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We live in a moving world
• Perceiving, understanding and predicting motion is an 

important part of our daily lives



Motion and perceptual organization

• Even “impoverished” motion data can evoke a 
strong percept

G. Johansson, “Visual Perception of Biological Motion and a Model For Its Analysis", 
Perception and Psychophysics 14, 201-211, 1973.
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Seeing motion from a static picture?

http://www.ritsumei.ac.jp/~akitaoka/index-e.html



More examples



How is this possible?

• The true mechanism is yet 
to be revealed

• FMRI data suggest that  
illusion is related to some 
component of eye 
movements

• We don’t expect computer 
vision to “see” motion from 
these stimuli, yet



The cause of motion

• Three factors in imaging process
– Light

– Object

– Camera 

• Varying either of them causes motion
– Static camera, moving objects (surveillance)

– Moving camera, static scene (3D capture)

– Moving camera, moving scene (sports, movie)

– Static camera, moving objects, moving light (time lapse)



Motion scenarios (priors)

Static camera, moving scene Moving camera, static scene

Moving camera, moving scene Static camera, moving scene, moving light



We still don’t touch these areas



How can we recover motion?



Recovering motion

• Feature-tracking
– Extract visual features (corners, textured areas) and “track” them over 

multiple frames

• Optical flow
– Recover image motion at each pixel from spatio-temporal image 

brightness variations (optical flow)

B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 
674–679, 1981.

Two problems, one registration method



Feature tracking

• Challenges

– Figure out which features can be tracked

– Efficiently track across frames

– Some points may change appearance over time 
(e.g., due to rotation, moving into shadows, etc.)

– Drift: small errors can accumulate as appearance 
model is updated

– Points may appear or disappear: need to be able 
to add/delete tracked points



What is Optical Flow?



What is Optical Flow? Movement
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What is Optical Flow? Movement
Object



What is Optical Flow? Movement
Pan



What is Optical Flow? Movement
Forward



What is Optical Flow? Movement

http://www.youtube.com/watch?v=JlLkkom6tWw


Why do we want Optical Flow?



Why do we want Optical Flow?
Motion Estimation



Why do we want Optical Flow?
Motion Estimation Object Tracking



Why do we want Optical Flow?
Motion Estimation Object Tracking

Visual Odometry



How do we find the 
flow in an image?



Feature Matching



Previously: Features!
- Highly descriptive local regions
- Ways to describe those regions
- Useful for:

- Matching
- Recognition
- Detection



Feature Matching
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Feature Matching



Feature Matching
Disadvantages:
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Feature Matching
Advantages:

-Scale/rotation invariant

-*kinda* lighting invariant

-Can handle large movements

Disadvantages:

-Sparse!

-Feature alignment not exact

-Low accuracy Overall: Doesn’t work 
very well for Optical Flow



What do we do 
instead?



Feature tracking

• Given two subsequent frames, estimate the point 
translation

• Key assumptions of Lucas-Kanade Tracker
• Brightness constancy:  projection of the same point looks the same in 

every frame

• Small motion: points do not move very far

• Spatial coherence: points move like their neighbors

I(x,y,t) I(x,y,t+1)
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• Brightness Constancy Equation:

),(),,( 1, +++= tvyuxItyxI

Take Taylor expansion of I(x+u, y+v, t+1) at (x,y,t) to linearize the right side:

The brightness constancy constraint

I(x,y,t) I(x,y,t+1)

Image derivative along x Difference over frames

It(x,y) = I(x,y,t+1) – I(x,y,t)
• Difference in intensity at the same pixel between one 

image and the previous one.



The brightness constancy constraint
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The brightness constancy constraint

• How many equations and unknowns per pixel?

The component of the motion perpendicular to the gradient 
(i.e., parallel to the edge) cannot be measured

• One equation (this is a scalar equation!), two unknowns (u,v)

  0IvuI t

T
=+

Can we use this equation to recover image motion (u,v) at each 
pixel?



