Computer Vision

CSE 455
More Matching

Linda Shapiro

Professor of Computer Science & Engineering
Professor of Electrical Engineering

Review

* Descriptors
 Matching

Simple Normalized Descriptor

interest point neighborhood around normalized neighborhood
interest point around interest point
501 45 56 200 156 145 1
46 201 200 155 0 1
85 101 105 116 100 96

The simple descriptor just subtracts the center value from each of
the neighbors, including itself to normalize for lighting and exposure.
—_—

 We can store this as a 1D vector to be efficient:
1561451 15501 116 10096

Properties of our Descriptor

* Translation Invariant

 Not scale invariant

* Not rotation invariant

 Somewhat invariant to lighting changes

e Let’s look at the SIFT descriptor, because it is
neavily used, even without using the SIFT key
noint detector.

* |t already solves the scale problem by computing
at multiple scales and keeping track.

Rotation invariance

Rotate patch according to its dominant gradient
orientation
« This puts the patches into a canonical orientation.

Image from Matthew Brown

Orientation Normalization

« Compute orientation histogram
* Select dominant orientation
« Normalize: rotate to fixed orientation

[Lowe, SIFT, 1999]

s .

Once we have found the key points and a dominant orientation for each,

we need to describe the (rotated and scaled) neighborhood about each.

128-dimensional vector

~ SIFT descriptor
Full version

« Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

« Compute an orientation histogram for each cell
« 16 cells * 8 orientations = 128 dimensional descriptor

a0
K

Image gradients Keypoint descriptor

Adapted from slide by David Lowe

| SIFT descriptor
Full version

* Divide the 16x16 window into a 4x4 grid of cells

« Compute an orientation histogram for each cell

fé y « 16 cells * 8 orientations = 128 dimensional descriptor
X _,_/‘/\

Matching with Features

*Detect feature points in both images

10

ith Features

ing w

Match
*Detect feature po

Images

in both

INtS

IrS

ing pa

*Find correspond

11

Find the best matches

* For each descriptor ain A, find its best match b in
B

A B M

 And store it in a vector of matches
 Note: this is abstract; see code for details.

12

* Larger Goal: Combine two or more
overlapping images to make one larger image

Slide credit: Vaibhav 1\?’/aish

http://robots.stanford.edu/cs223b07/notes/CS223B-L11-Panoramas.ppt

Simple case: translations

(x7,¥1)

Displacement of matchj = (X; — X, y,; — yz)

Solving for translations

* Using least squares

1 0 xh — 1y
L 0 1 Y1 — Y1
Yﬁ“ A~ 1 0 rh — o
| 01 [xt]: Ys — Y2
¢ :’ﬁ,'f)n : Yt .
1 0 T — Ty
_O 1 y;z_yn

Least squares

At=Db

e Find t that minimizes

|At —b|?
* To solve, form the normal equations
A"At=A"b
—1
t=(A"A) A'b

Affine transformations

O QLR

o o o

C
f
1 —

L
Y
1

How many unknowns?

How many equations per match?
X =ax+by+c;, y =dx +ey+f

How many matches do we need?

Affine transformations

 Residuals:

re(a,b,¢.d e f) = (ax; +by; + c) —
Iy, (CL, ba C, d? €, f) — (d;’]ﬂ'@ — €Y; T f) — y;

 Cost function:
C(a,b,c,d,e, f) =

T

1=1

18

Affine transformations

« Matrix form

C a1 oy 10 0 0 ° Cx T
0 0 0 = wy 1| _ . Y
a
2 y2 1 0 0 0 b rh
0 0 0 X9 Yo 1 C o 3/2
g =
e
o yn 1 0 0 0" I
0 0 0 x, Yyn 1 _ i _

N X 6 6x1 2nx 1

Solving for homographies

x - hoo hoi hoz | | @
Y, hio hi1 hio Y;
1 _hzohzl@__l_

D, e, e

Why is this now a variable and not just 1?

A homography is a projective object, in that it has no scale.
It is represented by the above matrix, up to scale.

* One way of fixing the scale is to set one of the coordinates to 1,
though that choice is arbitrary.

e But that’s what most people do and your assignment code does.

