
Computer Vision

CSE 455
Motion and Optical Flow

Linda Shapiro
Professor of Computer Science & Engineering

Professor of Electrical Engineering

We live in a moving world
• Perceiving, understanding and predicting motion is an

important part of our daily lives

Motion and perceptual organization

• Even “impoverished” motion data can evoke a
strong percept

G. Johansson, “Visual Perception of Biological Motion and a Model For Its Analysis",
Perception and Psychophysics 14, 201-211, 1973.

Motion and perceptual organization

• Even “impoverished” motion data can evoke a
strong percept

G. Johansson, “Visual Perception of Biological Motion and a Model For Its Analysis",
Perception and Psychophysics 14, 201-211, 1973.

Seeing motion from a static picture?

http://www.ritsumei.ac.jp/~akitaoka/index-e.html

More examples

How is this possible?

• The true mechanism is yet
to be revealed

• FMRI data suggest that
illusion is related to some
component of eye
movements

• We don’t expect computer
vision to “see” motion from
these stimuli, yet

The cause of motion

• Three factors in imaging process
– Light

– Object

– Camera

• Varying either of them causes motion
– Static camera, moving objects (surveillance)

– Moving camera, static scene (3D capture)

– Moving camera, moving scene (sports, movie)

– Static camera, moving objects, moving light (time lapse)

Motion scenarios (priors)

Static camera, moving scene Moving camera, static scene

Moving camera, moving scene Static camera, moving scene, moving light

We still don’t touch these areas

How can we recover motion?

Recovering motion

• Feature-tracking
– Extract visual features (corners, textured areas) and “track” them over

multiple frames

• Optical flow
– Recover image motion at each pixel from spatio-temporal image

brightness variations (optical flow)

B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, pp.
674–679, 1981.

Two problems, one registration method

Feature tracking

• Challenges

– Figure out which features can be tracked

– Efficiently track across frames

– Some points may change appearance over time
(e.g., due to rotation, moving into shadows, etc.)

– Drift: small errors can accumulate as appearance
model is updated

– Points may appear or disappear: need to be able
to add/delete tracked points

What is Optical Flow?

What is Optical Flow? Movement

What is Optical Flow? Movement

What is Optical Flow? Movement

What is Optical Flow? Movement

What is Optical Flow? Movement
Object

What is Optical Flow? Movement
Pan

What is Optical Flow? Movement
Forward

What is Optical Flow? Movement

http://www.youtube.com/watch?v=JlLkkom6tWw

Why do we want Optical Flow?

Why do we want Optical Flow?
Motion Estimation

Why do we want Optical Flow?
Motion Estimation Object Tracking

Why do we want Optical Flow?
Motion Estimation Object Tracking

Visual Odometry

How do we find the
flow in an image?

Feature Matching

Previously: Features!
- Highly descriptive local regions
- Ways to describe those regions
- Useful for:

- Matching
- Recognition
- Detection

Feature Matching

Feature Matching

Feature Matching

Feature Matching
Disadvantages:

Feature Matching
Disadvantages:

-Sparse!

Feature Matching
Disadvantages:

-Sparse!

-Feature alignment not exact

Feature Matching

Feature Matching
Disadvantages:

-Sparse!

-Feature alignment not exact

-Low accuracy

Feature Matching
Advantages:Disadvantages:

-Sparse!

-Feature alignment not exact

-Low accuracy

Feature Matching
Advantages:

-Scale/rotation invariant

-*kinda* lighting invariant

-Can handle large movements

Disadvantages:

-Sparse!

-Feature alignment not exact

-Low accuracy

Feature Matching
Advantages:

-Scale/rotation invariant

-*kinda* lighting invariant

-Can handle large movements

Disadvantages:

-Sparse!

-Feature alignment not exact

-Low accuracy Overall: Doesn’t work
very well for Optical Flow

What do we do
instead?