Solving the  ambiguity…

• How to get more equations for a pixel?

• Spatial coherence constraint

• Assume the pixel’s neighbors have the same (u,v)
– If we use a 5x5 window, that gives us 25 equations per pixel

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the 
International Joint Conference on Artificial Intelligence, pp. 674–679, 1981.



• Least squares problem:

Solving the  ambiguity…



Matching patches across images
• Overconstrained linear system

The summations are over all pixels in the K x K window

Least squares solution for d given by

d = (ATA)-1 ATb



Conditions for solvability
Optimal (u, v) satisfies Lucas-Kanade equation

Does this remind you of anything?

When is this solvable?  I.e., what are good points to track?
• ATA should be invertible 

• ATA should not be too small due to noise

– eigenvalues 1 and  2 of ATA should not be too small

• ATA should be well-conditioned

–  1/  2 should not be too large ( 1 = larger eigenvalue)

Criteria for Harris corner detector 



Aperture problem

Corners Lines Flat regions
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Errors in Lukas-Kanade

• What are the potential causes of errors in this procedure?
– Suppose ATA is easily invertible
– Suppose there is not much noise in the image

When our assumptions are violated

• Brightness constancy is not satisfied

• The motion is not small

• A point does not move like its neighbors

– window size is too large

– what is the ideal window size?
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Revisiting the small motion 
assumption

• Is this motion small enough?

– Probably not—it’s much larger than one pixel (2nd order terms dominate)

– How might we solve this problem?
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Reduce the resolution!



image Iimage J

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)

image 2image 1

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample 

.

.

.
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A Few Details
• Top Level

– Apply L-K to get a flow field representing the flow from 
the first frame to the second frame.

– Apply this flow field to warp the first frame toward the 
second frame.

– Rerun L-K on the new warped image to get a flow field 
from it to the second frame.

– Repeat till convergence.

• Next Level
– Upsample the flow field to the next level as the first 

guess of the flow at that level.
– Apply this flow field to warp the first frame toward the 

second frame.
– Rerun L-K and warping till convergence as above.

• Etc.



image Iimage H

Gaussian pyramid of image 1 Gaussian pyramid of image 2

image 2image 1 u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation
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The Flower Garden Video

What should the
optical flow be?



Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Flow quality evaluation



Flow quality evaluation



• Middlebury flow page
– http://vision.middlebury.edu/flow/

Ground Truth

Flow quality evaluation

http://vision.middlebury.edu/flow/


• Middlebury flow page
– http://vision.middlebury.edu/flow/

Ground TruthLucas-Kanade flow

Flow quality evaluation

http://vision.middlebury.edu/flow/


• Middlebury flow page
– http://vision.middlebury.edu/flow/

Ground TruthBest-in-class alg

Flow quality evaluation

http://vision.middlebury.edu/flow/


Video stabilization



Video denoising



Video super resolution
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Robust Visual Motion Analysis: 
Piecewise-Smooth Optical Flow

Ming Ye

Electrical Engineering 

University of Washington
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Problem Statement:

Assuming only brightness conservation and 
piecewise-smooth motion, find the optical flow 
to best describe the intensity change in three 
frames.

Estimating Piecewise-Smooth Optical Flow
with Global Matching and Graduated Optimization
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Approach: Matching-Based Global 
Optimization

• Step 1.   Robust local gradient-based method for 

high-quality initial flow estimate.

Uses least median of squares instead of regular least squares.

• Step 2.   Global gradient-based method to improve the

flow-field coherence.

Minimizes a global energy function E = Σ (EB(Vi) + ES(Vi)) where 

EB is the brightness difference and ES is the smoothness at flow vector Vi

• Step 3.   Global matching that minimizes energy by a 

greedy approach.

