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Camera Ca_Iibration

k. The idea is to snap
images at different
depths and get a
lot of 2D-3D point
correspondences.

x1,vy1, z1,ul, vl
x2,y2,z1,u2,v2

XN, yn, zn, un, vn
Then solve a system

of equations to get
camera parameters.



Camera Parameters

A camera is described by several parameters
« Translation T of the optical center from the origin of world coords

* Rotation R of the image plane

- focal length f, principal point (X', y';), pixel size (s,, s,)
« blue parameters are called “extrinsics,” red are “intrinsics”
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The projection matrix models the cumulative effect of all parameters
Useful to decompose into a series of operations

identity matrix
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« The definitions of these parameters are not completely standardized
— especially intrinsics—varies from one book to another



Stereo






Amount of horizontal movement is ...

...inversely proportional to the distance from the camera




Depth from Stereo

* Goal: recover depth by finding image coordinate x’
that corresponds to x
X

C Baseline C’
B



Depth frorxn disparity

O Baseline O’ See Chapter 12

B of Shapiro and
Stockman Text.
. . B-f
disparity=x—XxX'=——
Z

Disparity is inversely proportional to depth.



Depth from Stereo

* Goal: recover depth by finding image coordinate x’ that
corresponds to x
e Sub-Problems

1. Calibration: How do we recover the relation of the cameras (if
not already known)?

2. Correspondence: How do we search for the matching point x’?

X




Correspondence Problem

e

A=

* We have two images taken from cameras with different

intrinsic and extrinsic parameters

How do we match a point in the first image to a point in the
second? How can we constrain our search?
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Key idea: Epipolar constraint

Potential matches for x have to lie on the corresponding line I".

Potential matches for x” have to lie on the corresponding line /.
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Epipolar geometry: notation

4

. e e¢
0

e Baseline — line connecting the two camera centers

e Epipoles

= intersections of baseline with image planes

= projections of the other camera center

e Epipolar Plane — plane containing baseline (1D family)

12



Epipolar geometry: notation

4

e ec

0
e Baseline — line connecting the two camera centers
e Epipoles
= intersections of baseline with image planes
= projections of the other camera center

e Epipolar Plane — plane containing baseline (1D family)

e Epipolar Lines - intersections of epipolar plane with image
planes (always come in corresponding pairs)
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Example: Converging cameras

| = 14



Example: Motion parallel to image
plane
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Epipolar constraint: Calibrated case

(@)

X

O.!

Assume that the intrinsic and extrinsic parameters of the cameras are
known

We can multiply the projection matrix of each camera (and the image
points) by the inverse of the calibration matrix to get normalized

image coordinates

We can also set the global coordinate system to the coordinate

system of the first camera. Then the projection matrices of the two
cameras can be written as [I | 0] and [R | {] y



Simplified Matrices for the 2 Cameras

1 00

(0 1 0 ):(I\o)
0 0 1
RIt)-rim
(o17)
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Epipolar constraint: Calibrated case

X =(x,1)7

The vectors RX, [, and x’ are coplanar
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Epipolar constraint: Calibrated case

P N\

m) Xx"Ex=0 With
2 B

Essential Matrix E
(Longuet-Higgins, 1981)

(@)

X"-[tx(Rx)]=0

The vectors RX, 1, and x’ are coplanar 19



Epipolar constraint: Calibrated case

o o’

X"-[tx(Rx)]=0 ﬂ x’TEx:OHWith E=[t]R

E x is the epipolar line associated with x (/' = E x)
E'x'is the epipolar line associated with x' (I = E'x’)
Ee=0 and E’e'=0

E is singular (rank two)

E has five degrees of freedom



Moving on to stereo...

