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Camera Calibration
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The idea is to snap
images at different
depths and get a
lot of  2D-3D  point
correspondences.

x1, y1, z1, u1, v1
x2, y2, z1, u2, v2
.
.
xn, yn, zn, un, vn

Then solve a system
of equations to get
camera parameters.



Camera Parameters
A camera is described by several parameters

• Translation T of the optical center from the origin of world coords

• Rotation R of the image plane

• focal length f, principal point (x’c, y’c), pixel size (sx, sy)

• blue parameters are called “extrinsics,” red are “intrinsics”

• The definitions of these parameters are not completely standardized

– especially intrinsics—varies from one book to another

Projection equation

• The projection matrix models the cumulative effect of all parameters

• Useful to decompose into a series of operations

projectionintrinsics rotation translation

identity matrix
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[tx, ty, tz]T



Stereo
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Amount of horizontal movement is …

…inversely proportional to the distance from the camera
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Depth from Stereo

• Goal: recover depth by finding image coordinate x’ 
that corresponds to x
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Depth from disparity
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Disparity is inversely proportional to depth.
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See Chapter 12 
of Shapiro and 
Stockman Text.



Depth from Stereo
• Goal: recover depth by finding image coordinate x’ that 

corresponds to x

• Sub-Problems

1. Calibration: How do we recover the relation of the cameras (if 
not already known)?

2. Correspondence: How do we search for the matching point x’?

X

x

x'
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Correspondence Problem

• We have two images taken from cameras with different 
intrinsic and extrinsic parameters

• How do we match a point in the first image to a point in the 
second?  How can we constrain our search?

x ?
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Potential matches for x have to lie on the corresponding line l’.

Potential matches for x’ have to lie on the corresponding line l.

Key idea: Epipolar constraint

x x’

X

x’

X

x’

X
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• Epipolar Plane – plane containing baseline (1D family)

• Epipoles
= intersections of baseline with image planes 
= projections of the other camera center

• Baseline – line connecting the two camera centers

Epipolar geometry: notation
X

x x’
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• Epipolar Lines - intersections of epipolar plane with image
planes (always come in corresponding pairs)

Epipolar geometry: notation
X

x x’

• Epipolar Plane – plane containing baseline (1D family)

• Epipoles
= intersections of baseline with image planes 
= projections of the other camera center

• Baseline – line connecting the two camera centers
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Example: Converging cameras
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Example: Motion parallel to image 
plane

15



X

x x’

Epipolar constraint: Calibrated case

• Assume that the intrinsic and extrinsic parameters of the cameras are 
known

• We can multiply the projection matrix of each camera (and the image 
points) by the inverse of the calibration matrix to get normalized
image coordinates

• We can also set the global coordinate system to the coordinate 
system of the first camera. Then the projection matrices of the two 
cameras can be written as [I | 0] and [R | t]
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Simplified Matrices for the 2 Cameras
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= (R | T)



X

x x’ = Rx+t

Epipolar constraint: Calibrated case

R

t

The vectors Rx, t, and x’ are coplanar 

= (x,1)T
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Essential Matrix E
(Longuet-Higgins, 1981)

Epipolar constraint: Calibrated case

0])([ = xRtx RtExEx
T ][with0 ==

X

x x’

The vectors Rx, t, and x’ are coplanar 19



X

x x’

Epipolar constraint: Calibrated case

• E x is the epipolar line associated with x (l' = E x)
• ETx' is the epipolar line associated with x' (l = ETx')
• E e = 0   and   ETe' = 0
• E is singular (rank two)
• E has five degrees of freedom 

0])([ = xRtx RtExEx
T ][with0 ==
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Moving on to stereo…
Fuse a calibrated binocular stereo pair to 
produce a depth image

image 1 image 2

Dense depth map

Many of these slides adapted from 
Steve Seitz and Lana Lazebnik
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Stereo image rectification

• Reproject image planes 
onto a common plane 
parallel to the line 
between camera centers

