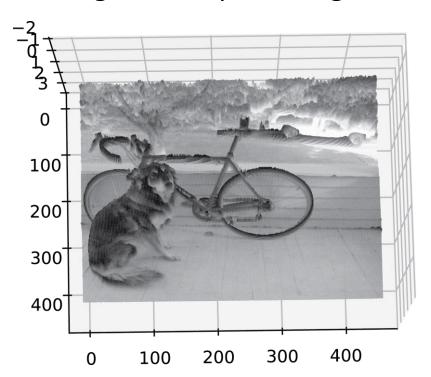
Computer Vision

CSE 455 Corner Detection

Linda Shapiro
Professor of Computer Science & Engineering
Professor of Electrical Engineering

Review: What's an edge?

- Image is a function
- Edges are rapid changes in this function



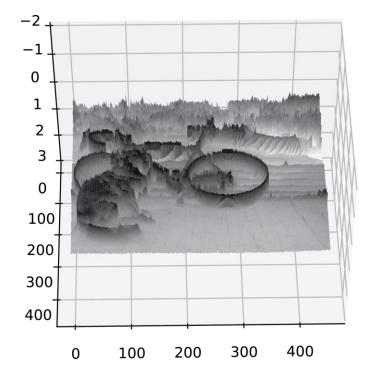
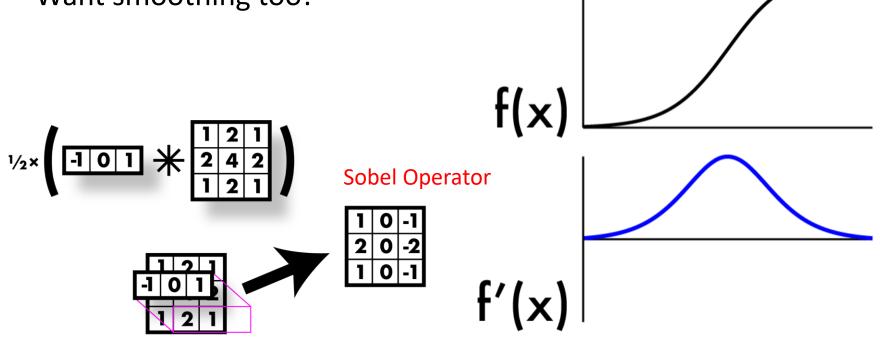


Image derivatives

Recall:

-
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
.
Want smoothing too!



Laplacian (2nd derivative)!

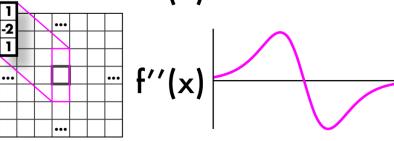
- Crosses zero at extrema
- Recall:

$$-f''(x) = \lim_{h o 0} rac{f(x+h) - 2f(x) + f(x-h)}{h^2}.$$
Laplacian:
 $-\Delta f = rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2}$ f(x)

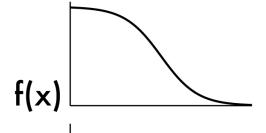
$$\Delta f = rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2}$$

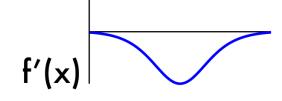
f(x)

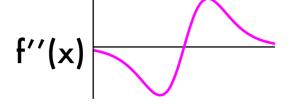
Again, have to estimate f"(x):

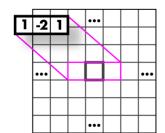


Laplacian Operator



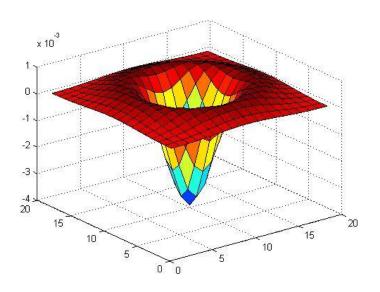






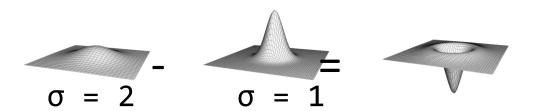
Laplacians also sensitive to noise

- Again, use gaussian smoothing
- Can just use one kernel since convs commute
- Laplacian of Gaussian, LoG
- Can get good approx. with
 5x5 9x9 kernels



Difference of Gaussian (DoG)

- Gaussian is a low pass filter
- Strongly reduce components with frequency f < σ
- (g*I) low frequency components
- I (g*I) high frequency components
- $g(\sigma 1)^*I g(\sigma 2)^*I$
 - Components in between these frequencies
- $g(\sigma 1)^*I g(\sigma 2)^*I = [g(\sigma 1) g(\sigma 2)]^*I$



DoGs

Canny Edge Detection

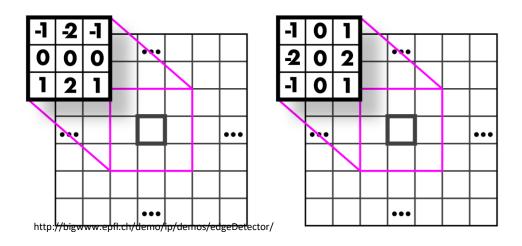
- Your first image processing pipeline!
 - Old-school CV is all about pipelines

Algorithm:

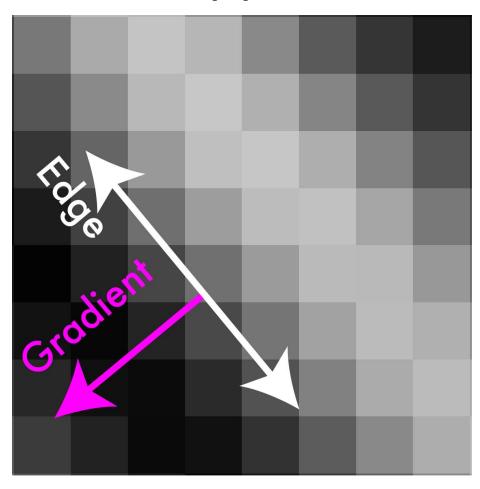
- Smooth image (only want "real" edges, not noise)
- Calculate gradient direction and magnitude
- Non-maximum suppression perpendicular to edge
- Threshold into strong, weak, no edge
- Connect together components

Gradient magnitude and direction

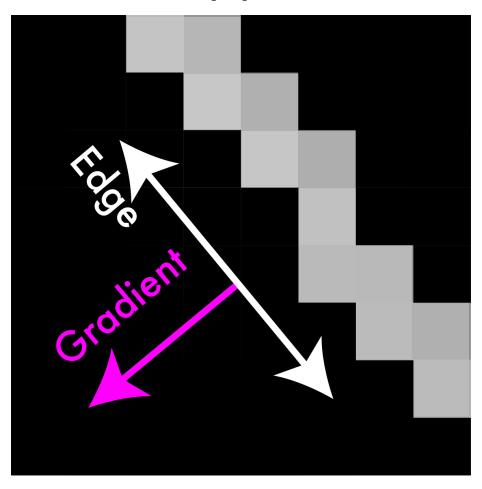
- Sobel filter



Non-maximum suppression



Non-maximum suppression



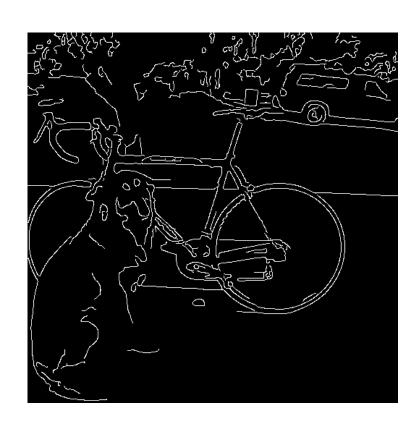
Non-maximum suppression

Threshold edges

- Still some noise
- Only want strong edges
- 2 thresholds, 3 cases
 - R > T: strong edge
 - R < T but R > t: weak edge
 - R < t: no edge
- Why two thresholds?

