
Computer Vision

CSE 455
Corner Detection

Linda Shapiro
Professor of Computer Science & Engineering

Professor of Electrical Engineering

Review: What’s an edge?
- Image is a function
- Edges are rapid changes in this function

Image derivatives
- Recall:

-

- Want smoothing too!

Sobel Operator

Laplacian (2nd derivative)!
- Crosses zero at extrema
- Recall:

-

- Laplacian:
-

- Again, have to
estimate f’’(x):

0 1 0
1 -4 1
0 1 0

Laplacian Operator

Laplacians also sensitive to noise
- Again, use gaussian smoothing

- Can just use one kernel since convs commute

- Laplacian of Gaussian, LoG

- Can get good approx. with

5x5 - 9x9 kernels

Difference of Gaussian (DoG)
- Gaussian is a low pass filter
- Strongly reduce components with frequency f < σ
- (g*I) low frequency components
- I - (g*I) high frequency components
- g(σ1)*I - g(σ2)*I

- Components in between these frequencies

- g(σ1)*I - g(σ2)*I = [g(σ1) - g(σ2)]*I

- =
σ = 1σ = 2

DoGs

Canny Edge Detection
- Your first image processing pipeline!

- Old-school CV is all about pipelines

Algorithm:

- Smooth image (only want “real” edges, not noise)
- Calculate gradient direction and magnitude
- Non-maximum suppression perpendicular to edge
- Threshold into strong, weak, no edge
- Connect together components

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Gradient magnitude and direction
- Sobel filter

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Non-maximum suppression

Non-maximum suppression

Non-maximum suppression

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Threshold edges
- Still some noise
- Only want strong edges
- 2 thresholds, 3 cases

- R > T: strong edge
- R < T but R > t: weak edge
- R < t: no edge

- Why two thresholds?

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Connect ‘em up!
- Strong edges are edges!
- Weak edges are edges

iff they connect to strong
- Look in some neighborhood

(usually 8 closest)

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Features!
- Highly descriptive local regions
- Ways to describe those regions
- Useful for:

- Matching
- Recognition
- Detection

How to create a panorama
- Say we are stitching a panorama

- Want patches in image to match to other image

- Hopefully only match one spot

Q1: How close are two patches?
- Sum squared difference

- Images I, J

- Σx,y (I(x,y) - J(x,y))2

Q2: How can we find unique patches?
- Sky: bad

- Very little variation

- Could match any other sky

How can we find unique patches?
- Sky: bad

- Very little variation

- Could match any other sky

- Edge: ok
- Variation in one direction

- Could match other patches

along same edge

How can we find unique patches?
- Sky: bad

- Very little variation

- Could match any other sky

- Edge: ok
- Variation in one direction

- Could match other patches

along same edge

- Corners: good!
- Only one alignment matches

What are we going to do?

• We are going to build a panorama from two (or
more) images.

• We need to learn about
– Finding interest points
– Describing small patches about such points
– Finding matches between pairs of such points on two

images, using the descriptors
– Selecting the best set of matches and saving them
– Constructing homographies (transformations) from

one image to the other and picking the best one
– Stitching the images together to make the panorama

21

22

Preview: Harris detector

Interest points extracted with Harris (~ 500 points)

How can we find corresponding
points?

Not always easy

NASA Mars Rover images

NASA Mars Rover images

with SIFT feature matches

Figure by Noah Snavely

Answer below (look for tiny colored squares…)

Human eye movements

Yarbus eye tracking

What catches your
interest?

Interest points

• Suppose you have to click

on some point, go away

and come back after I

deform the image, and click
on the same points again.
• Which points would you

choose?

original

deformed

Intuition

Corners

• We should easily recognize the point by looking
through a small window

• Shifting a window in any direction should give a
large change in intensity

“edge”:

no change along

the edge
direction

“corner”:

significant

change in all
directions

“flat” region:

no change in
all directions

Source: A. Efros

Let’s look at the gradient distributions

Principal Component Analysis
Principal component is the direction of
highest variance.

How to compute PCA components:

1.Subtract off the mean for each data point.