Feature tracking

• Given two subsequent frames, estimate the point
translation

• Key assumptions of Lucas-Kanade Tracker
• Brightness constancy: projection of the same point looks the same in

every frame

• Small motion: points do not move very far

• Spatial coherence: points move like their neighbors

I(x,y,t) I(x,y,t+1)

tyx IvIuItyxItvyuxI ++++++),,()1,,(

• Brightness Constancy Equation:

),(),,(1, +++= tvyuxItyxI

Take Taylor expansion of I(x+u, y+v, t+1) at (x,y,t) to linearize the right side:

The brightness constancy constraint

I(x,y,t) I(x,y,t+1)

Image derivative along x Difference over frames

It(x,y) = I(x,y,t+1) – I(x,y,t)
• Difference in intensity at the same pixel between one

image and the previous one.

The brightness constancy constraint

tyx IvIuItyxItvyuxI ++++++),,()1,,(

tyx IvIuItyxItvyuxI +++=−+++),,()1,,(

  0IvuI t

T
=+→

The brightness constancy constraint

• How many equations and unknowns per pixel?

The component of the motion perpendicular to the gradient
(i.e., parallel to the edge) cannot be measured

• One equation (this is a scalar equation!), two unknowns (u,v)

  0IvuI t

T
=+

Can we use this equation to recover image motion (u,v) at each
pixel?

Solving the ambiguity…

• How to get more equations for a pixel?

• Spatial coherence constraint

• Assume the pixel’s neighbors have the same (u,v)
– If we use a 5x5 window, that gives us 25 equations per pixel

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the
International Joint Conference on Artificial Intelligence, pp. 674–679, 1981.

• Least squares problem:

Solving the ambiguity…

Matching patches across images
• Overconstrained linear system

The summations are over all pixels in the K x K window

Least squares solution for d given by

d = (ATA)-1 ATb

Conditions for solvability
Optimal (u, v) satisfies Lucas-Kanade equation

Does this remind you of anything?

When is this solvable? I.e., what are good points to track?
• ATA should be invertible

• ATA should not be too small due to noise

– eigenvalues 1 and  2 of ATA should not be too small

• ATA should be well-conditioned

–  1/  2 should not be too large ( 1 = larger eigenvalue)

Criteria for Harris corner detector

Aperture problem

Corners Lines Flat regions

51

54

Errors in Lukas-Kanade

• What are the potential causes of errors in this procedure?
– Suppose ATA is easily invertible
– Suppose there is not much noise in the image

When our assumptions are violated

• Brightness constancy is not satisfied

• The motion is not small

• A point does not move like its neighbors

– window size is too large

– what is the ideal window size?

55

Revisiting the small motion
assumption

• Is this motion small enough?

– Probably not—it’s much larger than one pixel (2nd order terms dominate)

– How might we solve this problem?

56

Reduce the resolution!

image Iimage J

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)

image 2image 1

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

58

A Few Details
• Top Level

– Apply L-K to get a flow field representing the flow from
the first frame to the second frame.

– Apply this flow field to warp the first frame toward the
second frame.

– Rerun L-K on the new warped image to get a flow field
from it to the second frame.

– Repeat till convergence.

• Next Level
– Upsample the flow field to the next level as the first

guess of the flow at that level.
– Apply this flow field to warp the first frame toward the

second frame.
– Rerun L-K and warping till convergence as above.

• Etc.

image Iimage H

Gaussian pyramid of image 1 Gaussian pyramid of image 2

image 2image 1 u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation

60

The Flower Garden Video

What should the
optical flow be?

Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Flow quality evaluation

Flow quality evaluation

• Middlebury flow page
– http://vision.middlebury.edu/flow/

Ground Truth

Flow quality evaluation

http://vision.middlebury.edu/flow/

• Middlebury flow page
– http://vision.middlebury.edu/flow/

Ground TruthLucas-Kanade flow

Flow quality evaluation

http://vision.middlebury.edu/flow/

• Middlebury flow page
– http://vision.middlebury.edu/flow/

Ground TruthBest-in-class alg

Flow quality evaluation

http://vision.middlebury.edu/flow/

Video stabilization

Video denoising

Video super resolution

71

Robust Visual Motion Analysis:
Piecewise-Smooth Optical Flow

Ming Ye

Electrical Engineering

University of Washington

72

Problem Statement:

Assuming only brightness conservation and
piecewise-smooth motion, find the optical flow
to best describe the intensity change in three
frames.

Estimating Piecewise-Smooth Optical Flow
with Global Matching and Graduated Optimization

73

Approach: Matching-Based Global
Optimization

• Step 1. Robust local gradient-based method for

high-quality initial flow estimate.

