

Content-Based Image Retrieval

Steps

- Represent each image in the database we give you by a feature vector. (Preprocess)
- Design an image distance measure that can compare pairs of image.
- Retrieve, for each test image, the database images in ascending order of distance to the query. The query itself should have distance 0 and be first. Use the interface provided for retrieval.

Initial Processing

- First apply color clustering to the image to get a labeled image of multiple different cluster labels: 1, 2, 3, ...K.
- Then apply connected components (provided) to the labeled image to produce a second labeled image that labels each connected component of cluster labels: 1, $2, \ldots$ N. A single color cluster may break into more than one component.
- Possibly perform some noise cleaning to remove small regions. Don't vary parameters between images. You can get noise cleaning ideas or code from anywhere.

Features

- For each major region (use a size threshold), compute at least the following features:
- size (number of pixels) given
- mean color, in RGB, or whatever space you like given
- at least the following co-occurrence texture features using spatial relationship $\mathrm{d}=(1,1)$: energy, entropy, contrast.
- centroid (row, column)
- bounding box (or if you prefer, could be an ellipse)
- Store the features in the feature vector defined in the code.

Extra Credit Features

- Other region features you want to add
- RAG (region adjacency graph) including for each pair of adjacent regions:
- above adjacency
- below adjacency
- left adjacency
- right adjacency
- other
- A fancier distance function to handle RAGs.

Distance Measure

- Dist $\left(I_{1}, I_{2}\right)$ determines the distance from image I_{1} to image I_{2}.
- Compute Dist from a correspondence you find from the regions of I_{1} to those of I_{2}.
- Start with a greedy method: for each region of I_{1}, find the most similar region of I_{2}

- Do not ask me HOW to do this. That's for you.

More on Distance Measure

- You should try at least two difference distance measures. They can differ in:
- attributes used, weights on attributes
- the actual distance, ie. Euclidean vs. others
- If you do the graph structure, you need some kind of graph distance. See S\&S Section 11.6 or make up your own.

Report

- Turn in a brief report in Word or PDF that describes:

1. the attributes you implemented
2. the distance measures you tried
3. the results of your tests including both the 8 screenshots and your comments.
Load database
Open Query Image
**Done*
