
Assignment 4 

Face Detection 



Overview 

• Large number of initial weak classifiers. 
• Each weak classifier computes one rectangular 

feature. 
• The program computes the best threshold and 

polarity for each weak classifier. (<, >) 
• Adaboost selects a subset of these classifiers 

and assigns a weight to each one 
• Final classifications of boxes in test images are 

based on a combination of the selected ones. 



Training pipeline 

load 
dataset 

compute 
features 

InitializeFeatures 
with random boxes 

ComputeTraining 
SetFeatures 

Adaboost 
training 

feature 
sorting 

FindBest 
Classifier 

among 
candidate 
classifiers 

trained 
model 



Testing pipeline 

load 
image, 
model 

IntegraI 
Image 

Sliding 
window 

Classify
Box 

Face 

Not 
Face 

N* 
NMS 

N* 



Initializefeatures 

• Given in the code base 
• Initializes all weak classifiers 
• Chooses the upper left corner (x,y) and the height and 

width h and w randomly (but from 0 to 1) 
• Chooses type of box 

– vertical 2-box 
– horizontal 2-box 
– vertical 3-box 

• Sets areas 
• Assigns values (1 and -1 for 2-box; 1, -2, 1 for 3-box) 

h 

w 

(x,y) 



ComputeTrainingSetFeatures 

• Given in the code base as a shell 
• Calls two methods that you code 

– IntegralImage: computes the integral image for 
each training patch (double array in, double array 
out) 
 

– ComputeFeatures: uses the integral image for 
each training patch to compute features for that 
patch, one for each weak classifier, and puts them 
in an array called features. 



void MainWindow::ComputeTrainingSetFeatures(double *trainingData, double *features, 
                                int numTrainingExamples, int patchSize, CWeakClassifiers 
*weakClassifiers, int numWeakClassifiers) 
{ 
    int i; 
    double *integralImage = new double [patchSize*patchSize]; 
 
    for(i=0;i<numTrainingExamples;i++) 
    { 
        // Compute features for training examples 
 
        // First compute the integral image for each patch 
        IntegralImage(&(trainingData[i*patchSize*patchSize]), integralImage, patchSize, 
patchSize); 
 
        // Compute the Haar wavelets 
        ComputeFeatures(integralImage, 0, 0, patchSize, &(features[i*numWeakClassifiers]), 
weakClassifiers, numWeakClassifiers, patchSize); 
    } 
    // We shouldn't need the training data anymore so let's delete it. 
    delete [] trainingData; 
 
    delete [] integralImage; 
} 



ComputeFeatures 

• For each weak classifier i 
– For each separate box j of that weak classifier 

• Use the integral image to efficiently find the sum of the 
values in the corresponding subimage of the patch 
 
 
 

• Multiply that by the box value  

• Sum and normalize by size of window 
 

box        1    -1                                             patch 



Training Data and Features 
weights   training patches      integral images                          features array 

holds feature 
values for each 
(feature/patch) 
combo. 

data 

w0 
 
 
w1 
 
 
w2 
 
 
w3 
 
 
 
w4 
 
 
w5 



Initializing Features 

• It’s important to understand how the features 
are initialized and how they are stored. 

• They are stored in big arrays but in two 
different orders 
– Initially, all the features for the first training 

example are kept together in one block 
– Next, the organization changes so that all the 

features for one weak classifier are together in 
one block. In this order they are sorted and 
indexed for use, but only one classifier at a time. 

 



Initializing Features: First Step 
Function ComputeTrainingSetFeatures 
for(i=0;i<numTrainingExamples;i++) 
    {              ….. 

ComputeFeatures(integralImage, 0, 0, patchSize, 
&(features[i*numWeakClassifiers]), weakClassifiers, numWeakClassifiers, 
patchSize); 

    }         feature offset1: i * numWeakClassifiers  
 
Function ComputeFeatures 
for(i=0;i<numWeakClassifiers;i++) 
    {             …… 
            features[i] += weakClassifiers[i].m_BoxSign[j]* 
                sum/((double) (size*size)); 
    }       feature offset2:  offset1 + i 
 

features for 
1st training 
example 
 
2nd training 
example 
 
 
 
 
 
last training 
example 

Different  
classifiers 

Different  
classifiers features iterates over classifiers first,  

and then training examples.  

offset1 

offset2 



Feature Sorting 

values of 
features for 
1st training 
example 
 
2nd training 
example 
 
 
 
 
 
last training 
example 

values of  
features for 
1st classifier 
 
 
2nd classifier 
 
 
 
 
 
 
last classifier 

features                                  featureTranspose                            featureSort (sorted by value) 

 
 
 
 
 
 
 
 

featureSortIdx 
          i 

Different  
classifiers 

Different  
examples 

Different  
classifiers 

Different  
examples 

featureSort is only for ONE classifier at a time. 
It produces featureSortIdx, which is what is USED. 

j 
j is the index of 
the ith feature 
in their sorted 
order. 



findBestThreshold 

• you write it 
• It is called by AdaBoost with a candidate classifier 
• It is given the sort index which indexes into 

- features  
- weights 
- training labels 

• Use it to go through the training samples 
     (in sorted order), compute error for the classifier 
     using the formula from the lecture. 
• Return threshold, classifier weight, and polarity 

 



Using the Sort Index: Example 

samples 
labels 
features 
weights 
 
 
index 
 
 

0        1         2         3         4 
F        B         F         B         B 
6     3        10       2          1 
1/5   1/5    1/5     1/5      1/5  

4        3        1          0        2 

The feature values 
are for one particular 
feature (classifier). 
 
