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Distributions during training
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GAN: Sample Architecture (DC-GAN)

GGenerator Discriminator

Froject and reshape
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Generated Samples

MNIST CIFAR 10
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Bidirectional GAN (BIGAN)

features
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Conditional GAN (cGAN)

Generator Discriminator

¢: train ‘

Normal distribution z ‘

* ‘ . . scalar
5 ‘ (better)

G » Image x = G(c,z)
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Conditional GAN (cGAN)

Generator Discriminator

¢: train ’

Normal distribution z ‘

G » Image x = G(c,z)
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Pix2Pix: Type of cGAN

L1 loss
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CycleGAN: Unsupervised Pix2Pix
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CycleGAN: Unsupervised Pix2Pix
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CycleGAN Results

Summer _ Winter

photo —>Monet : horse — zebra winter —> summer
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Progressive Growing of GANs

G Latent Latent Latent
¥ L v
| 4x4 | | 4x4 | T axa |
: [ %8 ] rr 11
i [ |
|
i H 1
! ! '
; ; [
: 1024x1024
. B. - B
. i Reals - 'Reals i | Reals
D L H Y ¥
i : 1024x1024
II
|
|
Y v [ ]
L 88 | . 3
| 4xa | | 4x4 T 4axa |
Training progresses
PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING



Progressive GAN Results

Celebrities Bedrooms Objects
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Application: Neural Style transfer

Merger
Content extractor
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Application: 3D GAN
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