Computer Vision

CSE 455
Interest Regions, Recognition,
and Matching

Linda Shapiro

Professor of Computer Science & Engineering
Professor of Electrical Engineering



The Kadir Operator
Saliency, Scale and Image
Description

Timor Kadir and Michael Brady
University of Oxford



The Issues...

 salient — standing out from the rest,
noticeable, conspicous, prominent

 scale — find the best scale for a feature

* Image description — create a descriptor
for use In object recognition



Early Vision Motivation

* pre-attentive stage: features pop out

* attentive stage: relationships between
features and grouping






Detection of Salient Features for an
Object Class
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How do we do this?

. fixed size windows
(simple approach)

. Harris detector,
Lowe detector, etc.

. Kadir's approach




Kadir's Approach

« Scale is intimately related to the problem
of determining saliency and extracting
relevant descriptions.

» Saliency is related to the local image
complexity, ie. Shannon entropy.

* entropy definition H=-> P.log, P,
I in set
of interest



Specifically

X IS a point on the image
R, Is its local neighborhood
D is a descriptor and has values {d,, ... d }.

P rx(d;) Is the probability of descriptor D taking the
value d; in the local region R,. (The normalized
histogram of the gray tones in a region estimates
this probability distribution.)

Hp gr, = —Z Pp g, (di)og, Pp g, (d;)




Local Hlstograms of Intensity
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Neighborhoods with structure have flatter distributions
which converts to higher entropy.
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Problems Kadir wanted to solve

1. Scale should not be a global, preselected
parameter

2. Highly textured regions can score high
on entropy, but not be useful

3. The algorithm should not be sensitive to
small changes in the image or noise.
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Kadir's Methodology

* use a scale-space approach

 features will exist over multiple scales

— Berghoml (1986) regarded features (edges) that
existed over multiple scales as best.

« Kadir took the opposite approach.
— He considers these too self-similar.

— Instead he looks for peaks in (weighted) entropy over
the scales.
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The Algorithm

1. For each pixel location x
a. For each scale s between smin and smax

I.  Measure the local descriptor values within a
window of scale s

Il. Estimate the local PDF (use a histogram)

b. Select scales (set S) for which the entropy is
peaked (S may be empty)

c. Weight the entropy values in S by the sum
of absolute difference of the PDFs of the
local descriptor around S.
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Finding salient points
* the math for saliency discretized

YD(S,X) — HD(S,X)WD(S,X)
Ho(s,X) ==, ps.x(d)10g2ps x(d)
S2
Wo(s:X) = 5 31[Pa(d) - P ()
X = point

s=(5.1,0) = (scale EGEG— )

D = low - level feature domain (gray tones)
Ds x(d) _ probability of descriptor D taking value d in

the region centered at x with scale s

= normalized histogram count for the bin representing gray tone d.

* saliency
* entropy

 weight
based on
difference
between
scales
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Picking salient points and their scales
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Getting rid of texture

One goal was to not select
highly textured regions such
as grass or bushes, which
are not the type of objects
the Oxford group wanted to
recognize

Such regions are highly
salient with just entropy,
because they contain a lot of
gray tones in roughly equal
proportions

But they are similar at
different scales and thus the
weights make them go away
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Salient Regions

Instead of just selecting the most salient points
(based on weighted entropy), select salient
regions (more robust).

Regions are like volumes in scale space.

Kadir used clustering to group selected points
INto regions.

We found the clustering was a critical step.
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Kadir's clustering (VERY ad hoc)

Apply a global threshold on saliency.

Choose the highest salient points (50% works well).
Find the K nearest neighbors (K=8 preset)

Check variance at center points with these neighbors.

Accept if far enough away from existant clusters and
variance small enough.

