Modeling Stylized Character Expressions via Deep Learning

Deepali Aneja¹, Alex Colburn², Gary Faigin³, Linda Shapiro¹, and Barbara Mones¹

¹ Department of Computer Science and Engineering, University of Washington, Seattle WA, USA ² Zillow Group, Seattle WA, USA ³ Gage Academy of Art, Seattle WA, USA

Facial expressions : The art of nonverbal communication

Source: https://www.globalintelconsultants.com/02-13-16-facial-expressions--the-art-of-non-verbal-communication.html

Stylized character expressions

Animated Shorts from Animation Research Labs, University of Washington.

Creating recognizable expressions

- Accurate facial expression depiction is critical and difficult for storytelling.
- We asked professional animators to make this character look surprised.
 - None of the expressions achieved above 50% recognition on Mechanical Turk.

Geometric Mapping

MPEG-4 : Pereira, F.C., Ebrahimi, T.: The MPEG-4 Book. Prentice Hall PTR, Upper Saddle River, NJ, USA (2002) HapFACS : Amini, R., Lisetti, C.: HapFACS: an open source API/Software to generate FACS- Based expressions for ECAs animation (ACII). (2013) 270–275

FACSGen: Roesch, E.B., Tamarit, L., Reveret, L., Grandjean, D., Sander, D., Scherer, K.R.: FACSGen: a tool to synthesize emotional facial expressions through systematic manipulation of facial action units. Journal of Nonverbal Behavior (2011) 1–16

Geometric Mapping

MPEG-4 : Pereira, F.C., Ebrahimi, T.: The MPEG-4 Book. Prentice Hall PTR, Upper Saddle River, NJ, USA (2002)

HapFACS : Amini, R., Lisetti, C.: HapFACS: an open source API/Software to generate FACS- Based expressions for ECAs animation (ACII). (2013) 270–275 FACSGen: Roesch, E.B., Tamarit, L., Reveret, L., Grandjean, D., Sander, D., Scherer, K.R.: FACSGen: a tool to synthesize emotional facial expressions through systematic manipulation of facial action units. Journal of Nonverbal Behavior (2011) 1–16

Geometric Mapping

MPEG-4 : Pereira, F.C., Ebrahimi, T.: The MPEG-4 Book. Prentice Hall PTR, Upper Saddle River, NJ, USA (2002)

HapFACS : Amini, R., Lisetti, C.: HapFACS: an open source API/Software to generate FACS- Based expressions for ECAs animation (ACII). (2013) 270–275 FACSGen: Roesch, E.B., Tamarit, L., Reveret, L., Grandjean, D., Sander, D., Scherer, K.R.: FACSGen: a tool to synthesize emotional facial expressions through systematic manipulation of facial action units. Journal of Nonverbal Behavior (2011) 1–16

Contributions

- A data-driven **perceptual** model of facial expressions.
- A novel stylized character data set (FERG-DB) with cardinal expression annotations.
- A mechanism to accurately retrieve plausible character expressions from human expression queries.
 - Validated the results (Expert and Mechanical Turk)

Our Approach

Retrieve characters using

perceptual model mapping and human geometry

- Use deep learning to learn mappings between
 - Human expressions and characters expressions
 - Humans and humans
 - Characters and characters
- This is not only geometric mapping
 - It is perceptual modelling of expressions!

Expression Retrieval

Steps

Data Preprocessing

Network Training using Deep Learning

Transfer expressions

Training Data

- Seven classes : Anger, Disgust, Fear, Joy, Neutral, Sad and Surprise
- Stylized Characters expression database
 - Total of 70K images
 - Facial Expression Research Group (FERG-DB) is publicly available.
- Human expression database
 - Total of 75K images

Human Database

- CK+: The Extended Cohn-Kanade -309 images
- DISFA: Denver Intensity of Spontaneous Facial Actions 60,000 images
- KDEF: The Karolinska Directed Emotional Faces 4900 images
- MMI: 10,000 images
- Total of 75K images We balanced out the final number of the samples for training our network to avoid any bias towards any particular expression.

Stylized Character Database

- Six stylized characters (adding two more characters soon!)
 - The animator created the key poses for each expression and labeled via MT to populate the database initially
 - Key poses having 70% MT test agreement and then interpolated between the key poses
- We only used the expression key poses having 70% MT test agreement among 50 Turkers for the same pose. Interpolating between the key poses resulted in 70K images (around 8,000 images per character).

