What is an image?
Eyes: projection onto retina
Model: pinhole camera
Model: pinhole camera
At each point we record incident light
An image is a matrix of light
Values in matrix = how much light
Values in matrix = how much light

- Higher = more light
- Lower = less light
- Bounded
 - No light = 0
 - Sensor/device limit = max
 - Typical ranges:
 - [0-255], fit into byte
 - [0-1], floating point
- Called pixels
Addressing pixels

- Ways to index:
 - \((r,c)\)
 - Like matrix notation
 - \((3,6)\) is row 3 column 6
 - \((x,y)\)
 - Like cartesian coordinates (but from the TOP)
 - \((3,6)\) is column 3 row 6

- We use \((x,y)\)
 - So does your homework!
 - Arbitrary
 - Only thing that matters is consistency
Color image: 3d tensor in colorspace
RGB information in separate “channels”

Remember: we can match “real” colors using a mix of primaries.

Each channel encodes one primary. Adding the light produced from each primary mimics the original color.
Addressing pixels

- We use \((x,y,c)\)
 - \((1,2,0)\):
 - column 1, row 2, channel 0
- Be consistent
- But do what we do for homeworks :-)
- Also for size:
 - \(1920 \times 1080 \times 3\) image:
 - 1920 px wide
 - 1080 px tall
 - 3 channels
How do we store them?
Storage: row major vs column major

Row Major

- Access: Row-index first, then column-index.

Column Major

- Access: Column-index first, then row-index.
Storage: row major vs column major

HW

WH
Typically use row-major or HW
In 3d we have more choices!
HWC: channels interleaved
CHW: channels separated
We’ll use CHW, it’s what a lot of other libraries use.

In an array for a 1920 x 1080 x 3 image what entry would contain the pixel (15,192,2)?

Formula:

\[x + y*W + z*W*H \]
CHW Pop quiz

In an array for a 1920 x 1080 x 3 image what entry would contain the pixel (15,192,2)?

In general for (x,y,z) of image (W,H,C)

\[x + y \times W + z \times W \times H \]

\[15 + 192 \times 1920 + 2 \times 1920 \times 1080 = 4,515,855 \]

Remember, everything is 0 indexed

Where does (0,0,0) go?

Position \(0 + 0 + 0 = 0\)
typedef struct {
 int w, h, c;
 float *data;
} image;
Image interpolation and resizing
An image is kinda like a function

An image is a mapping from indices to pixel value:

- $\text{Im}: \mathbb{I} \times \mathbb{I} \times \mathbb{I} \rightarrow \mathbb{R}$

We may want to pass in non-integers:

- $\text{Im}': \mathbb{R} \times \mathbb{R} \times \mathbb{I} \rightarrow \mathbb{R}$
A note on coordinates in images

integer pixels
A note on coordinates in images

We can think of their values as being at the centers.
A note on coordinates in images

Now we can move to a real coordinate system.
A note on coordinates in images

On the image
A note on coordinates in images

So, the value of the pixel (x,y) is now centered at (x,y).
A note on coordinates in images

But there are other real-valued points.
A note on coordinates in images

This point is:
(-.25, -.25)
Just be careful

This point is:
\((-0.25, -0.25)\)
Interpolation

• How do we find out the VALUE of a non-integer point, when the image only comes with integer points, i.e., (25, 45, 3).

• For our assignment:
 1. Nearest-Neighbor Interpolation
 2. Bilinear Interpolation
Nearest neighbor: what it sounds like

\[f(x,y,z) = \text{Im}(\text{round}(x), \text{round}(y), z) \]

- Looks blocky
- Common pitfall: Integer division rounds down in C
- Note: z is still int
Sometimes you have a regular grid, sometimes you don’t.

When you don’t, you can look for triangles!
Triangle interpolation: for less structured image

Sometimes you have a regular grid, sometimes you don’t.

When you don’t look for triangles!
Triangle interpolation: for less structured image

Sometimes you have a regular grid, sometimes you don’t.
When you don’t look for triangles!
Triangle interpolation: for less structured image

Sometimes you have a regular grid, sometimes you don’t.

When you don’t look for triangles!
Triangle interpolation: for less structured image

Weighted sum using triangles:

\[Q = V_1 A_1 + V_2 A_2 + V_3 A_3 \]

WHY?

V1 is the furthest from *q* and *A1* gives the smallest area.

