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The issues…

• salient – standing out from the rest, 

noticeable, conspicous, prominent

• scale – find the best scale for a feature

• image description – create a descriptor 

for use in object recognition
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Early Vision Motivation

• pre-attentive stage: features pop out

• attentive stage: relationships between 

features and grouping
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Bags of Words
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Detection of Salient Features for an 

Object Class
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How do we do this?

1. fixed size windows 

(simple approach)

2. Harris detector, 

Lowe detector, etc.

3. Kadir’s approach
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Kadir’s Approach

• Scale is intimately related to the problem 

of determining saliency and extracting 

relevant descriptions.

• Saliency is related to the local image 

complexity, ie. Shannon entropy.

• entropy definition   H = -∑ Pi log2 Pi
i in set 

of interest
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Specifically

• x is a point on the image

• Rx is its local neighborhood

• D is a descriptor and has values {d1, ... dr}.

• PD,Rx(di) is the probability of descriptor D taking the 

value di in the local region Rx. (The normalized 

histogram of the gray tones in a region estimates 

this probability distribution.)
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Local Histograms of Intensity

Neighborhoods with structure have flatter distributions

which converts to higher entropy.
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Problems Kadir wanted to solve

1. Scale should not be a global, preselected 
parameter

2. Highly textured regions can score high 
on entropy, but not be useful 

3. The algorithm should not be sensitive to 
small changes in the image or noise.
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Kadir’s Methodology

• use a scale-space approach

• features will exist over multiple scales

– Berghoml (1986) regarded features (edges) that 

existed over multiple scales as best.

• Kadir took the opposite approach.

– He considers these too self-similar.

– Instead he looks for peaks in (weighted) entropy over 

the scales.
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The Algorithm

1. For each pixel location x

a. For each scale s between smin and smax

i. Measure the local descriptor values within a 

window of scale s

ii. Estimate the local PDF (use a histogram)

b. Select scales (set S) for which the entropy is 

peaked (S may be empty)

c. Weight the entropy values in S by the sum 

of absolute difference of the PDFs of the 

local descriptor around S.
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Finding salient points
• the math for saliency discretized

( ) ( )

xs,

s

x

xs

xs

xsxsxs

xs

xsxs

xsxs

region in   of  valuesof histogram)(

domain feature level-low

norientatio ty,eccentrici scale,r,s,  

point

)()(
12

),(

)(log)(),(

),(),(),(

,

,1,

2

,2,

Ddp

D

dpdp
s

s
W

dpdpH

WHY

Dd

D

Dd

D

DDD

=

=

==

=

−
=

−=

=







−−





• saliency

• entropy

• weight

based on

difference

between

scales

probability of descriptor D taking value d in 

the region centered at x with scale s
X

s
(gray tones)

= normalized histogram count for the bin representing gray tone d.
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Picking salient points and their scales
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Getting rid of texture
• One goal was to not select 

highly textured regions such 
as grass or bushes, which 
are not the type of objects 
the Oxford group wanted to 
recognize

• Such regions are highly 
salient with just entropy, 
because they contain a lot of 
gray tones in roughly equal 
proportions

• But they are similar at 
different scales and thus the 
weights make them go away
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Salient Regions

• Instead of just selecting the most salient points 
(based on weighted entropy), select salient 
regions (more robust).

• Regions are like volumes in scale space.

• Kadir used clustering to group selected points 
into regions.

• We found the clustering was a critical step.
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Kadir’s clustering (VERY ad hoc)

• Apply a global threshold on saliency.

• Choose the highest salient points (50% works well).

• Find the K nearest neighbors (K=8 preset)

• Check variance at center points with these neighbors.

• Accept if far enough away from existant clusters and 
variance small enough.

• Represent with mean scale and spatial location of the 
K points

• Repeat with next highest salient point
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More examples
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Robustness Claims

• scale invariant (chooses its scale)

• rotation invariant (uses circular regions 
and histograms)

• somewhat illumination invariant (why?)

• not affine invariant (able to handle small 
changes in viewpoint)
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More Examples
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Temple
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Capitol
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Houses and Boats
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Houses and Boats
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Sky Scraper
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Car
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Trucks
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Fish
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Other …
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Symmetry and More
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Benefits
• General feature: not tied to any specific object

• Can be used to detect rather complex objects that are 
not all one color

• Location invariant, rotation invariant

• Selects relevant scale, so scale invariant

• What else is good?

• Anything bad?



Object Recognition with Interest Operators

• Object recognition started with line segments.

- Roberts recognized objects from line segments

and junctions.

- This led to systems that extracted linear features.

- CAD-model-based vision works well for industrial.

• An “appearance-based approach” was first developed

for face recognition and later generalized up to a point.

• The interest operators have led to a new kind of

recognition by “parts” that can handle a variety of

objects that were previously difficult or impossible.
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Object Class Recognition

by Unsupervised Scale-Invariant Learning

R. Fergus, P. Perona, and A. Zisserman

Oxford University and Caltech

CVPR 2003 

won the best student paper award

CVPR 2013

won the best 10-year award
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Goal:

• Enable Computers to 

Recognize Different 

Categories of Objects 

in Images. 
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Approach

• An object is a constellation of parts (from Burl, Weber 
and Perona, 1998).