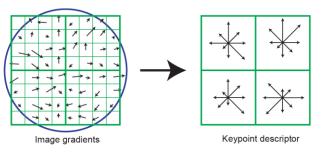
Connect 'em up!

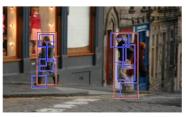
- Strong edges are edges!
- Weak edges are edges iff they connect to strong
- Look in some neighborhood (usually 8 closest)

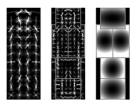


Features!

- Highly descriptive local regions
- Ways to describe those regions
- Useful for:
 - Matching
 - Recognition
 - Detection









How to create a panorama

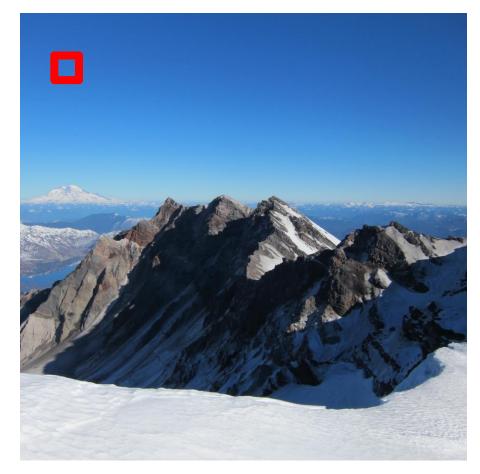
- Say we are stitching a panorama
- Want patches in image to match to other image
- Hopefully only match one spot

Q1: How close are two patches?

- Sum squared difference
- Images I, J
- $\Sigma_{x,y} (I(x,y) J(x,y))^2$

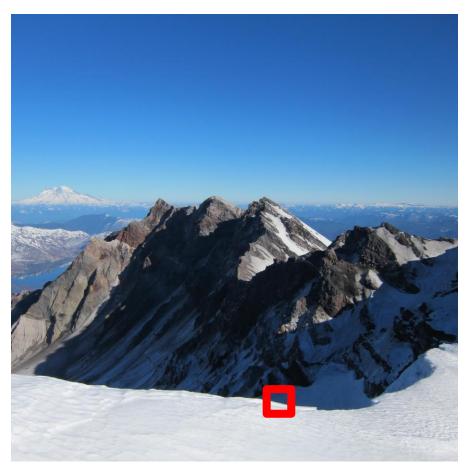
Q2: How can we find unique patches?

- Sky: bad
 - Very little variation
 - Could match any other sky



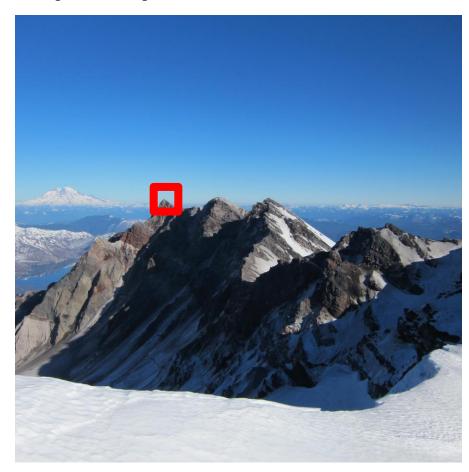
How can we find unique patches?

- Sky: bad
 - Very little variation
 - Could match any other sky
- Edge: ok
 - Variation in one direction
 - Could match other patches along same edge



How can we find unique patches?

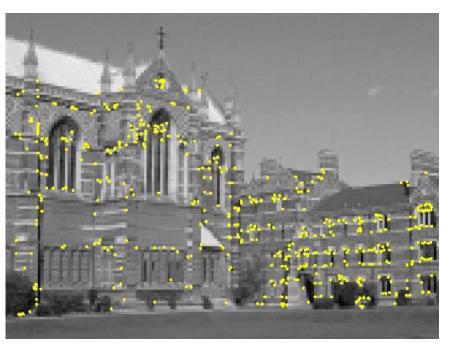
- Sky: bad
 - Very little variation
 - Could match any other sky
- Edge: ok
 - Variation in one direction
 - Could match other patches along same edge
- Corners: good!
 - Only one alignment matches

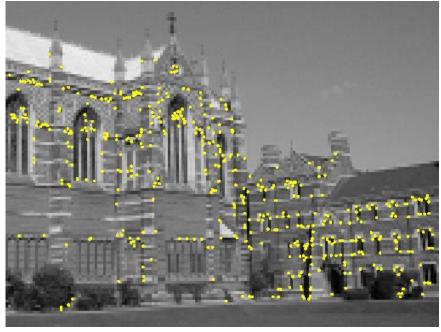


What are we going to do?

- We are going to build a panorama from two (or more) images.
- We need to learn about
 - Finding interest points
 - Describing small patches about such points
 - Finding matches between pairs of such points on two images, using the descriptors
 - Selecting the best set of matches and saving them
 - Constructing homographies (transformations) from one image to the other and picking the best one
 - Stitching the images together to make the panorama

Preview: Harris detector

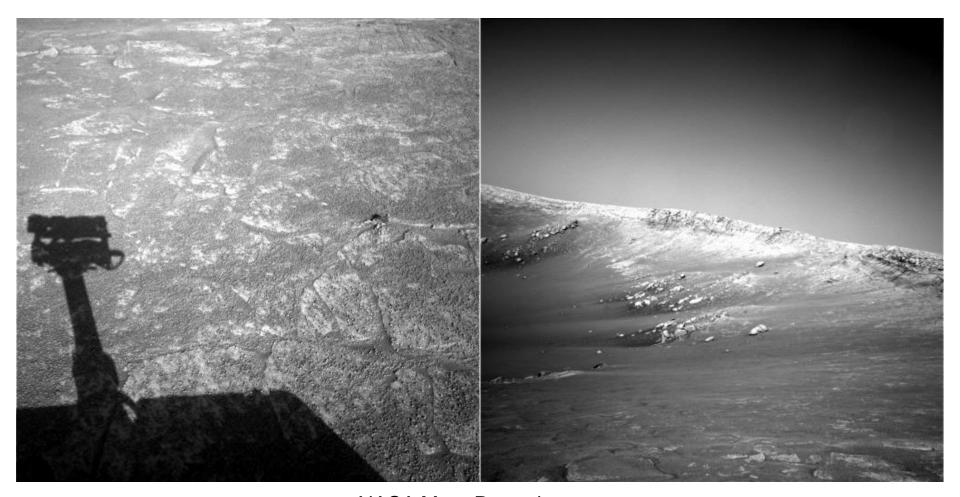




Interest points extracted with Harris (~ 500 points)