Fuse a calibrated binocular stereo pair to
produce a depth image

image 1 image 2

Dense depth map

Many of these slides adapted from
Steve Seitz and Lana Lazebnik




Stereo image rectification

e Reproject image planes
onto a common plane
arallel to the line
etween camera centers

e Pixel motion is horizontal
after this transformation

e Two homographies (3x3
transform), one for each
input image reprojection

» C. Loop and Z. Zhang. Computing
Rectifying Homographies for Stereo
Vision. IEEE Conf. Computer Vision

and Pattern Recognition, 1999.
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http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

Example

Unrectified

Rectified




Left Right

scanline

Matching cost h
/\/\{ disparity

e Slide a window along the right scanline and
compare contents of that window with the
reference window in the left image

e Matching cost: SSD, SAD, or normalized correlation

24



scanline

Correspondence search

Left Right

Norm. corr
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Results with window search

Data




Using more than two images

s e

0l
é.}

¢
¢

> ),
>

-
>

RN © Fovorove

H}‘u i i
|'M1;JE .}

| o —

|
I
|
i

AJ'#‘_(!‘HWSQ !m m-a; - (’ﬁ‘ﬁ )

-5
E20

il i

=

wmm»wmumun kit g b AL [ _”W u
T r-a.w.‘raw STy e PN e e
A WA

;’[«“MM‘

Multi-View Stereo for Community Photo Collections
M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. Seitz
Proceedings of ICCV 2007,

27


http://grail.cs.washington.edu/projects/mvscpc/download/Goesele-2007-MVS.pdf
http://iccv2007.rutgers.edu/

3D model

+ “Digital copy” of real object

« Allows us to
— Inspect details of object
— Measure properties
— Reproduce in different material

« Many applications
— Cultural heritage preservation
— Computer games and movies
— City modelling
— E-commerce




Applications: cultural heritage

SCULPTEUR European project




Applications: art

Block Works Precipitate Il 2004
Mild steel blocks 80 x 46 x 66 cm

Domain Series Domain VIl Crouching
1999 Mild steel bar 81 x 59 x 63 cm




Applications: structure engineering

BODY / SPACE / FRAME, Antony Gormley, Lelystad, Holland




Applications: 3D indexation
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Applications: archaeology

e “forma urbis romae” project

Fragments of the City: Stanford's Digital Forma Urbis Romae Project
David Koller, Jennifer Trimble, Tina Najbjerg, Natasha Gelfand, Marc Levoy
Proc. Third Williams Symposium

on Classical Architecture,

Journal of Roman Archaeology

supplement, 2006.

1186 fragments




Applications: large scale modelling

\

[Cornelis08] [Goesele07]



Applications: Medicine
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Scanning technologies

» Laser scanner, coordinate measuring machine
— \Very accurate
— Very Expensive
— Complicated to use

Minolta

Contura CMM



Medical Scanning System




The “Us” Data Set (subset)




3d shape from photographs

“Estimate a 3d shape that would generate the
Input photographs given the same material,
viewpoints and illumination”

viewpoint

geometry material illumination

S




Photometric Stereo

e Estimate the surface normals of a given scene
given multiple 2D images taken from the same
viewpoint, but under different lighting conditions.

* Basic photometric stereo required a Lambertian
reflectance model:
l=pn-v
where | is pixel , nisthe normal, vis the

lighting direction, and p is diffuse albedo constant,
which is a reflection coefficient.



Basic Photometric Stereo




Basic Photometric Stereo

High speed camera
Projector 1 pa—

— . W . —
_——

Yoo

N
d
Diffuse sphere

Projector 3




Basic Photometric Stereo

* Klight sources

* Lead to Kimages R,(p,q), -..,R¢(p,q) each from
just one of the light sources being on

* Forany (p,q), we get K intensities |,,...I,

* Leads to a set of linear equations of the form
| = pnev,

e Solving leads to a surface normal map.



Photometric Stereo

Inputs - 's
s ’ ’ P
, | &

-
’

3D normals




3d shape from photographs

Photograph based 3d reconstruction Is:

practical
fast
non-intrusive
low cost
Easily deployable outdoors
x “low” accuracy
x Results depend on material properties



| Reconstruction
e Generic problem formulation: given several

images of the same object or scene,
compute a representation of its 3D shape




Reconstruction

Generic problem formulation: given several images of
the same object or scene, compute a representation of
its 3D shape

“Images of the same object or scene”

— Arbitrary number of images (from two to thousands)

— Arbitrary camera positions (camera network or video
sequence)

