

Assignment 3

Content-Based Image Retrieval

Steps

- Represent each image in the database we give you by a feature vector. (Preprocess)
- Design an image distance measure that can compare pairs of image.
- Retrieve, for each test image, the database images in ascending order of distance to the query. The query itself should have distance 0 and be first. Use the interface provided for retrieval.

Initial Processing

- First apply color clustering to the image to get a labeled image of multiple different cluster labels: 1, 2, 3, ...K.
- Then apply connected components (provided) to the labeled image to produce a second labeled image that labels each connected component of cluster labels: 1, 2, ... N. A single color cluster may break into more than one component.
- Possibly perform some noise cleaning to remove small regions. Don't vary parameters between images. You can get noise cleaning ideas or code from anywhere.

Features

- For each major region (use a size threshold), compute *at least* the following features:
 - size (number of pixels) given
 - mean color, in RGB, or whatever space you like given
 - at least the following co-occurrence texture features using spatial relationship d=(1,1): energy, entropy, contrast.
 - centroid (row, column)
 - bounding box (or if you prefer, could be an ellipse)
- Store the features in the feature vector defined in the code.

Extra Credit Features

- Other region features you want to add
- RAG (region adjacency graph) including for each pair of adjacent regions:
 - above adjacency
 - below adjacency
 - left adjacency
 - right adjacency
 - other
- A fancier distance function to handle RAGs.

Distance Measure

- Dist(I₁,I₂) determines the distance from image
 I₁ to image I₂.
- Compute Dist from a correspondence you find from the regions of I₁ to those of I₂.
- Start with a greedy method: for each region of I₁, find the most similar region of I₂

• Do not ask me HOW to do this. That's for you.

More on Distance Measure

- You should try at least two difference distance measures. They can differ in:
 - attributes used, weights on attributes
 - the actual distance, ie. Euclidean vs. others

 If you do the graph structure, you need some kind of graph distance. See S&S Section 11.6 or make up your own.

Report

- Turn in a brief report in Word or PDF that describes:
- 1. the attributes you implemented
- 2. the distance measures you tried
- 3. the results of your tests including both the 8 screenshots and your comments.

II MainWindow								
File								
Load database **Done** Open Query Image	beach_5 d = 0.00	sunset1_5 d = 0.00	stHelens_3 d = 0.00	sunset1_1 d = 0.00	beach_2 d = 0.00	crater_3 d = 0.00	sunset1_3 d = 0.00	boat_3 d = 0.00
Query Image:	beach_3 d = 0.00	sunset2_2 d = 0.00	sunset2_4 d = 0.00	boat_1 d = 0.00	pond_2 d = 0.00	crater_5 d = 0.00	stHelens_1 d = 0.00	cherry_1 d = 0.00
Doat_2 Check for Distance 2 Query database	beach_1 d = 0.00	pond_5 d = 0.00	pond_1 d = 0.00	sunset1_4 d = 0.00	boat_4 d = 0.00	cherry_5 d = 0.00	crater_4 d = 0.00	sunset1_2 d = 0.00
Progress: Distance to image 33 Distance to image 34 Distance to image 35 Distance to image 36 Distance to image 37	crater_2 d = 0.00	crater_1 d = 0.00	boat_5 d = 0.00	stHelens_2 d = 0.00	boat_2 d = 0.00	stHelens_5 d = 0.00	pond_3 d = 0.00	stHelens_4 d = 0.00
Distance to image 38 Distance to image 39 Distance to image 40	cherry_2 d = 0.00	cherry_3 d = 0.00	beach_4 d = 0.00	sunset2_3 d = 0.00	cherry_4 d = 0.00	pond_4 d = 0.00	sunset2_5 d = 0.00	sunset2_1 d = 0.00