V2 is next furthest from 1 and *A2* gives the next smallest area…

Should normalize this based on total area, but we won’t use this.
Bilinear interpolation: for grids, pretty good; easier than triangles

This time find the closest pixels in a box.
Bilinear interpolation: for grids, pretty good

This time find the closest pixels in a box.
Bilinear interpolation: for grids, pretty good

This time find the closest pixels in a box
Bilinear interpolation: for grids, pretty good

This time find the closest pixels in a box

Same plan, weighted sum based on area of opposite rectangle

\[Q = V_1 \cdot A_1 + V_2 \cdot A_2 + V_3 \cdot A_3 + V_4 \cdot A_4 \]
Bilinear interpolation: for grids, pretty good

A1 = d2*d4
A2 = d1*d4
A3 = d2*d3
A4 = d1*d3

q = V1*A1 + V2*A2 + V3*A3 + V4*A4
Bilinear interpolation: for grids, pretty good

- Smoother than NN
- More complex
 - 4 lookups
 - Some math
- Often the right tradeoff of speed vs final result
Bicubic sampling: more complex, maybe better?

- A cubic interpolation of 4 cubic interpolations
- Smoother than bilinear, no “star”
- 16 nearest neighbors
- Fit 3rd order poly:
 - \(f(x) = a + bx + cx^2 + dx^3 \)
- Interpolate along axis
- Fit another poly to interpolated values
Bicubic vs bilinear
Bicubic vs bilinear
Resize algorithm:

- For each pixel in new image:
 1. Map to old im coordinates
 2. Interpolate value
 3. Set new value in image
What about shrinking?

- NN and Bilinear only look at small area
- Lots of artifacting
- Staircase pattern on diagonal lines
- We’ll fix this next class with filters!
So what is this interpolation useful for?
Image resizing!

Say we want to increase the size of an image...

This is a beautiful image of a sunset... it’s just very small...
Image resizing!

Say we want to increase the size of an image...

This is a beautiful image of a sunset... it’s just very small...

Say we want to increase size 4x4 → 7x7
Resize 4x4 -> 7x7

- Create our new image
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - System of equations
 - \(aX + b = Y \)
 - \(a\times-.5 + b = -.5 \)
 - \(a\times6.5 + b = 3.5 \)
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - System of equations
 - $aX + b = Y$
 - $a^{*-}.5 + b = -.5$
 - $a^{*}6.5 + b = 3.5$
 - $a^{*}7 = 4$
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - System of equations
 - $aX + b = Y$
 - $a\cdot-.5 + b = -.5$
 - $a\cdot6.5 + b = 3.5$
 - $a\cdot7 = 4$
 - $a = \frac{4}{7}$
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - System of equations
 - \(aX + b = Y \)
 - \(a \cdot -0.5 + b = -0.5 \)
 - \(a \cdot 6.5 + b = 3.5 \)
 - \(a = 4/7 \)
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - System of equations
 - \(aX + b = Y \)
 - \(a*-.5 + b = -.5 \)
 - \(a*6.5 + b = 3.5 \)
 - \(a = 4/7 \)
 - \(a*-.5 + b = -.5 \)

