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Face recognition: once you’ve 
detected and cropped a face, try to 

recognize it 

Detection Recognition “Sally” 
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Face recognition: overview 
• Typical scenario: few examples per face, 

identify or verify test example 
• What’s hard: changes in expression, 

lighting, age, occlusion, viewpoint 
• Basic approaches (all nearest neighbor) 

1. Project into a new subspace (or kernel space) 
(e.g., “Eigenfaces”=PCA) 

2. Measure face features 
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Typical face recognition scenarios 

 
• Verification: a person is claiming a particular 

identity; verify whether that is true 
– E.g., security 

 
• Closed-world identification: assign a face to one 

person from among a known set 
 

• General identification: assign a face to a known 
person or to “unknown” 
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What makes face recognition hard? 

Expression 
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What makes face recognition hard? 

Lighting 
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What makes face recognition hard? 

Occlusion 
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What makes face recognition hard? 
Viewpoint 
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Simple idea for face recognition 
1. Treat face image as a vector of intensities 

 
 

2. Recognize face by nearest neighbor in database 
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The space of all face images 
• When viewed as vectors of pixel values, face images are 

extremely high-dimensional 
– 100x100 image = 10,000 dimensions 
– Slow and lots of storage 

• But very few 10,000-dimensional vectors are valid face 
images 

• We want to effectively model the subspace of face images 

11 



The space of all face images 
• Eigenface idea: construct a low-dimensional linear 

subspace that best explains the variation in the set 
of face images 
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Linear subspaces 

• Classification (to what class does x belong) can be expensive 
– Big search problem 

Suppose the data points are arranged as above 
• Idea—fit a line, classifier measures distance to line 

v1 is the major direction of the orange 
points and v2 is perpendicular to v1. 
Convert x into v1, v2 coordinates 

What does the v2 coordinate measure? 

What does the v1 coordinate measure? 

- distance to line 
- use it for classification—near 0 for orange pts 

- position along line 
- use it to specify which orange point it is 

Selected slides adapted from Steve Seitz, Linda Shapiro, Raj Rao 
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Dimensionality reduction 

Dimensionality reduction 
• We can represent the orange points with only their v1 coordinates 

– since v2 coordinates are all essentially 0 
• This makes it much cheaper to store and compare points 
• A bigger deal for higher dimensional problems (like images!) 

Pixel 1 

Pixel 2 



Eigenvectors and Eigenvalues 
Consider the variation along a direction v 
among all of the orange points: 

What unit vector v minimizes var? 

What unit vector v maximizes var? 

Solution: v1 is eigenvector of A with largest eigenvalue 
               v2 is eigenvector of A with smallest eigenvalue 

Pixel 1 

Pixel 2 

A = covariance 
matrix of data 
points (if divided 
by no. of points) 
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Principal component analysis (PCA) 

• Suppose each data point is N-dimensional 
– Same procedure applies: 

 
 
 

– The eigenvectors of A define a new coordinate system 
• eigenvector with largest eigenvalue captures the most variation among training 

vectors x 
• eigenvector with smallest eigenvalue has least variation 

– We can compress the data by only using the top few eigenvectors 
• corresponds to choosing a “linear subspace” 

– represent points on a line, plane, or “hyper-plane” 
• these eigenvectors are known as the principal components 
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The space of faces 

• An image is a point in a high dimensional space 
– An N x M image is a point in RNM 

– We can define vectors in this space as we did in the 2D case 
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Dimensionality reduction 

• The set of faces is a “subspace” of the set of images 
– Suppose it is K dimensional 
– We can find the best subspace using PCA 
– This is like fitting a “hyper-plane” to the set of faces 

• spanned by vectors v1, v2, ..., vK 
• any face  18 
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Eigenfaces 
• PCA extracts the eigenvectors of A 

– Gives a set of vectors v1, v2, v3, ... 
– Each one of these vectors is a direction in face space 

• what do these look like? 
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Visualization of eigenfaces 
Principal component (eigenvector) uk 

μ + 3σkuk 

μ – 3σkuk 
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Projecting onto the eigenfaces 
• The eigenfaces v1, ..., vK span the space of faces 

– A face is converted to eigenface coordinates by 
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Recognition with eigenfaces 
• Algorithm 

1. Process the image database (set of images with labels) 
• Run PCA—compute eigenfaces 
• Calculate the K coefficients for each image 

2. Given a new image (to be recognized) x, calculate K coefficients 

 
 

3. Detect if x is a face 
 

 
4. If it is a face, who is it? 

• Find closest labeled face in database 
• Nearest-neighbor in K-dimensional space 
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Choosing the dimension K 

K NM i =  

eigenvalues 

• How many eigenfaces to use? 
• Look at the decay of the eigenvalues 

– the eigenvalue tells you the amount of 
variance “in the direction” of that eigenface 

– ignore eigenfaces with low variance 
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PCA 

 
• General dimensionality reduction technique 

 
• Preserves most of variance with a much more 

compact representation 
– Lower storage requirements (eigenvectors + a few 

numbers per face) 
– Faster matching 

 
• What other applications? 
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Enhancing gender 

         more                  same                original          androgynous     more opposite 

D. Rowland and D. Perrett, “Manipulating Facial Appearance through Shape and 
Color,” IEEE CG&A, September 1995 

Slide credit: A. Efros 32 

http://graphics.cs.cmu.edu/courses/15-463/2005_fall/www/Papers/faces.pdf
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Changing age 
 
 

•Face becomes 
“rounder” and “more 
textured” and “grayer” 

 
 

•original                           shape 
 
 
 
 
 

•    color               both 

D. Rowland and D. Perrett, “Manipulating Facial Appearance through Shape and 
Color,” IEEE CG&A, September 1995 
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Which face is more attractive? 

http://www.beautycheck.de 34 

http://www.beautycheck.de/


Use in Cleft Severity Analysis 

• We have a large database of normal 3D faces. 
• We construct their principal components. 
• We can reconstruct any normal face 

accurately using these components. 
• But when we reconstruct a cleft face from the 

normal components, there is a lot of error. 
• This error can be used to measure the severity 

of the cleft. 
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Use of PCA Reconstruction Error to 
Judge Cleft Severity 
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Extension to 3D Objects 

• Murase and Nayar (1994, 1995) extended this idea to 3D 
  objects. 
 
• The training set had multiple views of each object, on a 
   dark background. 
 
• The views included multiple (discrete) rotations of the object on 
   a turntable and also multiple (discrete) illuminations. 
 
• The system could be used first to identify the object and then to 
   determine its (approximate) pose and illumination. 



Sample Objects 
Columbia Object Recognition Database 



Significance of this work 

• The extension to 3D objects was an important contribution. 
 

• Instead of using brute force search, the authors observed that 
 

  All the views of a single object, when transformed into the 
  eigenvector space became points on a manifold in that space. 
 
• Using this, they developed fast algorithms to find the closest 
  object manifold to an unknown input image. 
 
• Recognition with pose finding took less than a second. 



Appearance-Based Recognition 
 • Training images must be representative of the instances 

  of objects to be recognized. 
 
• The object must be well-framed. 
 

• Positions and sizes must be controlled. 
 

• Dimensionality reduction is needed. 
 
• It is not powerful enough to handle general scenes 
  without prior segmentation into relevant objects. 
 
* The newer systems that use “parts” from interest operators 
   are an answer to these restrictions. 
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