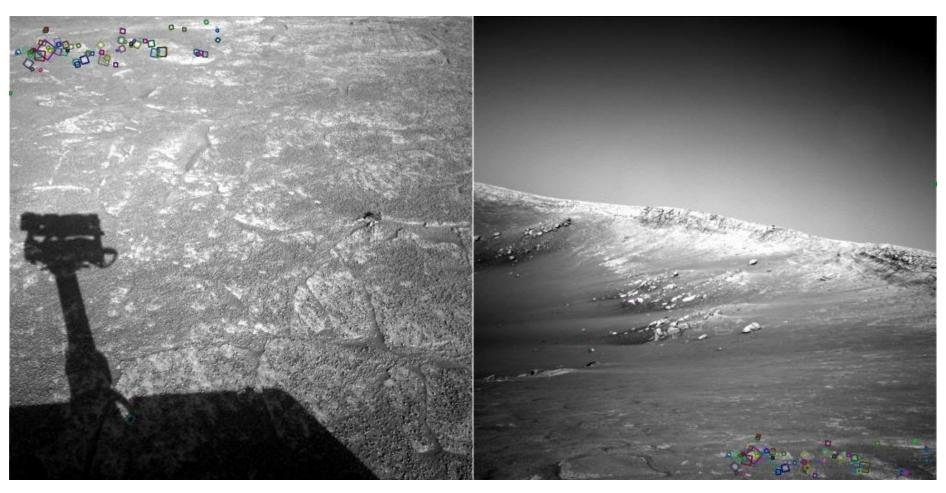
How can we find corresponding points?

Not always easy



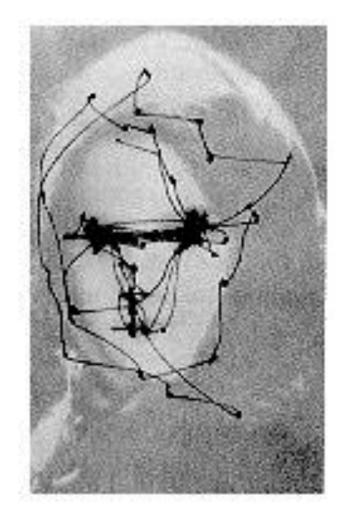
NASA Mars Rover images

Answer below (look for tiny colored squares...)



NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

Human eye movements

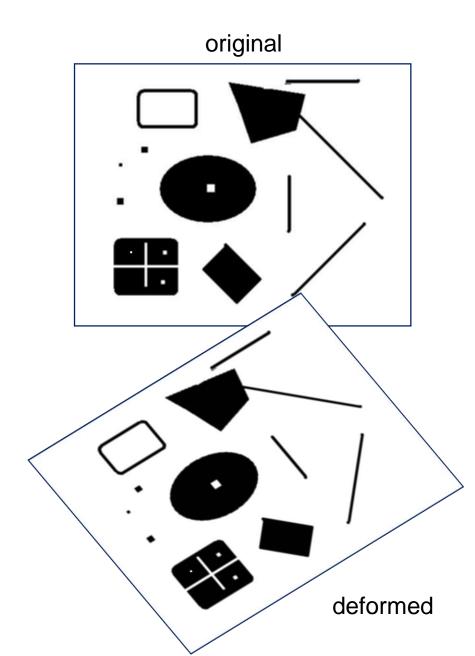


Yarbus eye tracking

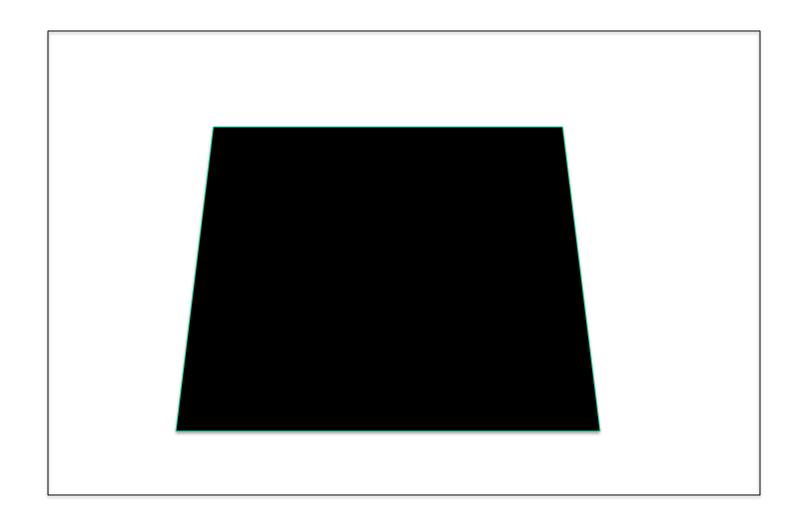
What catches your interest?

Interest points

- Suppose you have to click on some point, go away and come back after I deform the image, and click on the same points again.
 - Which points would you choose?

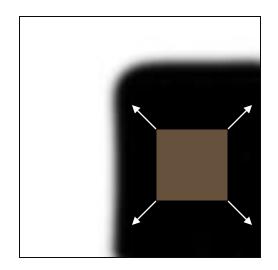


Intuition

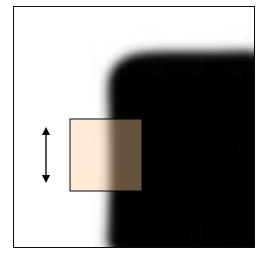


Corners

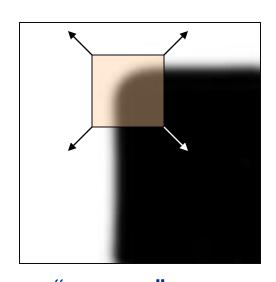
- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity



"flat" region: no change in all directions



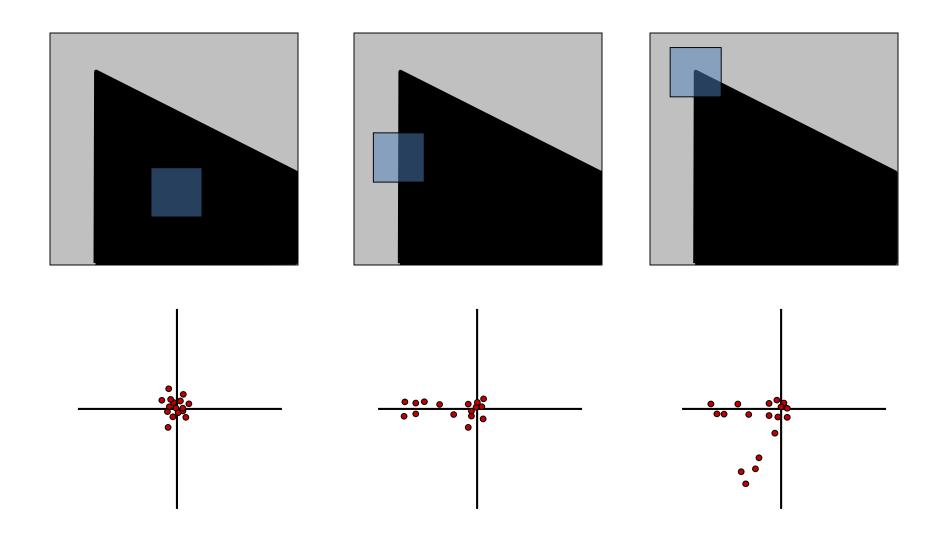
"edge": no change along the edge direction



"corner":
significant
change in all
directions

Source: A. Efros

Let's look at the gradient distributions



Principal Component Analysis

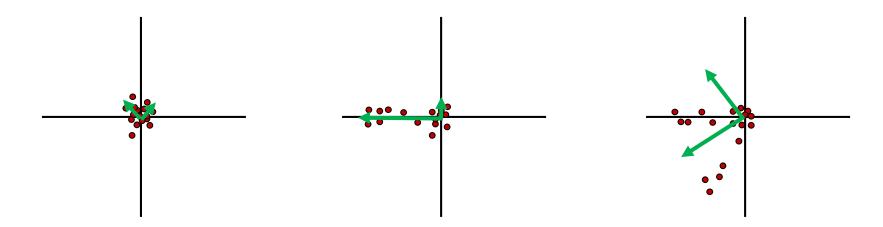
Principal component is the direction of highest variance.

Next, highest component is the direction with highest variance *orthogonal* to the previous components.

How to compute PCA components:

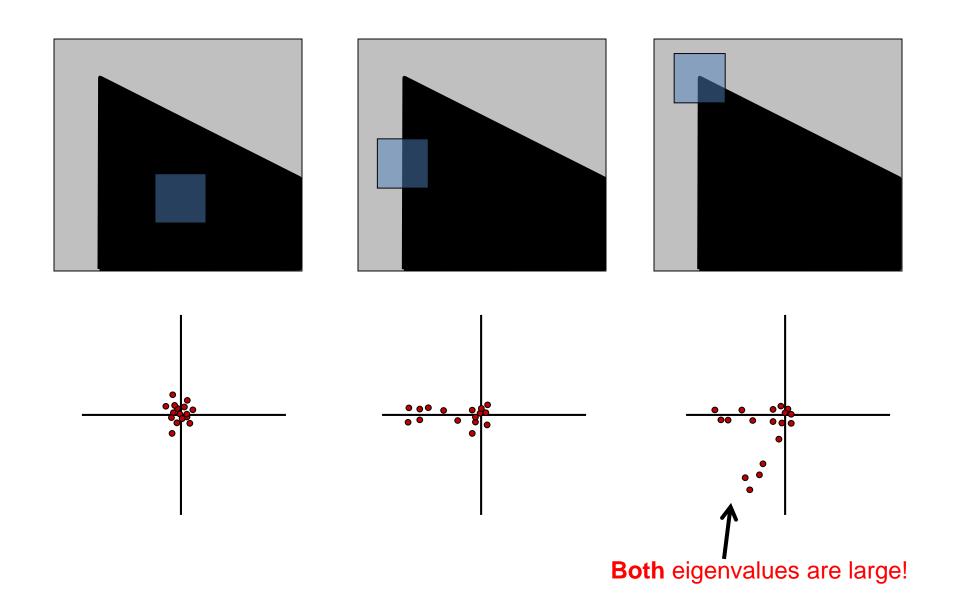
- 1. Subtract off the mean for each data point.
- 2. Compute the covariance matrix.
- 3. Compute eigenvectors and eigenvalues.
- 4. The components are the eigenvectors ranked by the eigenvalues.

$$Hx = \lambda x$$



Definition: A scalar λ is called an eigenvalue of the n×n matrix A if there is a nontrivial solution x of Ax= λ x. Such x is called an eigenvector corresponding to the eigenvalue λ .

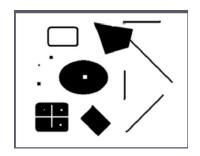
Corners have ...



Second Moment Matrix or Harris Matrix

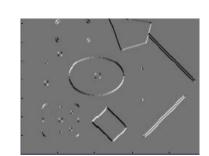
$$H = \begin{bmatrix} \sum_{i} w_{i} I_{x} I_{x} & \sum_{i} w_{i} I_{x} I_{y} \\ \sum_{i} w_{i} I_{x} I_{y} & \sum_{i} w_{i} I_{y} I_{y} \end{bmatrix}$$

2 x 2 matrix of image derivatives smoothed by Gaussian weights.



$$I_x \Leftrightarrow \frac{\partial I}{\partial x}$$

$$I_{y} \Leftrightarrow \frac{\partial I}{\partial y}$$



$$I_x I_y \Leftrightarrow \frac{\partial I}{\partial x} \frac{\partial I}{\partial y}$$

• First compute I_x , I_y , and I_x I_x , I_y I_y , I_x , I_y ; then apply Gaussian to each.

From HW3: Structure matrix

- Weighted sum of gradient information
 - $|\Sigma_i w_i I_x(i) I_x(i) \Sigma_i w_i I_x(i) I_y(i)|$
 - $|\Sigma_i w_i I_x(i) I_y(i) \Sigma_i w_i I_y(i) I_y(i)|$

We'll tell you how to store this!