• The parts are detected by an interest operator (Kadir’s).

• The parts can be recognized by appearance.

• Objects may vary greatly in scale.

• The constellation of parts for a given object is learned 
from training images
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Components

• Model

– Generative Probabilistic Model including

Location, Scale, and Appearance of Parts

• Learning

– Estimate Parameters Via EM Algorithm

• Recognition

– Evaluate Image Using Model and Threshold
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Model: Constellation Of Parts

Fischler & Elschlager, 1973

f Yuille, 91

f Brunelli & Poggio, 93

f Lades, v.d. Malsburg et al. 93

f Cootes, Lanitis, Taylor et al. 95

f Amit & Geman, 95, 99 

f Perona et al. 95, 96, 98, 00
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Parts Selected by 

Interest Operator
•Kadir and Brady's Interest Operator. 
•Finds Maxima in Entropy Over Scale and Location
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Representation of Appearance

11x11 patch

c
1

c
2

Normalize

Projection onto

PCA basis

c
15

121 dimensions was too big, so they used PCA to reduce to 10-15.
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Learning a Model

• An object class is represented by a generative 
model with P parts and a set of parameters .

• Once the model has been learned, a decision 
procedure must determine if a new image 
contains an instance of the object class or not.

• Suppose the new image has N interesting 
features with locations X, scales S and 
appearances A. 
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Probabilistic Model
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• X is a description of the shape of the object (in terms of locations of parts)

• S is a description of the scale of the object

• A is a description of the appearance of the object

• θ is the (maximum likelihood value of) the parameters of the object

• h is a hypothesis: a set of parts in the image that might be the parts of the object

• H is the set of all possible hypotheses for that object in that image.

• For N features in the image and P parts in the object, its size is O(NP)



Appearance

Gaussian Part Appearance PDF Gausian Appearance PDF

The appearance (A) of each part p

has a Gaussian density with

mean cp and covariance VP.

Object                                               Background

Background model has mean cbg

and covariance Vbg.
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Shape as Location

Gaussian Shape PDF Uniform Shape PDF

Object                                                  Background

Object shape is represented by a joint Gaussian density of the locations (X) 

of features within a hypothesis transformed into a scale-invariant space.
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Scale

Prob. of detection
Gaussian 

Relative Scale PDF

Log(scale)

0.8 0.75 0.9

The relative scale of each part is modeled by a Gaussian density with

mean tp and covariance Up. 
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Occlusion and Part Statistics
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This was very complicated and turned out to not work

well and not be necessary, in both Fergus’s work and

other subsequent works.



Learning

• Train Model Parameters 

Using EM:
• Optimize Parameters

• Optimize Assignments

• Repeat Until Convergence

scale

location

appearance

occlusion
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Recognition

Make this likelihood ratio:

greater than a threshold.
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RESULTS

• Initially tested on the Caltech-4 data set

– motorbikes

– faces

– airplanes

– cars

• Now there is a much bigger data set: the 

Caltech-101 

http://www.vision.caltech.edu/archive.html
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http://www.vision.caltech.edu/archive.html


MotorbikesEqual error rate: 7.5%
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Background Images
It learns that these are NOT motorbikes.
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Frontal facesEqual error rate: 4.6%
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AirplanesEqual error rate: 9.8%
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Scale-Invariant CarsEqual error rate: 9.7%
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Accuracy

Initial Pre-Scaled Experiments
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Early Data Set: The CalTech 4



Available Today
• CalTech 101 and Caltech 256

• ImageNet

• Pascal VOC dataset

• CIFAR-10

• MS Coco

• Cityscapes

https://analyticsindiamag.com/10-open-

datasets-you-can-use-for-computer-vision-

projects/
57

https://analyticsindiamag.com/10-open-datasets-you-can-use-for-computer-vision-projects/


Content-Based Image Retrieval
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• Queries
• Commercial Systems
• Retrieval Features
• Indexing in the FIDS System
• Lead-in to Object Recognition
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Content-based Image Retrieval 

(CBIR)
Searching a large database for images that 

match a query:

– What kinds of databases?

– What kinds of queries?

– What constitutes a match?

– How do we make such searches efficient?
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Applications

– Art Collections 

e.g. Fine Arts Museum of San Francisco

– Medical Image Databases

CT, MRI, Ultrasound, The Visible Human

– Scientific Databases

e.g. Earth Sciences

– General Image Collections for Licensing

Corbis, Getty Images

– The World Wide Web

Google, Microsoft, etc
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What is a query?

– an image you already have

– a rough sketch you draw

– a symbolic description of what you want

e.g. an image of a man and a woman on

a beach
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Some Systems You Can Try

• Corbis sells sold high-quality images for use in advertising,
marketing, illustrating, etc. Corbis was sold to a Chinese 
company, but

◼ Getty images now provides the image sales.