2.Compute the covariance matrix.

3.Compute eigenvectors and eigenvalues.

4.The components are the eigenvectors ranked
by the eigenvalues.

Next, highest component is the direction with

highest variance orthogonal to the previous
components.

Definition: A scalar λ is called an eigenvalue of the n×n matrix A if there is a nontrivial
solution x of Ax=λx. Such x is called an eigenvector corresponding to the eigenvalue λ.

Corners have …

Both eigenvalues are large!

Second Moment Matrix or Harris Matrix

2 x 2 matrix of image derivatives smoothed by
Gaussian weights.

Notation:

x

I
I x






y

I
I y






y

I

x

I
II yx










• First compute Ix, Iy, and Ix Ix, Iy Iy, IxIy; then apply Gaussian to each.

| Σiwi Ix Ix Σiwi Ix Iy |
| Σiwi Ix Iy Σiwi Iy Iy |

H =

From HW3: Structure matrix
- Weighted sum of gradient information

- | ΣiwiIx(i)Ix(i) ΣiwiIx(i)Iy(i) |

- | ΣiwiIx(i)Iy(i) ΣiwiIy(i)Iy(i) |

- Use Gaussian weighting
- Eigen vectors/values of this matrix summarize the distribution of

the gradients nearby
- λ1 and λ2 are eigenvalues

- λ1 and λ2 both small: no gradient
- λ1 >> λ2: gradient in one direction
- λ1 and λ2 similar: multiple gradient directions, corner

We’ll tell you how to store this!

Estimating Response

- A few methods we use to estimate:

- Calculate these directly from the 2x2 matrix
- det(S) = ad – bc = λ1*λ2

- trace(S) = a + d = λ1+λ2

- Estimate formula 1: R = det(S) - α trace(S)2 = λ1λ2 - α(λ1+λ2)2

- Estimate formula 2: R = det(S) / trace(S) = λ1λ2/(λ1+λ2)

- If these estimates are large, we call it a corner

Harris Corner Detector

- Calculate derivatives Ix and Iy

- Calculate 3 measures IxIx, IyIy, IxIy

- Calculate weighted sums

- Want a weighted sum of nearby pixels, guess what this is?

- Gaussian!

- Estimate response

- Non-max suppression!

Harris Detector: Steps

Harris Detector: Steps

Compute corner response R

Harris Detector: Steps
Find points with large corner response: R > threshold

Harris Detector: Steps
Take only the points of local maxima of R

Harris Detector: Results

Properties of the Harris corner detector

• Translation invariant?

• Rotation invariant?

• Scale invariant?

All points will be
classified as edges

Corner !

Yes

No

Yes
What’s the
problem?

• Can we do better than Harris?

• The Harris corner detector is not widely used
except in class assignments.

• The SIFT detector/descriptor is the standard.

• Let’s take a look.

45

Scale

What is the “best” scale?

Scale Invariance

K. Grauman, B. Leibe

How can we independently select interest points in

each image, such that the detections are repeatable
across different scales?

)),(()),((
11

 = xIfxIf
mm iiii 

Differences between Inside and Outside

1. We can use a Laplacian function

Scale

Why Gaussian?

It is invariant to scale change,

i.e.,

and has several other nice

properties. Lindeberg, 1994

In practice, the Laplacian is

approximated using a

Difference of Gaussian (DoG).

But we use a Gaussian.

Difference-of-Gaussian (DoG)

K. Grauman, B. Leibe

- =

G1 - G2 = DoG

DoG example

σ = 1

σ = 66

Take Gaussians at
multiple spreads
and uses DoGs.

1

2

3

4

5

 List of
(x, y, σ)

scale

Scale invariant interest points

Interest points are local maxima in both position
and scale.

Apply Gaussians

with different σ’s.

Look for extrema
in difference of
Gaussians.

Scale (Lowe uses multiple scales)

In practice the image is downsampled for larger sigmas.

Lowe, 2004.

54

Lowe’s Pyramid Scheme

s+2 filters

s+1=2(s+1)/s0

.