• Pixel motion is horizontal 
after this transformation

• Two homographies (3x3 
transform), one for each 
input image reprojection

➢ C. Loop and Z. Zhang. Computing 
Rectifying Homographies for Stereo 
Vision. IEEE Conf. Computer Vision 
and Pattern Recognition, 1999.
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http://research.microsoft.com/~zhang/Papers/TR99-21.pdf


Example
Unrectified

Rectified
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Matching cost

disparity

Left Right

scanline

• Slide a window along the right scanline and 
compare contents of that window with the 
reference window in the left image

• Matching cost: SSD, SAD, or normalized correlation
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Left Right

scanline

Correspondence search

Norm. corr 25



Results with window search

Window-based matching Ground truth

Data
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Using more than two images

Multi-View Stereo for Community Photo Collections

M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. Seitz

Proceedings of ICCV 2007, 
27

http://grail.cs.washington.edu/projects/mvscpc/download/Goesele-2007-MVS.pdf
http://iccv2007.rutgers.edu/


• “Digital copy” of real object

• Allows us to

– Inspect details of object

– Measure properties

– Reproduce in different material

• Many applications

– Cultural heritage preservation 

– Computer games and movies

– City modelling

– E-commerce

3D model



Applications: cultural heritage

SCULPTEUR European project



Applications: art

Domain Series Domain VIII Crouching
1999 Mild steel bar 81 x 59 x 63 cm 

Block Works Precipitate III 2004 
Mild steel blocks 80 x 46 x 66 cm 



Applications: structure engineering

BODY / SPACE / FRAME, Antony Gormley, Lelystad, Holland 



SCULPTEUR European project

medical, industrial and cultural heritage indexation

? ?

? ? ?
?

? ?
?

Applications: 3D indexation



1186 fragments

Applications: archaeology
• “forma urbis romae” project

Fragments of the City: Stanford's Digital Forma Urbis Romae Project
David Koller, Jennifer Trimble, Tina Najbjerg, Natasha Gelfand, Marc Levoy
Proc. Third Williams Symposium 
on Classical Architecture, 
Journal of Roman Archaeology 
supplement, 2006.



Applications: large scale modelling

[Pollefeys08][Furukawa10]

[Goesele07][Cornelis08]



Applications: Medicine



Scanning technologies

• Laser scanner, coordinate measuring machine

– Very accurate

– Very Expensive

– Complicated to use

Minolta

Contura CMM“Michelangelo” project



Medical Scanning System



The “Us” Data Set (subset)



3d shape from photographs

“Estimate a 3d shape that would generate the 
input photographs given the same material, 

viewpoints and illumination”

material illumination

viewpoint

geometry image

?



Photometric Stereo

• Estimate the surface normals of a given scene 
given multiple 2D images taken from the same 
viewpoint, but under different lighting conditions.

• Basic photometric stereo required a Lambertian
reflectance model:

I =  n · v

where I is pixel intensity, n is the normal, v is the 
lighting direction, and  is diffuse albedo constant, 
which is a reflection coefficient.



Basic Photometric Stereo



Basic Photometric Stereo



Basic Photometric Stereo

• K light sources

• Lead to K images R1(p,q), ...,RK(p,q) each from 
just one of the light sources being on

• For any (p,q), we get K intensities I1,...IK

• Leads to a set of linear equations of the form

Ik = n•vk

• Solving leads to a surface normal map.



Photometric Stereo

Inputs

3D normals



Photograph based 3d reconstruction is:

 practical

 fast

 non-intrusive

 low cost

 Easily deployable outdoors

 “low” accuracy

 Results depend on material properties

3d shape from photographs



Reconstruction
• Generic problem formulation: given several 

images of the same object or scene, 
compute a representation of its 3D shape



Reconstruction
• Generic problem formulation: given several images of 

the same object or scene, compute a representation of 
its 3D shape

• “Images of the same object or scene”
– Arbitrary number of images (from two to thousands)
– Arbitrary camera positions (camera network or video 

sequence)
– Calibration may be initially unknown 

• “Representation of 3D shape”
– Depth maps
– Meshes
– Point clouds
– Patch clouds
– Volumetric models
– Layered models