 
 
 
The index tells you the 
sorted order of the 
features. 



REVIEW: Picking the threshold for the 
best classifier 

At each sample, add weight to FS or BG and compute: 

Find the minimum value of e, and use the feature value of the 
corresponding sample as the threshold.   

15 

The features for the training samples are actually sorted in the code according 
to numeric value! 

Algorithm: 
1. find AFS, the sum of the weights of all the face samples 
2. find ABG, the sum of the weights of all the background samples 
3. set to zero FS, the sum of the weights of face samples so far 
4. set to zero BG, the sum of the weights of background samples so far 
5. go through each sample s in a loop IN THE SORTED ORDER 

= min (BG + (AFS – FS), FS + (ABG – BG)) 



Setting the Polarity 
error = min (BG + (AFS – FS), FS + (ABG –BG)) 
                            left                         right 

• When left < right, set polarity to 0 
• Else set polarity to 1 

• left is the number of background patches so far plus the number 
     of faces yet to be encountered. 
 
• right is the number of faces so far plus the number of background 
     patches yet to be encountered. 



Threshold and Polarity Example 
 

samples 
labels 
features 
weight 
index 
 
 

0        1         2         3         4 
F        B         F         B         B 
6     3        10       2        1 
1/5   1/5    1/5     1/5      1/5 
4        3          1        0          2  

initialize 
AFS = 0 
ABG = 0 
besterr = 999999 

AFS becomes sum of face sample weights = 2/5; ABG = 3/5 

step 0:  idx = 4; FS stays 0; BG = 1/5 
error = min(1/5 + (2/5-0), 0 + (3/5-1/5))= 2/5 
besterr = 2/5; bestpolarity = 1; bestthreshold=1 

step 1:  idx = 3; FS stays 0; BG = 2/5 
error = min(2/5 + (2/5-0), 0 + (3/5-2/5))= 1/5 
besterr = 1/5; bestpolarity = 1; bestthreshold=2 



Threshold and Polarity Example 
 

samples 
labels 
features 
weight 
index 
 
 

0        1         2         3         4 
F        B         F         B         B 
6     3        10       2        1 
1/5   1/5    1/5     1/5      1/5 
4        3          1        0          2  

initialize 
AFS = 0 
ABG = 0 
besterr = 999999 

step 2:  idx = 1; FS stays 0; BG = 3/5 
error = min(3/5 + (2/5-0), 0 + (3/5-3/5))= 0 
besterr = 0; bestpolarity = 1; bestthreshold=3 

step 3:  idx = 0; FS = 1/5; BG = 3/5 
error = min(3/5 + (2/5-1/5), 1/5 + (3/5-3/5))= 1/5 
NO CHANGE 

step 4:  idx = 2; FS = 2/5; BG = 3/5 
error = min(3/5 + (2/5-2/5), 2/5+ (3/5-3/5))= 2/5 
NO CHANGE 

RESULT 

1   2   3   6   10 

θ  >  3 



AdaBoost 
• Given in the code base BUT YOU NEED TO UNDERSTAND 
• Starts with uniform weights on training patches 
• For each weak classifier 

– sorts the feature values in ascending order 
– results of sort go in featureSort and featureSortIdx 
– selects numWeakClassifiers weak classifiers through calling 

FindBestClassifier for all candidates and selecting the ones 
with lowest errors 

• updates weights on patches in dataWeights 
• computes current total error for the training data and 

scores for each sample for debug purposes 
 



Updating the Weights 
• Suppose a weak classifier i has error erri. 
• The weight alpha for this classifier is 
     α = ln((1-erri)/erri) 
• The updating formula for the weight wi for classifier i is 

given as  
     wt+1,i = wt,i βt

1-err 

where erri = 0 if example xi is classified correctly else 1.  
• And βt = exp(-αt) which is erri/(1-erri) 
• After updating weights, be sure to normalize by 

the sum of all of them. 
 
 
 

i 



ClassifyBox 

• ClassifyBox uses the final set of weak 
classifiers to produce a score for a given box x 
on the image. (Called by FindFaces) 

• The score it returns is NOT just zero or one. 
• It should be 
    Σ αtht(x) - .5 Σ αt 
 
• The value of each ht depends on its polarity, 

threshold, and computed value on the box. 

t                                          t 



NMS (nonmaxima supresions) 

• First read the comments at the top of the code 
carefully. 

• Also read section 5.6 of the Viola Jones paper 
• There is no “correct” method. 
• You can do clustering and keep one per cluster. 
• You can Sort the boxes according to score in 

descending order and for each box, remove those 
that overlap a significant percentage (iteratively) 

• You can make up your own method so that you 
don’t get too many detections. 


	Assignment 4
	Overview
	Training pipeline
	Testing pipeline
	Initializefeatures
	ComputeTrainingSetFeatures
	Slide Number 7
	ComputeFeatures
	Training Data and Features
	Initializing Features
	Initializing Features: First Step
	Feature Sorting
	findBestThreshold
	Using the Sort Index: Example
	Slide Number 15
	Setting the Polarity
	Threshold and Polarity Example�
	Threshold and Polarity Example�
	AdaBoost
	Updating the Weights
	ClassifyBox
	NMS (nonmaxima supresions)