— Calibration may be initially unknown

“Representation of 3D shape”
— Depth maps

— Meshes

— Point clouds

— Patch clouds

— Volumetric models

— Layered models



Multiple-baseline stereo

o =
E_A_A_ 3 8

B b e ‘n-h;J
CSFRP RIS IE———
=

“A Multiple-Baseline Stereo System,”



http://www.ri.cmu.edu/pub_files/pub2/okutomi_m_1993_1/okutomi_m_1993_1.pdf

Reconstruction from silhouettes

* Can be computed robustly
* Can be computed efficiently




Reconstruction from Silhouettes

e The case of binary images: a voxel is photo-
consistent if it lies inside the object’s
silhouette in all views

Binary Images =—» P q ‘




Reconstruction from Silhouettes
e The case of binary images: a voxel is photo-

consistent if it lies inside the object’s
silhouette in all views

voxel space

\
/O
; €
Binary Images =—p W ‘z '

Finding the silhouette-consistent shape (visual hull):

e Backproject each silhouette
e |ntersect backprojected volumes



Calibrated Image Acquisition

Selected Flower Images



in General

A
Nl >

e Space Carving Algorithm

Space Carvin

Image 1

Initialize to a volume V containing the true scene

Choose a voxel on the outside of the volume

Project to visible input images
Carve if not photo-consistent (inside object’s silhouette)

K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space Carving, /ICCV 1999



http://www.cs.washington.edu/homes/seitz/papers/kutu-ijcv00.pdf

Our 4-camera light-striping stereo
system

(now deceased)

cameras

e
’




Calibration Object

The idea is to snap
Images at different
depths and get a

lot of 2D-3D point
correspondences.




Surface Modeling and Display
from Range and Cejor Data
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Infroduction

Goal

* develop robust a %oruthms for constructm9

3D models from nge & color data

* use those models to produce realistic
renderings of the scanned objects




Surface Reconsfuction

Step 1: Data acquisition
Obtain range data that covers the
object. Filter, remove background.

Step 2: Registration
Register the range maps into a common
coordinate system.

Step 3: Integration
Integrate the registered range data into
A single surface representation.

Step 4: Optimization
Fit the surface more accurately to the
data, simplity the representation.




Carve space in cithes

Observed lmage

Sensor
surface plane

|
:
Leer="

[gj“
Cutaids Inaids

Volume under
consideration

Label cubes

» Project cube to image plane (hexagon)
» Test against data in the hexagon




3D space Is made up of many cubes.

/

.

OUTSIDE

=

Image plane
depth map

—_—

(X,y,2)

one of many cubes
In virtual 3D cube space



Several views

Processing order: Q
FOR EACH cube Vv
FOR EACH view

[ |

Rules: A
any view thinks cube’s out O
= it's out
every view thinks cube’s in
= it's In
AR
=Y it's at boundary




Hieyrarchical space carving

*Big cubes =) fast, poor results
e Small cubes =) glow, more accurate results

¢ Combination = octrees

RULES: ecube’s out =) done
ecube’s in =) done
¢ clse => recurse



Hieyrarchical space carving

*Big cubes =) fast, poor results
e Small cubes =) glow, more accurate results

¢ Combination = octrees

RULES: ecube’s out =) done
ecube’s in =) done
¢ clse => recurse



The rest of the chair




Same for a husky pup




Optimizing The dog mesh

Registefed points

“l o
e

Initial mesh

Optimized mesh




View dependent Fexturing




YView  Opdivns




Source: S. Seitz



More: Space Carving Results: Hand




Stereo from community photo collections

e Up to now, we’ve always assumed that camera calibration is
known

e For photos taken from the Internet, we need structure from
motion techniques to reconstruct both camera positions and
3D points.

flickr:. voco

Home You Organize & Create Contacts Groups Explore Upload
Search Photos Groups People
- - 1 Full Text
|Everyone's Uploads | |statue of liberty ‘ Advanced
Sort: Relevant  Recent  Interesting View. Small Medium = Detail = Slideshow
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From alabs From Bighis.Take
From Julio... From StephiGra... -
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From laurenbou... From StephiGra... From Maojumbo22...






Head Reconstruction from Uncalibrated Internet Photos

* Input: Internet photos in different poses and expressions

,;GLE george w bush [0 RS n # 0 ?‘

Al News Images  Videos  Books  More~  Search tools View saved SafoSearch ~ fe]
;85 F, i Png M Y e p—
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Young George H.w. Bush Paintings 2015
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Recognizing Deformable
Shapes

Salvador Ruiz Correa
(CSE/EES76 Computer Vision I)



Goal

* We are interested in developing algorithms for
recognizing and classifying deformable object
shapes from range data.