I1 I2 I10

Multiple-baseline stereo

M. Okutomi and T. Kanade, “A Multiple-Baseline Stereo System,” IEEE Trans. on Pattern 
Analysis and Machine Intelligence,  15(4):353-363 (1993). 

http://www.ri.cmu.edu/pub_files/pub2/okutomi_m_1993_1/okutomi_m_1993_1.pdf


Reconstruction from silhouettes

• Can be computed robustly

• Can be computed efficiently

- =

background 

+ 

foreground

background foreground 



Reconstruction from Silhouettes

Binary Images

• The case of binary images: a voxel is photo-
consistent if it lies inside the object’s 
silhouette in all views



Reconstruction from Silhouettes

Binary Images

Finding the silhouette-consistent shape (visual hull):  

• Backproject each silhouette

• Intersect backprojected volumes

• The case of binary images: a voxel is photo-
consistent if it lies inside the object’s 
silhouette in all views

voxel space



Calibrated Image Acquisition

Calibrated Turntable
360° rotation (21 images)

Selected Dinosaur Images

Selected Flower Images



Space Carving in General

• Space Carving Algorithm

Image 1 Image N

…...

• Initialize to a volume V containing the true scene

• Choose a voxel on the outside of the volume

• Carve if not photo-consistent (inside object’s silhouette)

• Project to visible input images

K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space Carving, ICCV 1999

http://www.cs.washington.edu/homes/seitz/papers/kutu-ijcv00.pdf


Our 4-camera light-striping stereo 
system

projector

rotation

table

cameras

3D

object

(now deceased)



Calibration Object

The idea is to snap

images at different

depths and get a

lot of  2D-3D  point

correspondences.











image plane

depth map(u,v,d)

OUTSIDE
one of many cubes

in virtual 3D cube space

3D space is made up of many cubes.

(x,y,z)

(



















More: Space Carving Results:  African Violet

Input Image (1 of 45) Reconstruction

ReconstructionReconstruction Source: S. Seitz



More: Space Carving Results:  Hand

Input Image
(1 of 100) 

Views of Reconstruction



Stereo from community photo collections
• Up to now, we’ve always assumed that camera calibration is 

known

• For photos taken from the Internet, we need structure from 
motion techniques to reconstruct both camera positions and 
3D points.





Head Reconstruction from Uncalibrated Internet Photos

• Input: Internet photos in different poses and expressions

• Output: 3D model of the head

work of
Shu Liang



Recognizing Deformable 
Shapes

Salvador Ruiz Correa

(CSE/EE576 Computer Vision I)



Goal
• We are interested in  developing algorithms for 

recognizing and classifying deformable object 
shapes from range data.

3-D Output
Surface Mesh3-D Laser Scanner

Input
3-D

Object

◼ This is a  difficult problem that is relevant in several 
application fields.

Range
data

(Cloud of 
3-D points)

Post-
processing



What Kind Of Deformations?

Toy animals

3-D Faces

Normal 

Mandibles

Neurocranium

Normal

Abnormal

Abnormal

Shape classes: significant
amount of intra-class variability



Component-Based Methodology

Numeric
Signatures

Components

Symbolic
Signatures

Architecture
of 

Classifiers
+

Recognition And 
Classification Of

Deformable Shapes 

Overcomes the limitations
of the alignment-verification

approach
define

Describe 
spatial 

configuration

1

2

3

4



Numeric Signatures

Architecture
of 

Classifiers

Numeric
Signatures

Components

Symbolic
Signatures

4

+

1

2

3

Encode Local 
Surface Geometry  of an 

Object



The Spin Image Signature

P

X
n





P is the selected vertex.

X is a contributing point
of the mesh.

 is the perpendicular distance from X to P’s surface normal.

 is the signed perpendicular distance from X to P’s tangent plane.

tangent plane at P



Spin Image Construction

• A spin image is constructed
- about a specified oriented point o of the object surface
- with respect to a set of contributing points C, which is

controlled by maximum distance and angle from o.