.

i=2i/s0

.

.

2=22/s0

1=21/s0

0

s+3

images

including

original

s+2

differ-

ence

images

The parameter s determines the number of images per octave.

55

Key point localization

• Detect maxima and minima
of difference-of-Gaussian in
scale space

• Each point is compared to
its 8 neighbors in the
current image and 9
neighbors each in the scales
above and below

Blur

Resample

Subtract

For each max or min found,

output is the location and

the scale.

s+2 difference images.

top and bottom ignored.

s planes searched.

56

Scale-space extrema detection: experimental results over 32 images that
were synthetically transformed and noise added.

• Sampling in scale for efficiency
– How many scales should be used per octave? S=?

• More scales evaluated, more keypoints found

• S < 3, stable keypoints increased too

• S > 3, stable keypoints decreased

• S = 3, maximum stable keypoints found

% detected

% correctly matched

average no. detected

average no. matched

Stability Expense

Results: Difference-of-Gaussian

K. Grauman, B. Leibe

58

How can we find correspondences?

Similarity transform

CSE 576: Computer Vision

Rotation invariance

Image from Matthew Brown

• Rotate patch according to its dominant gradient
orientation

• This puts the patches into a canonical orientation.

T. Tuytelaars, B. Leibe

Orientation Normalization

• Compute orientation histogram

• Select dominant orientation

• Normalize: rotate to fixed orientation

0 2p

[Lowe, SIFT, 1999]

What’s next?

Once we have found the keypoints and a dominant orientation for each,

we need to describe the (rotated and scaled) neighborhood about each.

128-dimensional vector

Important Point

• People just say “SIFT”.

• But there are TWO parts to SIFT.

1. an interest point detector

2. a region descriptor

• They are independent. Many people use the region descriptor
without looking for the points.

Homework 2
filter_image.c

Due: April 28

2.0 Copy two functions from
previous homework

Note that you wrote two functions (i.e.
l1_normalize and make_box_filter) in homework
1, which will be useful for this assignment.

Simply copy your solution from your previous
submission to the filter_image.c file.

2.1 Write a convolution function

image convolve_image(image im, image filter, int
preserve){}

Note the “preserve” parameter: if preserve is 1,
the output should have the same number of
channels as the input; if preserve is 0, the output
should only have one channel.

Read the instructions in the Readme file carefully!

2.2 Make some more filters and try
them out!
Create 3 useful filters (kernel size = 3 for all of them):

● image make_highpass_filter()
● image make_sharpen_filter()
● image make_emboss_filter()

Answer the Questions (in your source file):

1. With which of these filters should we use preserve
when we run our convolution and which ones should
we not? Why?

2. Do we have to do any post-processing for the above
filters? Which ones and why?

2.3 Implement a Gaussian kernel
image make_gaussian_filter(float sigma)

Create a Gaussian filter with given sigma.

Note that the kernel size is the next highest odd
integer from 6x sigma. E.g.

● if sigma is 0.6, then the size of the Gaussian
filter is 5 x 5;

● if sigma is 2, then the size of Gaussian filter is
13 x 13.

2.4 Hybrid images

● image add_image(image a, image b)
● image sub_image(image a, image b)

The input images a and b have the same height,
width, and channels.

Sum or subtract the give two images (a + b or a -
b) and return the result. The result image should
also have the same height, width, and channels as
the inputs.

2.5 Sobel Filters
● image make_gx_filter()
● image make_gy_filter()
● image *sobel_image(image im)

We apply Sobel filters (kernel size = 3) to the input image.
The sobel_image function should return two images: the
gradient magnitude and direction.

image *rst = calloc(2, sizeof(image));

image magnitude = TODO

rst[0] = magnitude;

rst[1] = direction;

2.6 [Extra Credit] Median Filter

Fill in the function `image apply_median_filter(image
im, int k)`. We assume a median filter is a square, with
the same height and width. The kernel size is always a
positive odd number. We use "clamp" padding for
borders and corners. The output image should have the
same width, height, and channels as the input image.
You should apply the median filter to each channel of
the input image `im`.