Data Pre-processing

Extract Face 49 landmarks (Intraface)

Register faces to an average frontal face via an **affine transformation**

Face bounding box selection

Re-size to 256x256 pixels for analysis

Network Architecture

Softmax	
FC7 (7)	
FC6 (512)	
FC5 (1024)	
POOL4	
CONV4	
POOL3	
CONV3	
POOL2	
CONV2	
POOL1	
CONV1	

Human CNN (HCNN)

Network Architecture

	Softmax
	FC7 (7)
Softmax	FC6 (512)
FC7 (7)	FC5 (1024)
FC6 (512)	POOL4
FC5 (1024)	CONV4
POOL3	POOL3
CONV3	CONV3
POOL2	POOL2
CONV2	CONV2
POOL1	POOL1
CONV1	CONV1

Human CNN (HCNN)

Character CNN (CCNN)

Network Architecture

Human CNN (HCNN)

Character CNN (CCNN)

Transfer Learning Shared CNN (SCNN)

Network prediction

Expression Recognition Accuracy

		Anger	Disgust	Fear	Joy	Neutral	Sad	Surprise
	Anger	61.6	11.3	7.8	1.9	5.3	7.2	4.6
	Disgust	3.6	82.4	1.5	2.7	6.2	3.1	0.3
sion	Fear	6.2	5.1	51	7.3	16.2	4.6	9.3
xpres	Joy	0.4	1.8	1.5	87.2	7.4	0.3	1.2
ualE	Neutral	1.3	4.3	8.3	5.5	78.2	1.3	0.9
Act	Sad	4.2	7.1	5.4	1.6	6.8	73.2	1.5
	Surprise	0.6	0.2	3.1	2.8	1.2	0.3	91.5

Predicted Expression

- Accuracy of Human CNN 85.27%
- Accuracy of Character CNN 89.02%

Retrieval

FC5

FC6

FC7

Max pooling layer

Convolutional layer

Distance Metrics

Extracted features from the last fully connected layer (FC6) of both the models: HCNN and SCNN and normalized the feature vectors

$$\phi_d = \alpha |\text{JS Distance}| + \beta |\text{Geometric Distance}|$$

Expression feature vectors
(N-1) Layer features
Geometry feature vectors

Distance Metrics

Extracted features from the last fully connected layer (FC6) of both the models: HCNN and SCNN and normalized the feature vectors

Distance Metrics

Extracted features from the last fully connected layer (FC6) of both the models: HCNN and SCNN and normalized the feature vectors

Character Retrieval

Query

Multiple retrieval results for the joy query image

$$\phi_d = \alpha |\text{JS Distance}|$$

Character Retrieval

Query

Character retrievals sorted by geometry

$\phi_d = \alpha |\text{JS Distance}| + \beta |\text{Geometric Distance}|$

DeepExpr Results

Query

Top matches of Character retrievals

Average Retrieval Score (for each expression across all characters)

$$score(q) = \frac{1}{1 - N \cdot N_{rel}} \left(\sum_{k=1}^{N_{rel}} R_k - \frac{N_{rel}(N_{rel} + 1)}{2} \right)$$

Expression	Geometry	DeepExpr
Anger	0.384	0.213
Disgust	0.386	0.171
Fear	0.419	0.228
Joy	0.276	0.106
Neutral	0.429	0.314
Sad	0.271	0.149
Surprise	0.322	0.125

Average Retrieval Score (for each expression across all characters)

$$score(q) = \frac{1}{1 - N \cdot N_{rel}} \left(\sum_{k=1}^{N_{rel}} R_k - \frac{N_{rel} (N_{rel} + 1)}{2} \right)$$

Expression	Geometry	DeepExpr
Anger	0.384	0.213
Disgust	0.386	0.171
Fear	0.419	0.228
Joy	0.276	0.106
Neutral	0.429	0.314
Sad	0.271	0.149
Surprise	0.322	0.125

Query

Top match retrievals Geometry DeepExpr

Query (Fear)

Geometry

DeepExpr

Goomo

Comparison tests

Correlation

Correlation with MT subjects

- Spearman correlation with expert best rank is 0.934 and with MT best rank is 0.942
- Kendall correlation with expert best rank is 0.910 and with MT best rank is 0.927

Conclusions

- Perceptual model of facial expressions
- **FERG-DB** with cardinal expression annotations
- Plausible character expression retrieval

- Improve visual storytelling applications:
 - Animated films
 - Gaming
 - Online marketing
 - VR/AR experiences
 - Robotics

Future work

3D Maya parameters

Thank you!

Project webpage <u>http://grail.cs.washington.edu/projects/deepexpr/</u>

Stylized Character expression Database download http://grail.cs.washington.edu/projects/deepexpr/ferg-db.html

Acknowledgements – Jamie Austad (animator), Zillow Group, the creators of the rigs we used in our project: Mery (www.meryproject.com), Ray (CGTarian Online School), Malcolm (www.animSchool.com), Aia & Jules (www.animationmentor.com), and Bonnie (Josh Sobel Rigs).