\[
\begin{align*}
 \text{(-.5, -.5)} & \rightarrow (\text{-}5, \text{-}5) \\
 \text{(-.5, .5)} & \rightarrow (\text{-}5, .5) \\
 (6.5, 6.5) & \rightarrow (3.5, 3.5)
\end{align*}
\]
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - System of equations
 - aX + b = Y
 - a*-.5 + b = -.5
 - a*6.5 + b = 3.5
 - a = 4/7
 - a*-.5 + b = -.5
 - 4/7*-1/2 + b = -1/2
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - System of equations
 - \(aX + b = Y \)
 - \(a\cdot-0.5 + b = -0.5 \)
 - \(a\cdot6.5 + b = 3.5 \)
 - \(a = \frac{4}{7} \)
 - \(a\cdot-0.5 + b = -0.5 \)
 - \(\frac{4}{7}\cdot-1/2 + b = -1/2 \)
 - \(-4/14 + b = -7/14 \)
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - System of equations
 - \(aX + b = Y \)
 - \(a \cdot -0.5 + b = -0.5 \)
 - \(a \cdot 6.5 + b = 3.5 \)
 - \(a = \frac{4}{7} \)
 - \(a \cdot -0.5 + b = -0.5 \)
 - \(-\frac{4}{7} \cdot -0.5 + b = -\frac{1}{2} \)
 - \(-\frac{4}{14} + b = -\frac{7}{14} \)
 - \(b = -\frac{3}{14} \)
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - System of equations
 - \(aX + b = Y \)
 - \(a\times-0.5 + b = -0.5 \)
 - \(a\times6.5 + b = 3.5 \)
 - \(a = 4/7 \)
 - \(b = -3/14 \)
 - So, we can start with any coordinate \(X \) of the big (new) image and use \(a \) and \(b \) to get \(Y \) on the smaller (old) image.
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - \(\frac{4}{7} x - \frac{3}{14} = y \)
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - $\frac{4}{7}X - \frac{3}{14} = Y$
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - \(\frac{4}{7} X - \frac{3}{14} = Y \)
- Iterate over new pts
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - \(\frac{4}{7} X - \frac{3}{14} = Y \)
- Iterate over new pts
 - Map to old coords (Y is old)
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - \(\frac{4}{7} X - \frac{3}{14} = Y \)
- Iterate over new pts
 - Map to old coords (Y is old)
 - (1, 3)
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - \(\frac{4}{7} X - \frac{3}{14} = Y \)
- Iterate over new pts
 - Map to old coords
 - \((1, 3)\)
 - \(\frac{4}{7}*1 - \frac{3}{14}\)
 - \(\frac{4}{7}*3 - \frac{3}{14}\)
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - \(\frac{4}{7} x - \frac{3}{14} = Y \)
- Iterate over new pts
 - Map to old coords
 - \((1, 3)\)
 - \(\frac{4}{7}*1 - \frac{3}{14}\)
 - \(\frac{4}{7}*3 - \frac{3}{14}\)
 - \((\frac{5}{14}, \frac{21}{14})\)
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - \(\frac{4}{7} x - \frac{3}{14} = y \)
- Iterate over new pts
 - Map to old coords
 - \((1, 3) \rightarrow (5/14, 21/14)\)
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - $\frac{4}{7} x - \frac{3}{14} = Y$
- Iterate over new pts
 - Map to old coords
 - $(1, 3) \rightarrow (\frac{5}{14}, \frac{21}{14})$
 - Interpolate old values
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - \(\frac{4}{7} X - \frac{3}{14} = Y \)
- Iterate over new pts
 - Map to old coords
 - \((1, 3)\) -> \((5/14, 21/14)\)
 - Interpolate old values
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - \(\frac{4}{7} X - \frac{3}{14} = Y \)
- Iterate over new pts
 - Map to old coords
 - \((1, 3) \rightarrow \left(\frac{5}{14}, \frac{21}{14}\right)\)
 - Interpolate old values
 - Size of opposite rects
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - $\frac{4}{7}x - \frac{3}{14} = Y$
- Iterate over new pts
 - Map to old coords
 - $(1, 3) \rightarrow (\frac{5}{14}, \frac{21}{14})$
 - Interpolate old values
 - $Yar = (\frac{1}{2})(\frac{5}{14})$
 - $Bar = (\frac{1}{2})(\frac{9}{14})$
 - $R1ar = (\frac{1}{2})(\frac{5}{14})$
 - $R2ar = (\frac{1}{2})(\frac{9}{14})$
 - $V = Yval \cdot Yar + Bval \cdot Bar + R1val \cdot R1ar + R2val \cdot R2ar$
- For each channel c, put the interpolated value from that channel in position $(1,3,c)$.
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - \(\frac{4}{7} X - \frac{3}{14} = Y \)
- Iterate over new pts
 - Map to old coords
 - (1, 3) -> (5/14, 21/14)
 - Interpolate old values
Resize 4x4 -> 7x7

- Create our new image results
- Match up coordinates
 - \(\frac{4}{7} x - \frac{3}{14} = Y \)
- Iterate over new pts
 - Map to old coords
 - \((1, 3)\) -> \((5/14, 21/14)\)
 - Interpolate old values
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - \(\frac{4}{7} x - \frac{3}{14} = y \)
- Iterate over new pts
 - Map to old coords
 - \((1, 3) \rightarrow (\frac{5}{14}, \frac{21}{14})\)
 - Interpolate old values
- Fill in the rest
 - On outer edges use padding!
Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
 - $4/7 \times -3/14 = Y$
- Iterate over new pts
 - Map to old coords
 - $(1, 3) \rightarrow (5/14, 21/14)$
 - Interpolate old values
- Final result 7 x 7
We did it!
Let’s do something interesting already!!
Want to make image smaller
448x448 -> 64x64
IS THIS ALL THERE IS??
THERE IS A BETTER WAY!
Next Time: Filtering