Uses least median of squares instead of regular least squares.

• Step 2. Global gradient-based method to improve the

flow-field coherence.

Minimizes a global energy function E = Σ (EB(Vi) + ES(Vi)) where

EB is the brightness difference and ES is the smoothness at flow vector Vi

• Step 3. Global matching that minimizes energy by a

greedy approach.

Visits each pixel and updates it to be consistent with neighbors, iteratively.

74

TT: Translating Tree

150x150 (Barron 94)

BA 2.60 0.128 0.0724

S3 0.248 0.0167 0.00984

)(e)(pix||•e)(pixe BA

S3

e: error in pixels, cdf: culmulative distribution function for all pixels

75

DT: Diverging Tree

150x150 (Barron 94)

BA 6.36 0.182 0.114

S3 2.60 0.0813 0.0507

)(e)(pix||•e)(pixe BA

S3

76

YOS: Yosemite Fly-Through

BA 2.71 0.185 0.118

S3 1.92 0.120 0.0776

)(e)(pix||•e)(pixe

BA

S3

316x252 (Barron, cloud excluded)

77

TAXI: Hamburg Taxi

256x190, (Barron 94)

max speed 3.0 pix/frame

LMS BA

Error map Smoothness errorOurs

78

Traffic

512x512

(Nagel)

max speed:

6.0 pix/frame

BA

Error map Smoothness errorOurs

79

FG: Flower Garden

360x240 (Black)

Max speed: 7pix/frame

BA LMS

Error map Smoothness errorOurs

Representing Moving Images
with Layers

J. Y. Wang and E. H. Adelson

MIT Media Lab

Goal

• Represent moving images with sets of
overlapping layers

• Layers are ordered in depth and occlude each
other

• Velocity maps indicate how the layers are to
be warped over time

Simple Domain:
Gesture Recognition

More Complex:
What are the layers?

Motion Analysis Example

2 separate layers

shown as 2 affine

models (lines);

The gaps show

the occlusion.

Motion Estimation Steps

1. Conventional optical flow algorithm and
representation (uses multi-scale, coarse-to-
fine Lucas-Kanade approach).

2. From the optical flow representation,
determine a set of affine motions. Segment
into regions with an affine motion within
each region.

Results

Results

Results

Summary

• Major contributions from Lucas, Tomasi, Kanade
– Tracking feature points
– Optical flow
– Stereo
– Structure from motion

• Key ideas
– By assuming brightness constancy, truncated Taylor expansion

leads to simple and fast patch matching across frames
– Coarse-to-fine registration
– Global approach by former EE student Ming Ye
– Motion layers methodology by Wang and Adelson

Back to the Homework

• For HW 4, you will implement optical flow!

• In particular, you will implement the Lucas-
Kanade optical flow finder to find the optical
flow between two image frames.

• Shima’s slides will give the exact details.

Homework 4

Optical Flow

91

Motion

92

Overall idea
• We’ll use Lucas-Kanade’s equation to find the optical flow.

• We'll need spatial and temporal gradient information for the
flow equations.

• We'll be calculating structure matrices again, so we need to
do aggregated sums over regions of the image.
– Optical flow has to run on video, so it needs to be fast! we'll

use integral images to simulate smoothing with a box filter instead of
smoothing with a Gaussian filter.

• We’ll calculate velocity from spatial and temporal gradient
information and use that to draw the motion lines.

93

• The Integral Image (or Summed Area Table) is used as a quick and
effective way of calculating the sum of values (pixel values) or
calculating the average intensity in a given image.

• When creating an Integral Image, if we go to any point (x,y), the
corresponding Integral Image value is the sum of all the pixel values
above, to the left and of course including the original pixel value of
(x,y) itself.

94

1. Integral Image

https://computersciencesource.wordpress.com/2010/09/03/computer-vision-the-integral-image/

https://computersciencesource.wordpress.com/2010/09/03/computer-vision-the-integral-image/

95

Step 1

Step 2

Step 3

Original:

Area = 5 + 2 + 3 + 6 = 16

96

Calculate average intensity

How to calculate area in original image, using the corresponding integral image:

Integral:

Area (in original image)

= [S(D) – S(C)] – [S(B) – S(A)]

= (64 – 32) – (32 – 16) = 16

Total of 4 operations.