- Use Gaussian weighting
- Eigen vectors/values of this matrix summarize the distribution of the gradients nearby
- λ_1 and λ_2 are eigenvalues
 - λ_1 and λ_2 both small: no gradient
 - $\lambda_1 >> \lambda_2$: gradient in one direction
 - λ_1 and λ_2 similar: multiple gradient directions, corner

Estimating Response

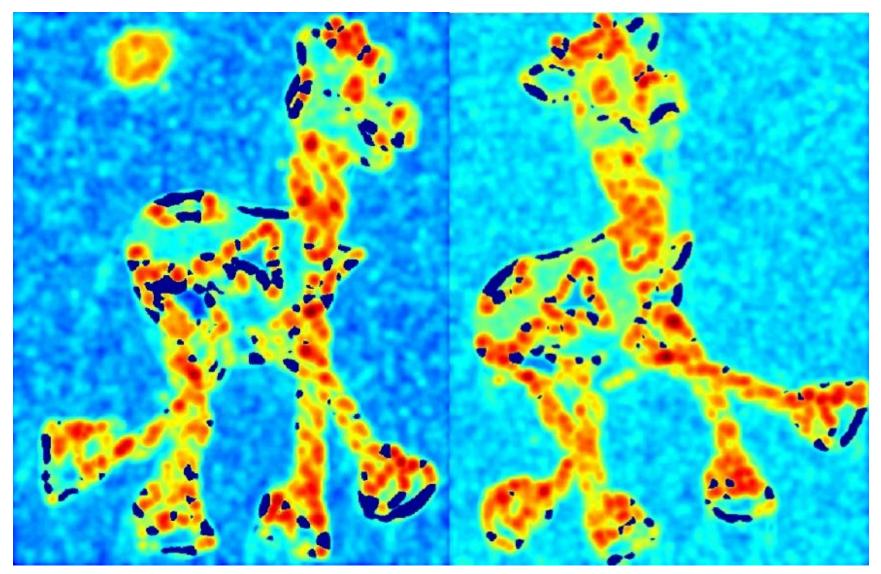
$$H = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \lambda_{\pm} = \frac{1}{2} \left((a+d) \pm \sqrt{4bc + (a-d)^2} \right)$$

- A few methods we use to estimate:
- Calculate these directly from the 2x2 matrix
 - $det(S) = ad bc = \lambda_1 * \lambda_2$
 - trace(S) = a + d = $\lambda_1 + \lambda_2$
- Estimate formula 1: R = det(S) α trace(S)² = $\lambda_1 \lambda_2$ $\alpha (\lambda_1 + \lambda_2)^2$
- Estimate formula 2: R = det(S) / trace(S) = $\lambda_1 \lambda_2 / (\lambda_1 + \lambda_2)$
- If these estimates are large, we call it a corner

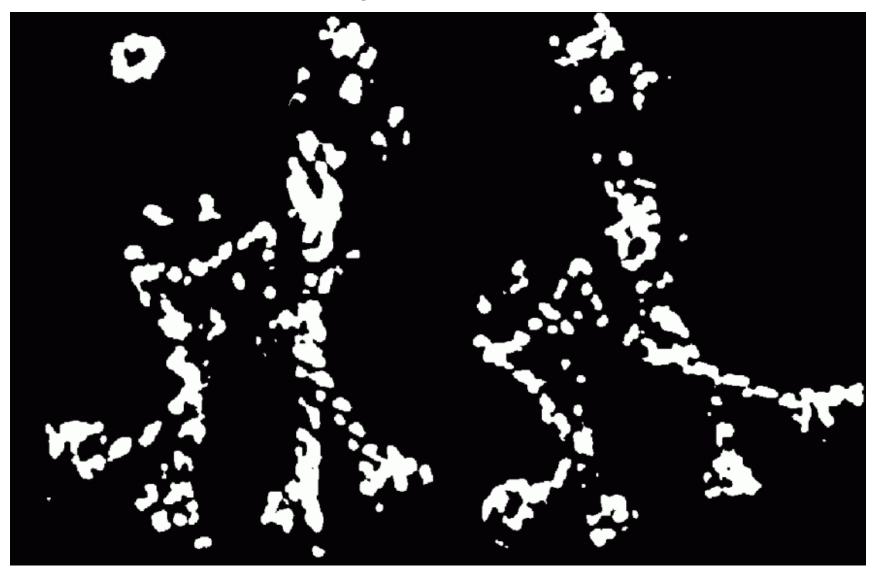
Harris Corner Detector

- Calculate derivatives I_x and I_y
- Calculate 3 measures I_xI_x , I_yI_y , I_xI_y
- Calculate weighted sums
 - Want a weighted sum of nearby pixels, guess what this is?
 - Gaussian!
- Estimate response
- Non-max suppression!

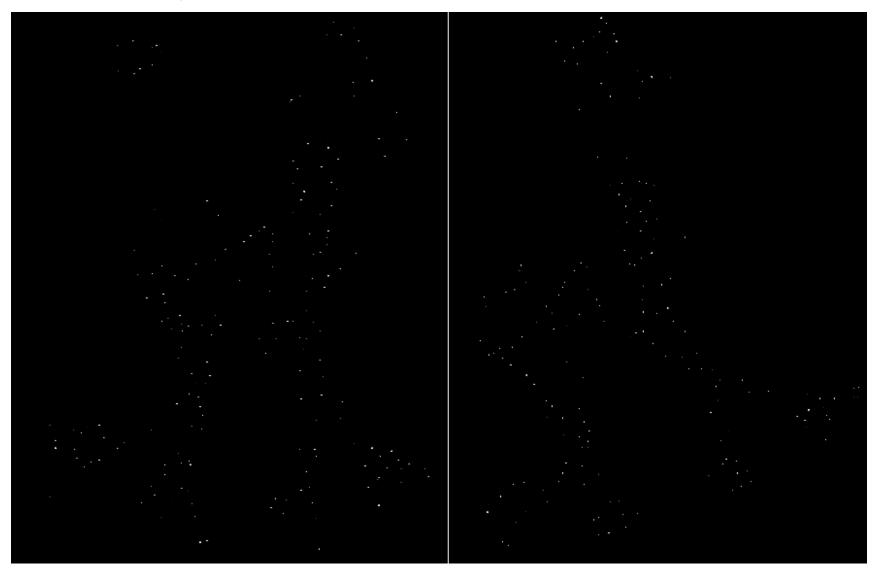
Compute corner response R



Find points with large corner response: R > threshold



Take only the points of local maxima of R



Harris Detector: Results

Properties of the Harris corner detector

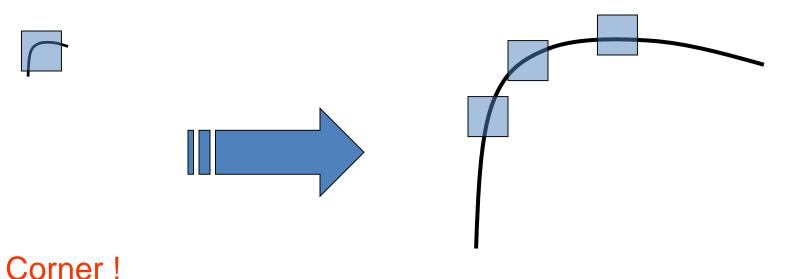
- Translation invariant?
- Rotation invariant?
- Scale invariant?