Represent with mean scale and spatial location of the
K points

Repeat with next highest salient point o



More examples
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Robustness Claims

scale invariant (chooses its scale)

rotation invariant (uses circular regions
and histograms)

somewhat illumination invariant (why?)

not affine invariant (able to handle small
changes in viewpoint)
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More Examples
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Houses and Boats
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Sky Scraper

26



27



Trucks
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Other
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Symmetry and More
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Benefits

General feature: not tied to any specific object

Can be used to detect rather complex objects that are
not all one color

Location invariant, rotation invariant
Selects relevant scale, so scale invariant
What else is good?

Anything bad?
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Object Recognition with Interest Operators

» Object recognition started with line segments.

- Roberts recognized objects from line segments
and junctions.

- This led to systems that extracted linear features.

- CAD-model-based vision works well for industrial.

* An “appearance-based approach” was first developed
for face recognition and later generalized up to a point.

* The interest operators have led to a new kind of
recognition by “parts” that can handle a variety of
objects that were previously difficult or impossible.
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Object Class Recognition
by Unsupervised Scale-Invariant Learning

R. Fergus, P. Perona, and A. Zisserman
Oxford University and Caltech

CVPR 2003
won the best student paper award
CVPR 2013
won the best 10-year award
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Goal:

 Enable Computers to
Recognize Different
Categories of Objects
In Images.
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TIPS AT

Airplanes Cars (Side) Cars (Rear) Spotted Cats Background
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Approach | ¢/

An object is a constellation of parts (from Burl, Weber
and Perona, 1998).

The parts are detected by an interest operator (Kadir’s).

The parts can be recognized by appearance.
Objects may vary greatly in scale.

The constellation of parts for a given object is learned
from training images
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Components

 Model

— Generative Probabilistic Model including
Location, Scale, and Appearance of Parts

* Learning
— Estimate Parameters Via EM Algorithm
* Recognition
— Evaluate Image Using Model and Threshold
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Model: Constellation Of Parts

MOUTH

Fischler & Elschlager, 1973

Yuille, 91

Brunelli & Poggio, 93

Lades, v.d. Malsburg et al. 93
Cootes, Lanitis, Taylor et al. 95
Amit & Geman, 95, 99

Perona et al. 95, 96, 98, 00




Parts Selected by
Interest Operator

Kadir and Brady's Interest Operator.
Finds Maxima in Entropy Over Scale and Location
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Representation of Appearance

Composite of features
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11x11 patch >. Normalize >E PCA basis

121 dimensions was too big, so they used PCA to reduce to 10-15.
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Learning a Model

* An object class is represented by a generative
model with P parts and a set of parameters 0.

* Once the model has been learned, a decision
procedure must determine if a new image
contains an instance of the object class or not.

« Suppose the new image has N interesting
features with locations X, scales S and
appearances A.
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Probabilistic Model

p(X.8,Al0) = ) p(X,S.A.h|0) =

heH
> p(A[X.S,h.6)p(X[S,h,6) p(S|h.6) p(h6)
]]EH‘L A e th g t T 7 —
Appearance Shape Rel. Scale Other

X is a description of the shape of the object (in terms of locations of parts)

S is a description of the scale of the object

A is a description of the appearance of the object

0 is the (maximum likelihood value of) the parameters of the object

h is a hypothesis: a set of parts in the image that might be the parts of the object
H is the set of all possible hypotheses for that object in that image.

For N features in the image and P parts in the object, its size is O(NP)
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Appearance

The appearance (A) of each part p
has a Gaussian density with
mean c, and covariance Vp.

Gaussian Part Appearance PDF

Background model has mean c,,
and covariance V.

Gausian Appearance PDF

Background 44



Shape as Location

Object shape is represented by a joint Gaussian density of the locations (X)
of features within a hypothesis transformed into a scale-invariant space.