• http://www.gettyimages.com/search/2/image?excludenudity=true&sort=best

http://www.gettyimages.com/search/2/image?excludenudity=true&sort=best


Google Image
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• Google Images
http://www.google.com/imghp

Try the camera icon.

http://www.google.com/imghp


Microsoft Bing
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• http://www.bing.com/

http://www.bing.com/
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Problem with Text-Based Search

• Retrieval for pigs for the color chapter of my book

• Small company (was called Ditto)

• Allows you to search for pictures from web pages
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Features

• Color (histograms, gridded layout, wavelets)

• Texture (Laws, Gabor filters, local binary pattern)

• Shape (first segment the image, then use statistical

or structural shape similarity measures)

• Objects and their Relationships 

This is the most powerful, but you have to be able to

recognize the objects!
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Color Histograms
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Gridded Color

Gridded color distance is the sum of the color distances
in each of the corresponding grid squares.

What color distance would you use for a pair of grid squares?

1 12 2

3 34 4
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Color Layout 

(IBM’s Gridded Color)
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Texture Distances

• Pick and Click (user clicks on a pixel and system
retrieves images that have in them a region with
similar texture to the region surrounding it.

• Gridded (just like gridded color, but use texture).

• Histogram-based (e.g. compare the LBP histograms).
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Laws Texture
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Shape Distances

• Shape goes one step further than color and texture.

• It requires identification of regions to compare.

• There have been many shape similarity measures
suggested for pattern recognition that can be used
to construct shape distance measures.
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Global Shape Properties:

Projection Matching

0
4
1
3
2
0

0   4   3   2   1   0

In projection matching, the horizontal and vertical
projections form a histogram.

Feature Vector
(0,4,1,3,2,0,0,4,3,2,1,0)

What are the weaknesses of this method? strengths?
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Global Shape Properties:

Tangent-Angle Histograms

135

0   30     45           135

Is this feature invariant to starting point?
Is it invariant to size, translation, rotation?



75

Boundary Matching

• Fourier Descriptors

• Sides and Angles

• Elastic Matching 

The distance between query shape and image shape
has two components:

1. energy required to deform the query shape into
one that best matches the image shape

2. a measure of how well the deformed query matches
the image
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Del Bimbo Elastic Shape Matching

query retrieved images
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Regions and Relationships

• Segment the image into regions

• Find their properties and interrelationships

• Construct a graph representation with
nodes for regions and edges for 
spatial relationships

• Use graph matching to compare images

Like 
what?



Blobworld (Carson et al, 1999)

• Segmented the query (and all database images) 

using EM on color+texture

• Allowed users to select the most important region 

and what characteristics of it (color, texture, location)

• Asked users if the background was also important

78
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Tiger Image as a Graph 

(motivated by Blobworld)

sky

sand

tiger grass

above
adjacent

above

inside

above above
adjacent

image

abstract regions
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Andy Berman’s FIDS System

multiple distance measures

Boolean and linear combinations

efficient indexing using images as keys
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Andy Berman’s FIDS System:

Use of key images and the triangle inequality

for efficient retrieval. d(I,Q) >= |d((I,K) – d(Q,K)|
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Andy Berman’s FIDS System:

Bare-Bones Triangle Inequality Algorithm

Offline

1. Choose a small set of key images

2. Store distances from database images to keys

Online (given query Q)

1. Compute the distance from Q to each key

2.  Obtain lower bounds on distances to database images

3.  Threshold or return all images in order of lower bounds
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Andy Berman’s FIDS System:



Different Features



Combined Features



Another example: different features



Combined Features



Another example: different features



Different ways for combination



Different weights on features
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Weakness of Low-level Features

▪Can’t capture the high-level concepts
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Yi Li’s Overall Approach

• Develop object recognizers for common objects

• Use these recognizers to design a new set of both

low- and mid-level features

• Design a learning system that can use these 

features to recognize classes of objects
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Building Features: 

Consistent Line Clusters 

(CLC)
A Consistent Line Cluster is a set of lines 
that are homogeneous in terms of some line 
features.

◼Color-CLC: The lines have the same color 
feature.

◼Orientation-CLC: The lines are parallel to each 
other or converge to a common vanishing point.

◼Spatially-CLC: The lines are in close proximity 
to each other.
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Experimental Evaluation

• Object Recognition 

– 97 well-patterned buildings (bp): 97/97

– 44 not well-patterned buildings (bnp): 42/44

– 16 not patterned non-buildings (nbnp): 15/16

(one false positive)

– 25 patterned non-buildings (nbp): 0/25

• CBIR
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Experimental Evaluation

Well-Patterned Buildings
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Experimental Evaluation

Non-Well-Patterned Buildings
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Experimental Evaluation

Non-Well-Patterned Non-Buildings
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Experimental Evaluation
Well-Patterned Non-Buildings (false positives)
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Experimental Evaluation (CBIR)

Total Positive 
Classification

(#)

Total 
Negative 

Classification

(#)

False 
positive

(#)

False 
negative

(#)

Accuracy

(%)

Arborgreens 0 47 0 0 100

Campusinfall 27 21 0 5 89.6

Cannonbeach 30 18 0 6 87.5

Yellowstone 4 44 4 0 91.7
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Experimental Evaluation (CBIR)
False positives from Yellowstone