3-D Output
3-D Laser Scanner Surface Mesh
Range
data Post.-
’ processing |
(Cloud of
¥ 3-D points)

m This is a difficult problem that is relevant in several
application fields.



What Kind Of Deformations?




Component-Based Methodology

Describe
spatial
configuration

Numeric
Signatures

‘ define

2

Components

3

Symbolic
Signatures

N\
/

Overcomes the limitations
of the alignment-verification

approach
4
Architecture Recognition And
@ — of ——p Classification Of
Classifiers Deformable Shapes




Numeric Signhatures

2
Components 4
\ Architecture
ORI
3 Classifiers
Symbolic /

Signatures




The Spin Image Signature

P is the selected vertex.

X is a contributing point X
of the mesh. n

tangent plane at P

a is the perpendicular distance from X to P's surface normal.

B is the signed perpendicular distance from X to P's tfangent plane.



Spin Image Construction

* A spin image is constructed
- about a specified oriented point o of the object surface
- with respect to a set of contributing points C, which is
controlled by maximum distance and angle from o.

+ It is stored as an array of accumulators S(o,3) computed via:
* For each point c in C(0)

1. compute o and B for c.
2. increment S (a,B)




Numeric Signhatures: Spin Images

o 4
%
|7

Rich set of surface shape descriptors.

Their spatial scale can be modified to include local and
non-local surface features.

Representation is robust to scene clutter and occlusions.



Components

1 :
Numeric

Signatures

define

4

Architecture
of
Classifiers

Symbolic
Signatures




How To Extract Shape Class Components?

Training Set

Select
Seed

Points

Region
: ' Component
Numerlc Growing ‘ Detrc)ector

Grown components
around seeds



Component Extraction Example

Selected 8 seed Labeled
points by hand Surface Mesh

Region
Growing
—

Detected

Grow one region at the time
(get one detector components on a

per component) training sample



How To Combine Component Information?




Symbolic Signatures

1

Numeric
Signatures

|

2

Components

4

Architecture

»  of
Classifiers




Symbolic Signature

Labeled

Surface Mesh Symbolic

Signature at P

Critical

Point P Encode

Geometric
Configuration

-

Matrix storing
component
labels



Symbolic Signatures Are Robust
To Deformations

b
¥
C

LR R

Relative position of components is
stable across deformations:
experimental evidence



Architecture of Classifiers

1

Numeric
Signatures

|

2

Components

3

Symbolic
Signhatures

N
/

®_>
T




Proposed Architecture

Verify spatial configuration
of the components

Identify - IdentifY
Components Symbolic
Llavtlm'id Signatures

(Abnormal)

Surface Two classification stages
Mesh



Experimental Validation

Recognition Tasks: 4 (T1 - T4)
Classification Tasks: 3 (TH - T7)
No. Experiments: 5470

Rotary Table Setup Laser

Recognition Classification



Shape Classes




Enlarging Training Sets Using Vlr‘l'ual

Morphs

. Twist (bdeg)
' + Taper
- Push

Push

J+Scale (1.2)

Global Morphing
Operators

Electrical Engineering

Samples

:)_.

Physical Modelmg

University of Washington



Task 1: Recognizing Single Objects (1)

No. Shape classes: 9.

Training set size: 400 meshes.
Testing set size: 200 meshes.

No. Experiments: 1960.

No. Component detectors:3.

No. Symbolic signature detectors: 1.
Numeric signhature size: 40x40.
Symbolic signhature size: 20x20.

No clutter and occlusion.



Task 1: Recognizing Single Objects (2)

Snowman: 93%. « Human head: 97.7%.
Rabbit: 92%. « Human face: 76%.
Dog: 89%.
Cat: 85.5%.
Cow: 92%.
Bear: 94%.
Horse: 92.7%.

Recognition rates (true positives)

(No clutter, no occlusion, complete models)



Main Contributions (2)

* A region growing algorithm for learning
shape class components.

* A novel architecture of classifiers for
abstracting the geometry of a shape class.

* A validation of our methodology in a set of
large scale recognition and classification
experiments aimed at applications in scene
analysis and medical diaghosis.