Gaussian Shape PDF Uniform Shape PDF

m >3
> -

Object Background 45



Scale

The relative scale of each part is modeled by a Gaussian density with
mean t;, and covariance U,

Prob. of detection
Gaussian

A Relative Scale PDF

WA o5 [ors ] 05

Log(scale)
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Occlusion and Part Statistics

This was very complicated and turned out to not work
well and not be necessary, in both Fergus’s work and
other subsequent works.

a7



Learning

 Train Model Parameters
Using EM:
* Optimize Parameters

* Optimize Assignments
* Repeat Until Convergence

6 =1{p.S.c,V,M, p(d§),t, U}
location ‘ occlusion

appearance Scale

Orrr = argmazr p(X,S, A|#d)
a
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Recognition

Make this likelihood ratio:

p(Object| X, S, A)
p(No object| X, S, A}
p(X, S, A|Object) p(Object)

p(X, S, A|No object) p(No object)
p(X,S, Al #9) p(Object)
p(X,S, Alf,) p(No object)

greater than a threshold.
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RESULTS

* Initially tested on the Caltech-4 data set
— motorbikes
— faces
— airplanes
— cars

* Now there Is a much bigger data set: the
Caltech-101
http://www.vision.caltech.edu/archive.html
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Background Images

It learns that these are NOT motorbikes.
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Equal error rate: 9.8% A| rpla nNes

Airplane shape model
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cale-Invariant Cars

Cars (rear) scale—invariant shape model

Equal error rate: 9.
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Accuracy

Initial Pre-Scaled Experiments

Dataset Ours Others Ref.
Motorbikes 92.5 84 [17]
Faces 96 4 04 [19]
Aarplanes 90.2 68 [17]
Cars(Side) 88.5 79 [1]

Early Data Set: The CalTech 4




Avalilable Today
e CalTech 101 and Caltech 256

* ImageNet

» Pascal VOC dataset
 CIFAR-10

« MS Coco

» Cityscapes

https://analyticsindiamag.com/10-open-
datasets-you-can-use-for-computer-vision-
projects/
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Content-Based Image Retrieval

* Queries

« Commercial Systems

* Retrieval Features

 Indexing in the FIDS System
 Lead-in to Object Recognition
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Content-based Image Retrieval

(CBIR)
Searching a large database for images that

maftch a query:

— What kinds of databases?

— What kinds of queries?

— What constitutes a match?

— How do we make such searches efficient?
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Applications

— Art Collections

e.g. Fine Arts Museum of San Francisco
— Medical Image Databases

CT, MRI, Ultrasound, The Visible Human
— Scientific Databases

e.g. Earth Sciences
— General Image Collections for Licensing

— The World Wide Web
Google, Microsoft, etc

60



What 1s a query?

— an image you already have
— a rough sketch you draw

— a symbolic description of what you want
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Some Systems You Can Try

e Corbis 3ells sold high-quality images for use in advertising,
marketing, illustrating, etc. Corbis was sold to a Chinese
company, but

B Getty images now provides the image sales.

® http://www.gettyimages.com/search/2/image?excludenudity=true&sort=best
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Google Image

» Google Images
http://www.google.com/imghp

Try the camera icon.
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http://www.google.com/imghp

Microsoft Bing

« http://www.bing.com/
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http://www.bing.com/

Problem with Text-Based Search

e Retrieval for pigs for the color chapter of my book
e Small company (was called Ditto)

* Allows you to search for pictures from web pages
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Features

e Color (histograms, gridded layout, wavelets)
» Texture (Laws, Gabor filters, local binary pattern)

« Shape (first segment the image, then use statistical
or structural shape similarity measures)

* Objects and their Relationships

This is the most powerful, but you have to be able to
recognize the objects!
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Color Histograms

B wansp85.ps - GSview M= 3
File Edit Options “iew Orientation Media Help
File: transpB5.ps 72, 629pt Page: "5 1of1

[SEOID| & & | v [+ ]~ | || m

view full size | view full size |wiew full size | view full size

view full size | view full size |wiew full size | view full size

Figure 8.4: Results of 2 QBIC search bazed on color percentages: the query specified 40%
red, 30% yellow, and 10% black (images courtesy of Egames).

a Slalll % FastLane:Proposal Heview...l Micrusufl PowerPoint - [sh... ”@ transp85.ps - GSview




Gridded Color

Gridded color distance is the sum of the color distances
in each of the corresponding grid squares.