Solving for homographies

! hoo hoir ho2 | |
y: | = | hig h11 hio Yi
1 | hog ho1 hoo || 1]

hoor; + ho1y; + ho2
hoox; + h21y; + hoo
) = hiox; + h11y; + hio
hoow; + h21y; + hoo
Why the division?

r, —

hoox; + ho1y; + hoo
hior; + h11y; + hio

z;(hoow; + ho1y; + hoo)
y:(hoow; + ho1y; + hoo)

Solving for homographies

- hoo

z;(hoow; + ho1y; + hoo) = hoox; + ho1y; -
yi(hoom; + ho1y; + hoo) = hiox; + h119; A
e
ho1
hoo
z, yi 1 0 0 0 —a2la; —aly _x;] Zlo
11
0 0 0 z; vy 1 —ym; —vy; —v his
hoo
ho1
This is just for one pair of points. ho2 |

- hio

Direct Linear Transforms (n points)

hoo
_ | ho1 o
rx1 y1 1 0 O O —:13’1331 —x’lyl —a:"l hoo 0
O 0 0 21 y1 1 —yiz1 —¥iy1 - || hio 0
: hll = :
Tn yn 1 0 0 O —aban —alyn —2 hio 0
0 0 O @n yn 1 —ypon —Ypyn —Yn | | h2o 0 |
ho1
A
2n X 9 191 2n
Defines a least squares problem: minimize ||[Ah — 0||2

e Since h is only defined up to scale, solve for unit vector fl
e Solution: I = eigenvector of AT A with smallest eigenvalue
e Works with 4 or more points

Direct Linear Transforms

 Why could we not solve for the homography
in exactly the same way we did for the affine
transform, ie.

t=(ATA) ATb

Answer from Sameer Agarwal
(Dr. Rome in a Day)

* For an affine transform, we have equations of the form Ax, + b
=vy,, solvable by linear regression.

* For the homography, the equation is of the form
HX. ~ V¥, (homogeneous coordinates)

and the ~ means it holds only up to scale. The affine solution
does not hold.

Colosseum: 2,097 images, 819,242 points Trevi Fountain: 1,935 images, 1,055,153 points

25

Matching features

=i

amimal S
J{M.x}]ﬁ

1‘1:‘
b
o
RE= Sy
Ll | R 7=

il |

Ilhj uu‘l

J=4
[T 1
I“J; v

'y W
’

N i

What do we do about the “bad” matches?

26

RAndom SAmple Consensus

Select one match, count inliers

Inliers: matches that agree with a given match or (later) homography

27

RAndom SAmple Consensus

Select one match, count inliers

28

Least squares fit (from inliers)

=i

:ni i-.iii]_i

<t {
1 B0 v <
™ I T ‘
— .
| d ol
i 3
|
w .
/, :
i : : Ei
- [T «

Find “average” translation vector

29

LE
IR
i | ‘_{.Z ﬁﬁ

lu‘ml

iy |
'y

30

RANSAC for estimating homography

* RANSAC loop:

1. Select four feature pairs (at random)
<2. Compute homography H (exact)

3. Compute inliers where ||p;’, H pi|| < €

* Keep largest set of inliers

* Re-compute least-squares H estimate using all
of the inliers

Simple example: fit a line

e Rather than homography H (8 numbers)
fit y=ax+b (2 numbers a, b) to 2D pairs

32

Simple example: fit a line

* Pick 2 points
e Fitline
e Countinliers

3inliers O O

O O
0 O
O

33

Simple example: fit a line

* Pick 2 points
e Fitline
e Countinliers

4 inliers O O

—_— o0 o0—o—

o © O
O

34

Simple example: fit a line

Pick 2 points
Fit line
Count inliers

9 inliers

35

35

Simple example: fit a line

Pick 2 points
Fit line
Count inliers

8 inliers

36

36

Simple example: fit a line

* Use biggest set of inliers

* Do least-square fit

37

37

What still needs to be fixed?

* The planar projections may not work so well

* Your homework has extra credit for using
cylindrical projections instead.

e Here’s the idea.

Panorama algorithm:

Find corners in both images

Calculate descriptors

Match descriptors

RANSAC to find homography

Stitch together images with homography

Stitching panoramas:

- We know homography is right choice under certain assumption:

- Assume we are taking multiple images of planar object

3D

Object Plane

Image 1 Image 2

homography H

In practice:

In practice:

In pra

What’s happening?

What's happening?l\

\ \

What’s happening:

What’s happening?

T~

N

(]

What’s happening?

T~

What’s happening?

T~

What’s happening?

T~

N

What’s happening?

What’s happening?

T~

Very bad for big panoramas!

Very bad for big panoramas!

Very bad for big panoramas!

dllS .-

How do we fix it? Cylinders!

How do we fix.i

A 6\

HOW%\

\ /,

How do we fix.i

How do we fix it? Cylinders!