• It is stored as an array of accumulators S(,) computed via:

• For each point c in C(o)

1. compute  and  for c.
2. increment S (,) o



Numeric Signatures: Spin Images

• Rich set of surface shape descriptors.

• Their spatial scale can be modified  to include local and 
non-local surface  features. 

• Representation is robust to scene clutter and occlusions.

P

Spin images for point P

3-D faces



Components

Numeric
Signatures

Components

Symbolic
Signatures

Architecture
of 

Classifiers

4

+

1

2

3

Equivalent Numeric 
Signatures:

Encode Local Geometry
of a Shape Class

define



How To Extract Shape Class Components?

…

…

Component
Detector

Compute
Numeric

Signatures

Training Set

Select
Seed

Points

Region
Growing

Algorithm

Grown components
around seeds



Labeled 
Surface Mesh

Selected 8 seed
points by hand

Component Extraction Example

Region 
Growing

Grow one region at the time 
(get one detector
per component)

Detected
components on a
training sample



How To Combine Component Information?

…
Extracted components on test samples

12

3

76

4

8

5

1112 2 222 2

Note: Numeric signatures are invariant to mirror symmetry;
our approach preserves such an invariance.



Symbolic Signatures

Numeric
Signatures

Components

Symbolic
Signatures

Architecture
of 

Classifiers

4

+

1

2

3

Encode Geometrical 
Relationships 

Among Components



Symbolic Signature

Symbolic 
Signature at P

34
5

68 7

Labeled 
Surface Mesh

Matrix storing 
component

labels

Encode
Geometric

Configuration

Critical
Point P



Symbolic Signatures Are Robust 
To Deformations

P
34

5

6 7
8

33 3 34 4 4 4

8 8 8 8
5 5 5 5

666 7 7 7 76

Relative position of components is  
stable across deformations: 

experimental evidence



Architecture of Classifiers

Numeric
Signatures

Components

Symbolic
Signatures

Architecture
of 

Classifiers

4

+

1

2

3

Learns Components
And Their

Geometric Relationships



Proposed Architecture

Input

Labeled
Mesh

Class
Label

-1
(Abnormal)

Verify spatial configuration
of the components 

Identify
Symbolic

Signatures

Identify
Components

Two classification stagesSurface 
Mesh



Experimental Validation

Recognition Tasks: 4 (T1 - T4)

Classification Tasks: 3 (T5 – T7)

No. Experiments: 5470 

Setup

Recognition Classification 

LaserRotary Table



Shape Classes



Enlarging  Training Sets Using Virtual 
Samples Displacement

Vectors

Originals Morphs

Twist (5deg)
+ Taper
- Push

+ Spherify (10%)

Push 
+Twist (10 deg)

+Scale (1.2)

Original

Global Morphing
Operators

Morphs

Physical Modeling

(14)

University of WashingtonElectrical Engineering



Task 1: Recognizing Single  Objects (1)

• No. Shape classes: 9.
• Training set size: 400 meshes.
• Testing set size: 200 meshes.
• No. Experiments: 1960.
• No. Component detectors:3.
• No. Symbolic signature detectors: 1.
• Numeric signature size: 40x40.
• Symbolic signature size: 20x20.
• No clutter and occlusion.



Task 1: Recognizing Single  Objects (2)

• Snowman: 93%.

• Rabbit: 92%.

• Dog: 89%.

• Cat: 85.5%.

• Cow: 92%.

• Bear: 94%.

• Horse: 92.7%.

• Human head: 97.7%.

• Human face: 76%.

Recognition rates (true positives)
(No clutter, no occlusion, complete models)



Main Contributions (2)

• A region growing algorithm for learning 
shape class components. 

• A novel architecture of classifiers for 
abstracting the geometry of a shape class.

• A validation of our methodology in a set of 
large scale recognition and classification 
experiments aimed at applications in scene 
analysis and medical diagnosis.