Yes

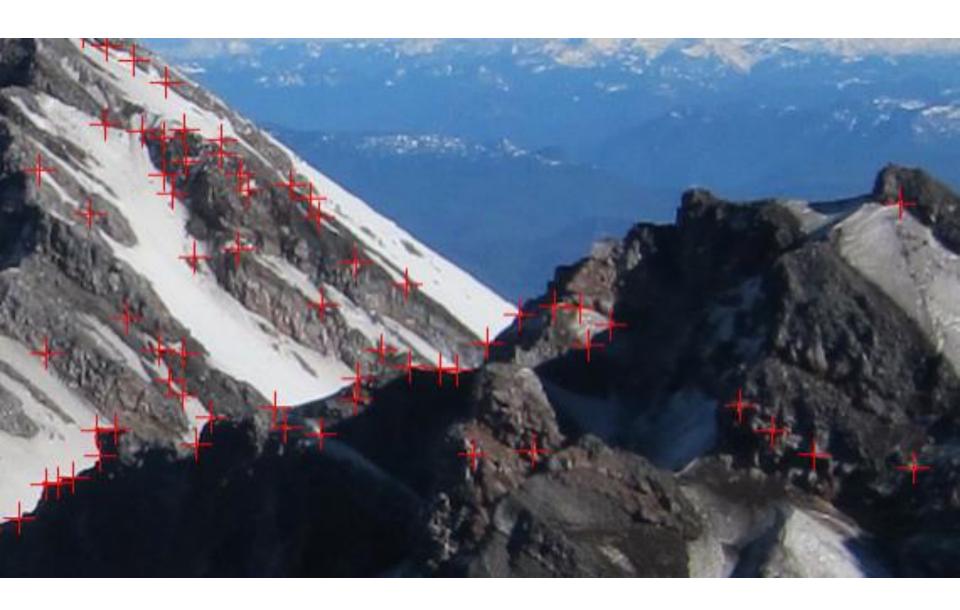
Yes

No

What's the problem?

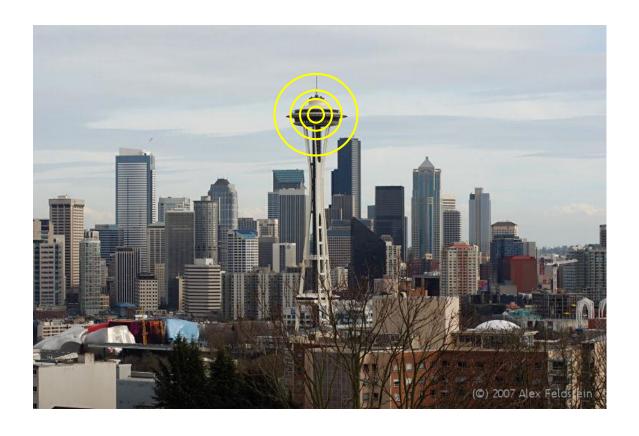


All points will be classified as edges



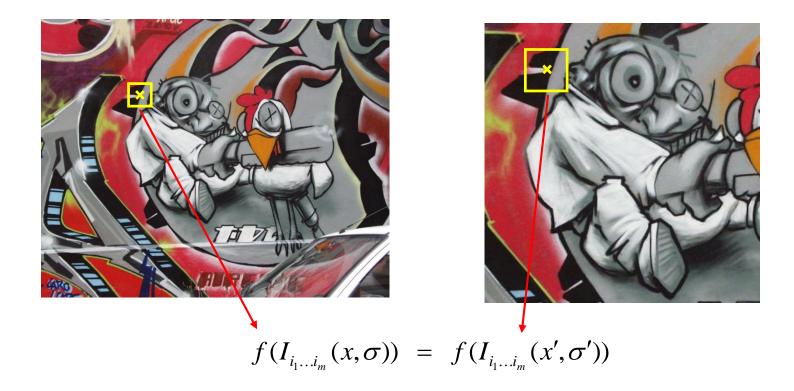
- Can we do better than Harris?
- The Harris corner detector is not widely used except in class assignments.
- The SIFT detector/descriptor is the standard.
- Let's take a look.

Scale



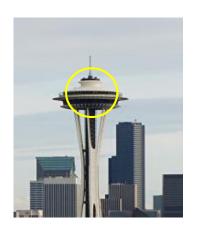
What is the "best" scale?

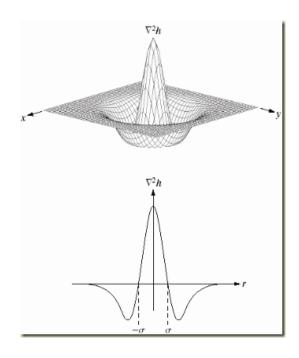
Scale Invariance



How can we independently select interest points in each image, such that the detections are repeatable across different scales?

Differences between Inside and Outside





1. We can use a Laplacian function

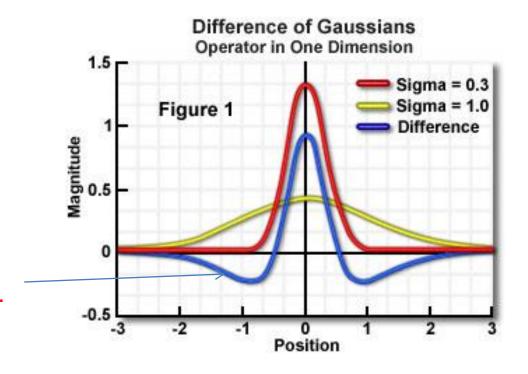
Scale

But we use a Gaussian.

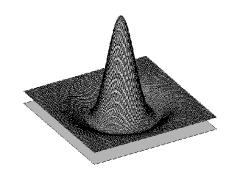
Why Gaussian?

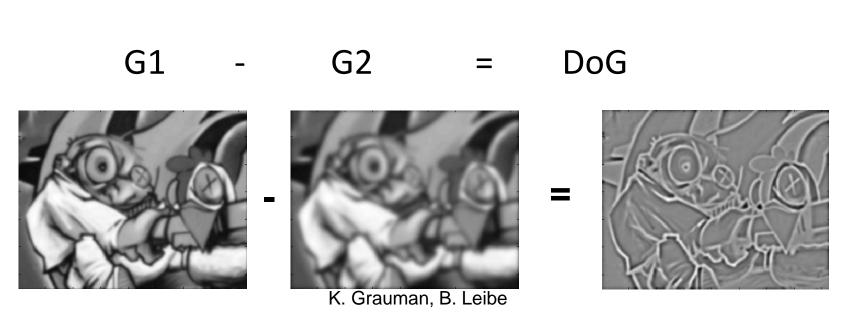
It is invariant to scale change, i.e., $f*\mathcal{G}_{\sigma}*\mathcal{G}_{\sigma'}=f*\mathcal{G}_{\sigma''}$ and has several other nice properties. Lindeberg, 1994

In practice, the Laplacian is approximated using a Difference of Gaussian (DoG).