Visits each pixel and updates it to be consistent with neighbors, iteratively.
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TT: Translating Tree

150x150 (Barron 94)

BA    2.60     0.128    0.0724

S3     0.248   0.0167  0.00984

)(e )(pix||•e )(pixe BA

S3

e: error in pixels, cdf: culmulative distribution function for all pixels
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DT: Diverging Tree

150x150 (Barron 94)

BA    6.36      0.182      0.114

S3     2.60      0.0813    0.0507

)(e )(pix||•e )(pixe BA

S3
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YOS: Yosemite Fly-Through

BA    2.71      0.185      0.118

S3     1.92      0.120      0.0776

)(e )(pix||•e )(pixe

BA

S3

316x252 (Barron, cloud excluded)
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TAXI: Hamburg Taxi

256x190, (Barron 94)

max speed 3.0 pix/frame

LMS BA

Error map Smoothness errorOurs
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Traffic

512x512

(Nagel)

max speed:

6.0 pix/frame

BA

Error map Smoothness errorOurs
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FG: Flower Garden

360x240 (Black)

Max speed: 7pix/frame

BA LMS

Error map Smoothness errorOurs



Representing Moving Images 
with Layers

J. Y. Wang and E. H. Adelson

MIT Media Lab



Goal

• Represent moving images with sets of 
overlapping layers

• Layers are ordered in depth and occlude each 
other

• Velocity maps indicate how the layers are to 
be warped over time



Simple Domain:
Gesture Recognition



More Complex:
What are the layers?



Motion Analysis Example

2 separate layers

shown as 2 affine

models (lines);

The gaps show 

the occlusion.



Motion Estimation Steps

1. Conventional optical flow algorithm and 
representation (uses multi-scale, coarse-to-
fine Lucas-Kanade approach).

2. From the optical flow representation, 
determine a set of affine motions.  Segment 
into regions with an affine motion within 
each region.



Results



Results



Results



Summary

• Major contributions from Lucas, Tomasi, Kanade
– Tracking feature points
– Optical flow
– Stereo
– Structure from motion

• Key ideas
– By assuming brightness constancy, truncated Taylor expansion 

leads to simple and fast patch matching across frames
– Coarse-to-fine registration
– Global approach by former EE student Ming Ye
– Motion layers methodology by Wang and Adelson



Back to the Homework

• For HW 4, you will implement optical flow!

• In particular, you will implement the Lucas-
Kanade optical flow finder to find the optical 
flow between two image frames.

• Shima’s slides will give the exact details.



Homework 4

Optical Flow
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Motion
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Overall idea
• We’ll use Lucas-Kanade’s equation to find the optical flow.

• We'll need spatial and temporal gradient information for the
flow equations.

• We'll be calculating structure matrices again, so we need to
do aggregated sums over regions of the image.
– Optical flow has to run on video, so it needs to be fast! we'll

use integral images to simulate smoothing with a box filter instead of
smoothing with a Gaussian filter.

• We’ll calculate velocity from spatial and temporal gradient
information and use that to draw the motion lines.

93



• The Integral Image (or Summed Area Table) is used as a quick and
effective way of calculating the sum of values (pixel values) or
calculating the average intensity in a given image.

• When creating an Integral Image, if we go to any point (x,y), the
corresponding Integral Image value is the sum of all the pixel values
above, to the left and of course including the original pixel value of
(x,y) itself.
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1. Integral Image

https://computersciencesource.wordpress.com/2010/09/03/computer-vision-the-integral-image/

https://computersciencesource.wordpress.com/2010/09/03/computer-vision-the-integral-image/


95

Step 1

Step 2

Step 3



Original:

Area = 5 + 2 + 3 + 6 = 16
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Calculate average intensity

How to calculate area in original image, using the corresponding integral image:

Integral:

Area (in original image)

= [S(D) – S(C)] – [S(B) – S(A)]

= (64 – 32) – (32 – 16) = 16



Total of 4 operations.

• (76 - 20) - (24 - 5) = 37

•
37

9
= 4.11
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Calculate average intensity

Integral ImageOriginal Image

Total of 9 operations.