What color distance would you use for a pair of grid squares?
68



Color Layout
IBM’s Gridded Color

32 transp84_ps - GSview M=l B3
File Edit Options “iew Orientation Media Help
File: transpBd.ps 523, 362pt  Page: "4" 1 of1

Images 18 outof 41

[RESDID & [ & 1 |+ [l -~ | ||

view full size | view full size

view full size | view full size | view full size | view full size

Colum ns: Rows:

Figure §.3: Results of a2 QBIC search based on color layout similarity; the query is the
example image shown in the top keft position (images courtesy of Egames).
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Texture Distances

e Pick and Click (user clicks on a pixel and system
retrieves images that have in them a region with
similar texture to the region surrounding it.

e Gridded (just like gridded color, but use texture).

e Histogram-based (e.g. compare the LBP histograms).
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Laws Texture
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Figure 3.6: Results of an  image database search based on  tex-
ture  similarity (Images from the MIT Media Iab VisTex database:
http:/ fvismod www media mit edu frismod/imagery/ Vision Texture fristex. html).
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Shape Distances

e Shape goes one step further than color and texture.

o It requires identification of regions to compare.

e There have been many shape similarity measures
suggested for pattern recognition that can be used
to construct shape distance measures.
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Global Shape Properties:
Projection Matching

Feature Vector
(0I4I1I3I2IOIOI4I3IZI1IO)

oONNWKHFHL DNMNO

043 210

In projection matching, the horizontal and vertical
projections form a histogram.
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Global Shape Properties:
Tangent-Angle Histograms

135

0 30 45 135

Is this feature invariant to starting point?
Is it invariant to size, translation, rotation?
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Boundary Matching

e Fourier Descriptors
e Sides and Angles

e Elastic Matching

The distance between query shape and image shape
has two components:

1. energy required to deform the query shape into
one that best matches the image shape
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Del Bimbo Elastic Shape Matching

I
= Draw ske

-0

Template Image Actions

3:images/imgl.brt 0.901 4:images/img60.brt 0.900

query

retrieved images
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Regions and Relationships

e Segment the image into regions
e Find their and interrelationships
e Construct a graph representation with

nodes for regions and edges for
spatial relationships

e Use graph matching to compare images
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Blobworld (Carson et al, 1999)

« Segmented the query (and all database images)
using EM on color+texture

« Allowed users to select the most important region
and what characteristics of it (color, texture, location)

« Asked users if the background was also important

/8



Tiger Image as a Graph
(motivated by Blobworld)

adjacent

abstract regions
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multiple distance measures
Boolean and linear combinations
efficient indexing using images as keys

# demo: Fids - Netscape

File Edit “iew Go Communicator Help

I W 2 A N a S & O @
i Back Fopward  Feload Home Search  Metscape Prirt Security Shop Stop

v wtv Bookmarks J‘ Location:Ihttp:.-".-"www.c:s.washington.edu.-"research.-"imagedatabaseﬁdemox’fidsx’ j @'W’hat's Fielated

v InstantMessage whebbd ail Contact People ‘rellow Pages Download Ci Channelz

Fids demo

Check Out |

ﬁ\ Random |Go|ZoomIn Found 51 matches. Displaying 1- 6

distance measures loose ... strict

[T ColorHistL1 didied Al 5
[¥] ColotHistaxsxs

@ And & doule click on an

[ SobelEdgeHist  or image means
 gum & Setqueryl Go
" Zoomin

M 5tart | Iﬁ demo: Fids - Metscape G @3’ 10:38 AM

80



Use of key images and the triangle inequality
for efficient retrieval. d(1,Q) >= |d((I,K) — d(Q,K)|
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Bare-Bones Triangle Inequality Algorithm

Offline

1. Choose a small set of key images

2. Store distances from database images to keys
Online (given query Q)

1. Compute the distance from Q to each key

2. Obtain lower bounds on distances to database images

3. Threshold or return all images in order of lower bounds
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Flexible Image Database System:
Example

An example from our system using a simple
color measure.