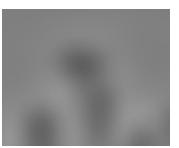
Difference-of-Gaussian (DoG)





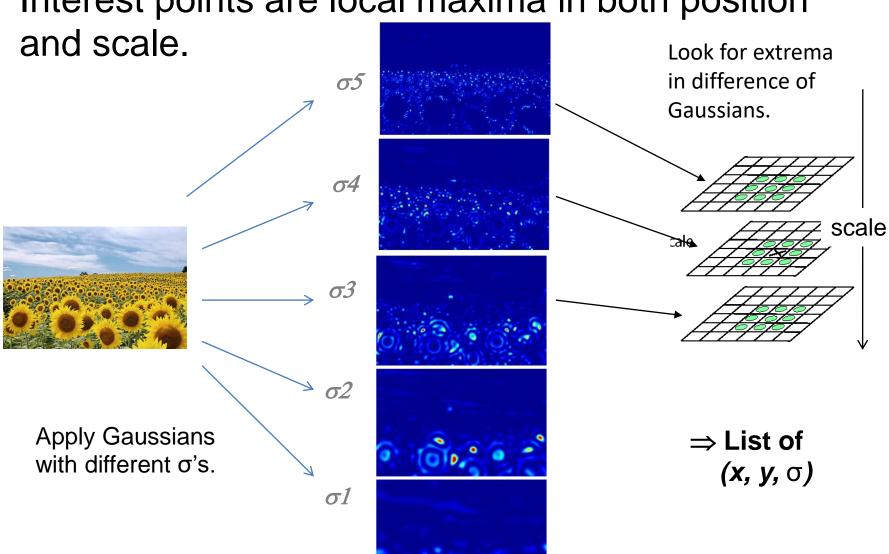
DoG example

Take Gaussians at multiple spreads and uses DoGs.



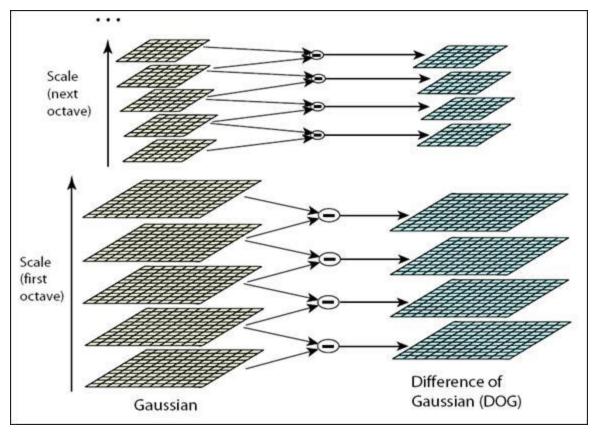
Scale invariant interest points

Interest points are local maxima in both position



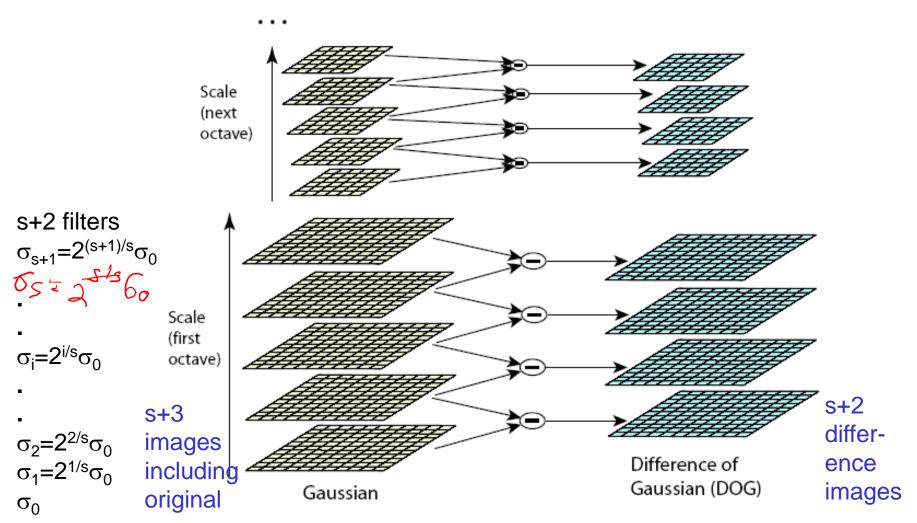
Scale (Lowe uses multiple scales)

In practice the image is downsampled for larger sigmas.



Lowe, 2004.

Lowe's Pyramid Scheme

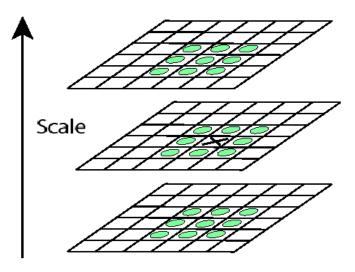


The parameter **s** determines the number of images per octave.

Key point localization

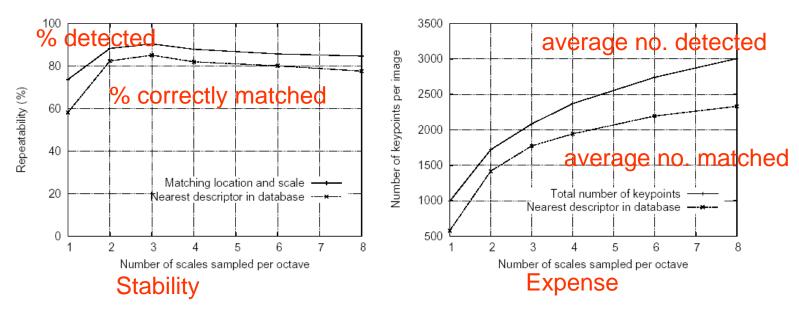
- Detect maxima and minima of difference-of-Gaussian in scale space
- Each point is compared to its 8 neighbors in the current image and 9 neighbors each in the scales above and below

s+2 difference images. top and bottom ignored. s planes searched.



For each max or min found, output is the **location** and the **scale**.

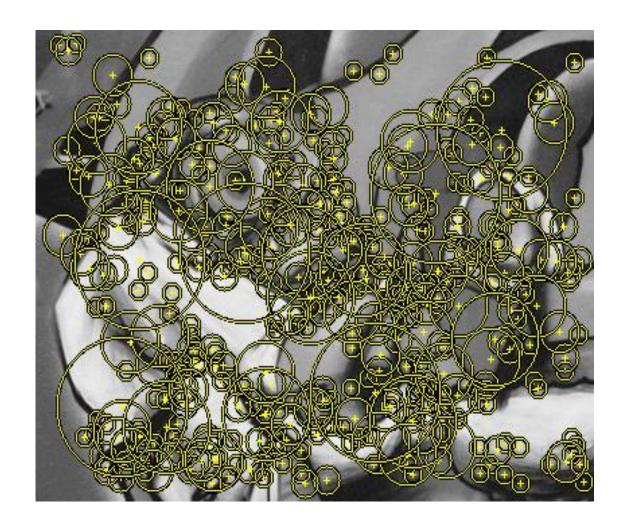
Scale-space extrema detection: experimental results over 32 images that were synthetically transformed and noise added.