Calculate angle and height: v 2
0= (x-xc)/f *
h=(y-yc)/#

Find unit cylindrical coords:

X’ =sin(0)

Y =h

Z' = cos(0)

Project to image plane:
x'=tX'/Z' + xc
y' =tY'/Z' + yc

(xc,yc) = center of projection and f = focal length of camera

Dependant on focal length!

f =10,000

f =10,000

Does it work?

[—

Does it work?

Does it work?

C—

Does it work?

Does it work?

Does it work? Yay!

Where are we?

 We are going to build a panorama from two (or
more) images.

* We need to learn about
— Finding interest points
— Describing small patches about such points

— Finding matches between pairs of such points on two
images, using the descriptors

— Selecting the best set of matches and saving them

— Constructing homographies (transformations) from
one image to the other and picking the best one

— Stitching the images together to make the panorama

79

RANSAC for Homography

RANSAC for Homography

RANSAC for Homography

Image Blending

s wrong?

4

What

Feathering

Effect of window (ramp-width) size

Effect of window size

Good window size

What can we do

Wi instead?
Optimal™ window: smooth but not ghosted

Doesn’ t always work...

Pyramid blending

orange

(d)
Create a Laplacian pyramid, blend each level

. Burt, P. J. and Adelson, E. H., A Multiresolution Spline with Application to Image Mosaics, ACM Transactions on
Graphics, 42(4), October 1983, 217-236. http://persci.mit.edu/pub_pdfs/spline83.pdf

Alpha Blending

I3

I,

Optional: see Blinn (CGA, 1994) for details:
http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumber

=7531&prod=JNL&arnumber=310740&arSt=83&ared=87&arAu

hor=Blinn%2C+J.F.

Encoding blend weights: 1(x,y) = (R, aG, aB, a)

(a1R1, a1G1, a1B1) 4 (asRo, asGo, asBo) + (a3R3, a3G3, azB3)

coloratp =

Implement this in two steps:

a1+ ax + a3z

1. accumulate: add up the (a premultiplied) RGB values at each pixel

2. normalize: divide each pixel’ s accumulated RGB by its a value

http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumber=7531&prod=JNL&arnumber=310740&arSt=83&ared=87&arAuthor=Blinn,+J.F

Gain Compensation: Getting rid of artifacts

* Simple gain adjustment

— Compute average RGB intensity of each image in
overlapping region

— Normalize intensities by ratio of averages

Blending Comparison

S S

(d) With gain compensation and multi-band blending

Recognizing Panoramas

Ehe I

M,
~

Some of following material from Brown and Lowe 2003 talk Brown and Lowe 2003, 2007

Recognizing Panoramas

Input: N images

1. Extract SIFT points, descriptors from all
images

2. Find K-nearest neighbors for each point (K=4)

3. For each image

a) Select M candidate matching images by counting
matched keypoints (m=6)

b) Solve homography H; for each matched image

Recognizing Panoramas

Input: N images

1. Extract SIFT points, descriptors from all
images

2. Find K-nearest neighbors for each point (K=4)

3. For each image

a) Select M candidate matching images by counting
matched keypoints (m=6)

b) Solve homography H;; for each matched image
c) Decide if match is valid/pni >8 + 0.3.n¢)

keypoints in

inliers :
overlapping area

Recognizing Panoramas (cont.)

(now we have matched pairs of images)
4. Make a graph of matched pairs
Find connected components of the graph

A

Finding the panoramas

Finding the panoramas

Recognizing Panoramas (cont.)

(now we have matched pairs of images)
4. Find connected components

5. For each connected component
a) Solve for rotation and f
b) Project to a surface (plane, cylinder, or sphere)
c) Render with multiband blending

Finding the panoramas

Homework 3

CREATING PANORAMAS!

101

Useful structures (defined in image.h)

* Data structure for an point
typedef struct{

float x, y;
} point;

* Data structure for a descriptor

typedef struct{
point p; <-pixel location
int n; <-size of data
float *data;

} descriptor;

* Data structure for a match
typedef struct{

point p, g; <-matching
points

int ai, bi; <-matching
indices of descriptor arrays

float distance; <-dist.
between matching descriptors
} match;

102

Overall algorithm

image panorama_image(image a, image b, float sigma, float thresh, int
nms, float inlier_thresh, int iters, int cutoff)

{

// Calculate corners and descriptors
descriptor *ad = harris_corner_detector(a, sigma, thresh, nms, &an);

descriptor *bd = harris_corner _detector(b, sigma, thresh, nms, &bn);