• (76 - 20) - (24 - 5) = 37

•
37

9
= 4.11

97

Calculate average intensity

Integral ImageOriginal Image

Total of 9 operations.

• 9 + 1 + 2 + 6 + 0 + 5 + 3 + 6 + 5 = 37

•
37

9
= 4.11

• Don’t forget to git pull first. There are a couple of
modified images and libraries.

• Fill in image make_integral_image(image im)

o This function makes an integral image or summed area
table from an image.

o image im: image to process

o returns: image I such that 𝐼 𝑥, 𝑦 = σ{𝑖≤𝑥,𝑗≤𝑦} 𝑖𝑚[𝑖, 𝑗]

98

TODO #1: Integral Image

• Fill in image box_filter_image(image im, int s) so
that every pixel in the output is the average of pixels
in a given window size s.

• Note that you must call your make_integral_image()

in this function.

• Be careful, this is not the your old make_box_filter()

from your other homework. It is using the integral image,
and a smooth window size.

99

TODO #2: Smoothing using integral images

• We'll be implementing optical flow. We'll use a
structure matrix but this time with temporal
information as well. The equation we'll use is:

100

TODO #3: Lucas-Kanade optical flow

Velocity Structure Matrix Time Matrix

• We'll need spatial and temporal gradient information for
the flow equations.

• Calculate a time-structure matrix.

– Spatial gradients can be calculated as normal.

– The time gradient can be calculated as the difference between the
previous image and the next image in a sequence.
• It = [current image] – [previous image]

101

TODO #3.1: Time-structure matrix

Calculate the time-structure matrix of an image pair:

• Fill in image time_structure_matrix(image im, image prev,
int s).

– image im: the input image.

– image prev: the previous image in sequence.

– int s: window size for smoothing.

➢ im and prev to grayscale (given in the code).

➢ Hint: use sub_image to subtract im and prev.

➢ Calculate gradients and structure matrix and smooth (hint:
use your gx and gy functions from HW2)

– …next slide: return

102

TODO #3.1: Time-structure matrix

Calculate the time-structure matrix of an image pair:

• Fill in image time_structure_matrix(image im, image prev,
int s).

– returns: structure matrix which has 5 channels:

• 1st channel is IxIx

• 2nd channel is IyIy

• 3rd channel is IxIy

• 4th channel is IxIt

• 5th channel is IyIt

– Each channel is a vector with the structure of an image.

– Use make_box_filter() to smooth.

103

TODO #3.1: Time-structure matrix

Calculate the velocity given a time-structure image

• Fill in image velocity_image(image S, int stride)
– Image S is the output of time_structure_matrix which you already summed

and smooth.

• For each pixel, fill in the matrix M, invert it, and use it to calculate
the velocity.

𝑣𝑥
𝑣𝑦

= −𝑀−1 ∗
𝐼𝑥

𝑡

𝐼𝑦
𝑡

104

TODO #3.2: Calculating velocity from the time-structure matrix

𝑀 =
𝐼𝑥(𝑞𝑖)

2 𝐼𝑥(𝑞𝑖)𝐼𝑦(𝑞𝑖)

𝐼𝑦(𝑞𝑖)𝐼𝑥(𝑞𝑖) 𝐼𝑦(𝑞𝑖)
2

optical_flow_images() will call your time_structure_matrix() and
velocity_image(). Then draw_flow() will draw lines of motion on the
image.

Try calculating the optical flow between two dog images using tryhw4.py.

a = load_image("data/dog_a.jpg")

b = load_image("data/dog_b.jpg")

flow = optical_flow_images(b, a, 15, 8)

draw_flow(a, flow, 8)

save_image(a, "lines")

105

Draw motion with optical flow

• This part is optional and is a 1 point extra credit, but it is
fun to do.

• Using OpenCV we can get images from the webcam and
display the results in real-time. Try installing OpenCV and
enabling OpenCV compilation in the Makefile (set
`OPENCV=1` in the first line). Then uncomment this line
in tryhw4.py:

optical_flow_webcam(15,4,8)

• Turn in your flow_image.c file on Canvas.

106

Optical flow demo using OpenCV

Have fun!
And stay healthy..

107