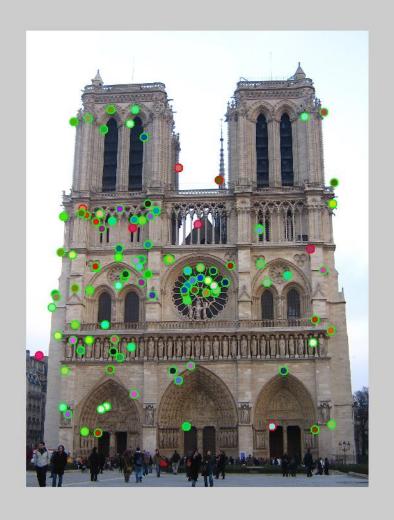


Sampling in scale for efficiency

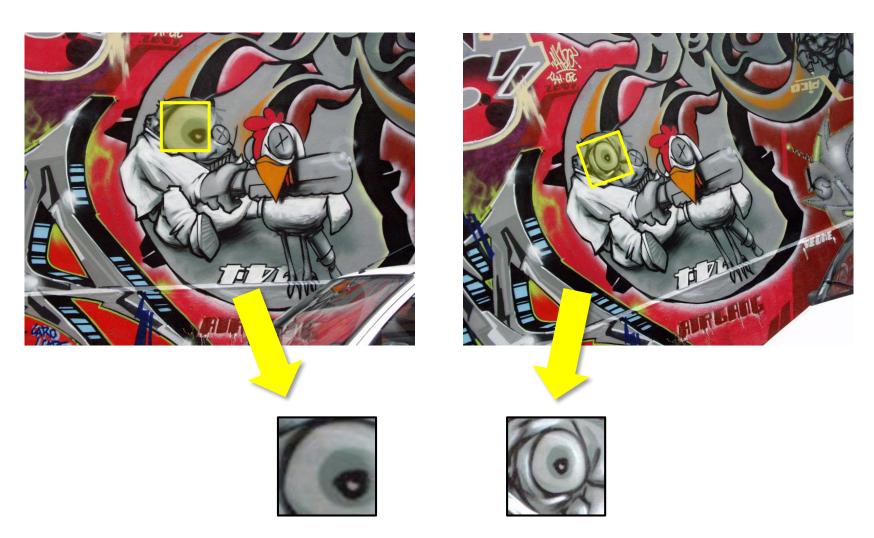
- How many scales should be used per octave? S=?
 - More scales evaluated, more keypoints found
 - S < 3, stable keypoints increased too
 - S > 3, stable keypoints decreased
 - S = 3, maximum stable keypoints found

Results: Difference-of-Gaussian



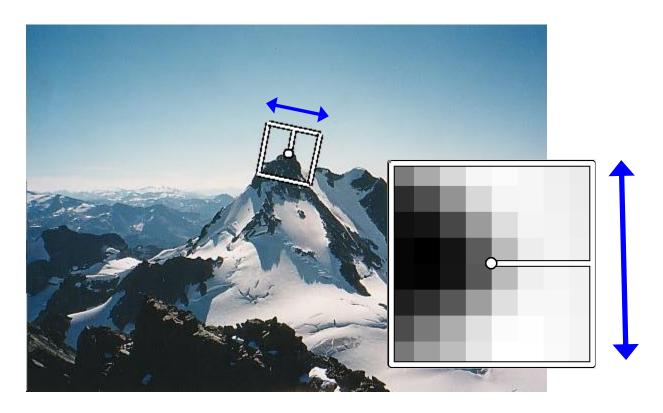


How can we find correspondences?



Similarity transform

Rotation invariance

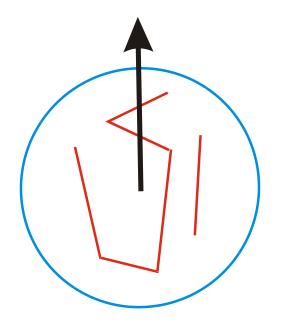


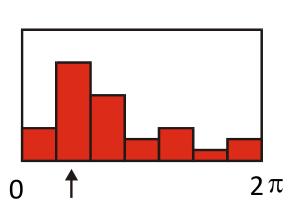
- Rotate patch according to its dominant gradient orientation
- This puts the patches into a canonical orientation.

Orientation Normalization

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation

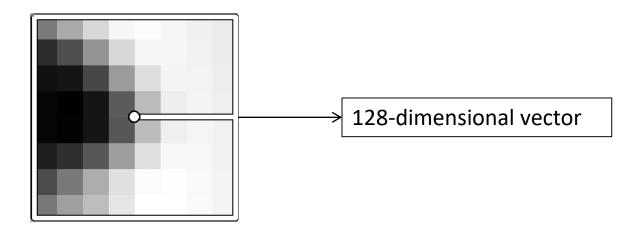
[Lowe, SIFT, 1999]





What's next?

Once we have found the keypoints and a dominant orientation for each, we need to describe the (rotated and scaled) neighborhood about each.



Important Point

- People just say "SIFT".
- But there are TWO parts to SIFT.
 - an interest point detector
 - 2. a region descriptor
- They are independent. Many people use the region descriptor without looking for the points.

Homework 2 filter_image.c

Due: April 28

2.0 Copy two functions from previous homework

Note that you wrote two functions (i.e.

I1_normalize and make_box_filter) in homework1, which will be useful for this assignment.

Simply copy your solution from your previous submission to the filter_image.c file.

2.1 Write a convolution function

image convolve_image(image im, image filter, int
preserve){}

Note the "preserve" parameter: if preserve is 1, the output should have the same number of channels as the input; if preserve is 0, the output should only have one channel.

Read the instructions in the Readme file carefully!

2.2 Make some more filters and try them out!

Create 3 useful filters (kernel size = 3 for all of them):

- image make_highpass_filter()
- image make_sharpen_filter()
- image make_emboss_filter()

Answer the Questions (in your source file):

- 1. With which of these filters should we use preserve when we run our convolution and which ones should we not? Why?
- 2. Do we have to do any post-processing for the above filters? Which ones and why?

2.3 Implement a Gaussian kernel image make_gaussian_filter(float sigma)

Create a Gaussian filter with given sigma.

Note that the kernel size is the next highest odd integer from 6x sigma. E.g.

- if sigma is 0.6, then the size of the Gaussian filter is 5 x 5;
- if sigma is 2, then the size of Gaussian filter is 13 x 13. $G(x,y)=\frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}}$

2.4 Hybrid images

- image add_image(image a, image b)
- image sub_image(image a, image b)

The input images a and b have the same height, width, and channels.

Sum or subtract the give two images (a + b or a - b) and return the result. The result image should also have the same height, width, and channels as the inputs.

2.5 Sobel Filters

- image make_gx_filter()
- image make_gy_filter()
- image *sobel_image(image im)

We apply Sobel filters (kernel size = 3) to the input image. The **sobel_image** function should return two images: the gradient magnitude and direction.

```
image *rst = calloc(2, sizeof(image));
image magnitude = .... TODO

rst[0] = magnitude;
rst[1] = direction;
```

2.6 [Extra Credit] Median Filter

Fill in the function `image apply_median_filter(image im, int k)`. We assume a median filter is a square, with the same height and width. The kernel size is always a positive odd number. We use "clamp" padding for borders and corners. The output image should have the same width, height, and channels as the input image. You should apply the median filter to each channel of the input image `im`.