// Find matches
match *m = match_descriptors(ad, an, bd, bn, &mn);

// Run RANSAC to find the homography
matrix H = RANSAC(m, mn, inlier_thresh, iters, cutoff);

// Stitch the images together with the homography
image combine = combine images(a, b, H);

return combine;

}

1. Harris corner detection

TODO #1.1: Compute structure matrix S

TODO #1.2: Compute cornerness response map R
from structure matrix S

TODO #1.3: Find local maxes in map R using non-
maximum suppression

TODO #1.4: Compute descriptors for final corners

TODO #1.1: structure matrix

e Compute Ix and ly using Sobel filters from HW?2

* Create an empty image of 3 channels
— Assign channel 1 to Ix?
— Assign channel 2 to ly?
— Assign channel 3to Ix * ly

* Compute weighted sum of neighbors
— smooth the image with a gaussian of given sigma

TODO #1.2: response map

* For each pixel of the given structure matrix S:

— Get Ix?, ly? and Ixly from the 3 channels
— Compute Det(S) = Ix? * ly?— Ixly * Ixly

— Compute Tr(S) = Ix? + ly?

— Compute R = Det(S) — 0.06 * Tr(S) * Tr(S)

TODO #1.3: NMS

* For each pixel ‘p’ of the given response map R

— get value(p)

— loop over all neighboring pixels ‘q" in a 2w+1 window
* +/-w around the current pixel location
e if value(q) > value (p), value(p) =-99999 (very low)

— set ‘p’ to value(p)

TODO #1.4: corner descriptors

Given: Response map after NMS
Initialize count; loop over each pixel

— if pixel value > threshold, increment count

Initialize descriptor array of size ‘count’
Loop over each pixel again

— if pixel value > threshold, create descriptor for that pixel

* use make_descriptor() defined in panorama_helpers.c

— add this new descriptor to the array

2. Matching descriptors

e TODO #2.1: Find best matches from descriptor

o_ 7

array “a” to descriptor array “b”

 TODO #2.2: Eliminate duplicate matches to
ensure one-to-one match between “a” and “b”

TODO #2.1: best matches

* For each descriptor ‘a/’ in array ‘a’:

— initialize min_distance and best_index

— for each descriptor ‘b’ in array ‘b”:
— compute L1 distance between a,and b,

 sum of absolute differences

— if distance < min_distance:

e update min_distance and best_index

TODO #2.2: remove duplicates

* |nitialize an array of Os called ‘seen’

* Loop over all matches:

— if b-index of current match is #1 in ‘seen’
» set the corresponding value in ‘seen’ to 1
* retain the match

— else, discard the match

3. Perform RANSAC

e TODO #3.1: Implement projecting a point given a
homography

* TODO #3.2: Compute inliers from an array of
matches (using 3.1)

* TODO #3.3: Implement RANSAC algorithm

TODO #3.1: point projection

Given point p, set matrix c,,, = [x-coord, y-coord,1]
Compute M,,, = Hy 5™ ¢, , With given Homography

Compute x,y coordinates of a point 'q’:
— x-coord: M[0] / M[2]
— y-coord: M[1] / M[2]

Return point ‘g’

TODO #3.2: model inliers

* Loop over each match from array of matches
(starting from end):

— project point ‘p’ of match using given ‘H’

— compute L2 distance between point ‘q" of match and
the projected point

— if distance < given threshold:
* itis aninlier; bring match to the front of array
e update inlier count

TODO #3.3: implement RANSAC

For each iteration:

— compute homography with 4 random matches
* call compute_homography() with argument 4

— if homography is empty matrix, continue
— else compute inliers with this homography

— if #inliers > max_inliers:
e compute new homography with all inliers
e update best_homography with this new homography

e update max_inliers with #inliers computed with this new homography
unless new homography is empty

* if updated max_inliers > given cutoff: return best_homography

Return best_homography

4. Combine images

Project corners of image ‘b’ and create a big empty
image ‘c’ to place image ‘@’ and projected ‘b’. This part is
given in the code.

For each pixel in image ‘@’, get pixel value and assign it to
‘c’ after proper offset

For each pixel in image ‘¢’ within projected bounds:

— project to image ‘b’ using given homography

— get pixel value at projected location using bilinear interpolation
— assign the value to 'c’ after proper offset

5. Extra Credit

e Stitch together more than 2 images to create a big
panorama. See rainier_panorama() in tryhw3.py

2 images 3 images

117

6. Super Extra Credit

* Implement cylindrical projection for an image
— See lecture slides for the formula

Have Fun