• 9 + 1 + 2 + 6 + 0 + 5 + 3 + 6 + 5 = 37

•
37

9
= 4.11



• Don’t forget to git pull first. There are a couple of
modified images and libraries.

• Fill in image make_integral_image(image im)

o This function makes an integral image or summed area 
table from an image.

o image im: image to process

o returns: image I such that   𝐼 𝑥, 𝑦 = σ{𝑖≤𝑥,𝑗≤𝑦} 𝑖𝑚[𝑖, 𝑗]
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TODO #1: Integral Image



• Fill in image box_filter_image(image im, int s) so
that every pixel in the output is the average of pixels
in a given window size s.

• Note that you must call your make_integral_image()

in this function.

• Be careful, this is not the your old make_box_filter()

from your other homework. It is using the integral image,
and a smooth window size.
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TODO #2: Smoothing using integral images



• We'll be implementing optical flow. We'll use a 
structure matrix but this time with temporal 
information as well. The equation we'll use is:
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TODO #3: Lucas-Kanade optical flow

Velocity Structure Matrix Time Matrix



• We'll need spatial and temporal gradient information for 
the flow equations. 

• Calculate a time-structure matrix. 

– Spatial gradients can be calculated as normal. 

– The time gradient can be calculated as the difference between the 
previous image and the next image in a sequence.
• It = [current image] – [previous image]

101

TODO #3.1: Time-structure matrix



Calculate the time-structure matrix of an image pair:

• Fill in image time_structure_matrix(image im, image prev, 
int s). 

– image im: the input image.

– image prev: the previous image in sequence. 

– int s: window size for smoothing. 

➢ im and prev to grayscale (given in the code).

➢ Hint: use sub_image to subtract im and prev.

➢ Calculate gradients and structure matrix and smooth (hint: 
use your gx and gy functions from HW2)

– …next slide: return
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TODO #3.1: Time-structure matrix



Calculate the time-structure matrix of an image pair:

• Fill in image time_structure_matrix(image im, image prev, 
int s). 

– returns: structure matrix which has 5 channels:

• 1st channel is IxIx

• 2nd channel is IyIy

• 3rd channel is IxIy

• 4th channel is IxIt

• 5th channel is IyIt

– Each channel is a vector with the structure of an image.

– Use  make_box_filter() to smooth.
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TODO #3.1: Time-structure matrix



Calculate the velocity given a time-structure image

• Fill in image velocity_image(image S, int stride)
– Image S is the output of time_structure_matrix which you already summed 

and smooth.

• For each pixel, fill in the matrix M, invert it, and use it to calculate 
the velocity.

𝑣𝑥
𝑣𝑦

= −𝑀−1 ∗
𝐼𝑥

𝑡

𝐼𝑦
𝑡
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TODO #3.2: Calculating velocity from the time-structure matrix

𝑀 =
𝐼𝑥(𝑞𝑖)

2 𝐼𝑥(𝑞𝑖)𝐼𝑦(𝑞𝑖)

𝐼𝑦(𝑞𝑖)𝐼𝑥(𝑞𝑖) 𝐼𝑦(𝑞𝑖)
2



optical_flow_images() will call your time_structure_matrix() and 
velocity_image(). Then draw_flow() will draw lines of motion on the 
image.

Try calculating the optical flow between two dog images using tryhw4.py.

a = load_image("data/dog_a.jpg")

b = load_image("data/dog_b.jpg")

flow = optical_flow_images(b, a, 15, 8)

draw_flow(a, flow, 8)

save_image(a, "lines")
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Draw motion with optical flow



• This part is optional and is a 1 point extra credit, but it is 
fun to do.

• Using OpenCV we can get images from the webcam and 
display the results in real-time. Try installing OpenCV and 
enabling OpenCV compilation in the Makefile (set 
`OPENCV=1` in the first line). Then uncomment this line 
in tryhw4.py:

optical_flow_webcam(15,4,8)

• Turn in your flow_image.c file on Canvas.
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Optical flow demo using OpenCV 



Have fun!
And stay healthy..
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