#images in system: 37,748

threshold: 100 out of 1000

#images eliminated: 37,729
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Different Features

Found 18 matches. Displaying 1-6

Found 17 matches. Displaying 1- 6
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Combined Features

; Zoomln'il Found 94 matches. Displaying 1-6

‘i] Random | Go

distance measures  loose ... strict
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Another example: different features

: oomlan' Found 202 matches. Displaying 1-6

zOomm[Fl Found 91 matches. Displaying 1- 6 lq Random |

‘Z] Random | EIZoomlnI;‘ Found 7 matches. Displaying 1-6

distance measures  loose ... strict distance measures  loose ... strict distance measures  loose ... strict

[~ ColorHistL 14xdxd A-uibliiiol Wi [ ColorHistL14xdx4 ibplilil = o [ ColorHistL14xdx4 - et Ak
W ColorHistgigig  A---bpiiil 5 , [ ColoHistd®®  -rpiis - , [ ColorHistgi8x8  meeotpide -

[ SobelEdgeHist  A-hpiiil - - V SobelEdgeHist — me-iplilil 5 o [ SobelEdgeHist  ebptnle

[~ LBPHist e € 8un [~ LBPHist S ok: W LBPHist sl 5 € Sun

[~ fleshiness e [” fleshiness e [" fleshiness Ly
I~ Wavelets e [~ Wavelets Blfaiil [~ Wavelets il



Combined Features

ZoomlnIF‘ Found 33 matches. Displaying 1-6

l@ Random |Go|Zoomlnl;l Found 46 matches. Displaying 1-6
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Another example: different features

m Randomlﬁn Zoomlnlﬂ Found 2 matches. Displaying 1-2 H RandomlGolZoomlnIFl Found 125 matches. Displaying 1-6 ‘q Random|GolZo‘omln|;| Found 16 matches. Displaying1-6
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Different ways for combination

.........

H‘ Randomlﬁnllooninlﬂ Found 2 matches. Displaying 1-2 ‘q RandomlGolZoomlnIF' Found 157 matches. Displaying 1-6 IW Random|§§9§]loonunl;| Found 50 matches. Displaying 1-6
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Different weights on features

R] Randoml 9|Zoomln|;| Found 89 matches. Displaying 1-6
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Found 170 matches. Displaying 1-6

Zoomlnl-ﬂ Found 170 matches. Displaying 1-6 @
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o Randon |
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Weakness of Low-level Features

=Can’t capture the high-level concepts
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Yi Li’'s Overall Approach

e Develop object recognizers for common objects

e Use these recognizers to design a new set of both

low- and mid-level features

e Design a learning system that can use these

features to recognize classes of objects
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Building Features:
Consistent Line Clusters
(CLC)

A Consistent Line Cluster is a set of lines
that are homogeneous in terms of some line
features.

: The lines have the same color
feature.

: The lines are parallel to each
other or converge to a common vanishing point.

: The lines are in close proximity

to each other. o



Experimental Evaluation

* Object Recognition
— 97 well-patterned buildings (bp): 97/97
— 44 not well-patterned buildings (bnp): 42/44

— 16 not patterned non-buildings (nbnp): 15/16
(one false positive)

— 25 patterned non-buildings (nbp): 0/25
 CBIR
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Experimental Evaluation
Well-Patterned Buildings
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Experimental Evaluation
Non-Well-Patterned Buildings
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Experimental Evaluation
Non-Well-Patterned Non-Buildings

False positive
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Experimental Evaluation
Well-Patterned Non-BuiIdingS (false positives)
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Experimental Evaluation (CBIR)

Total

Total Positive : False False
e Negative iy . Accuracy
Classification P positive | negative
4 Classification 4 4 (%)
(#) #) (#) (#)
Arborgreens 0 47 0 0 100
Campusinfall 27 21 0 5 89.6
Cannonbeach 30 18 0 6 87.5
Yellowstone 4 44 4 0 91.7
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Experimental Evaluation (CBIR)

False positives from Yellowstone

102



