
CSE 455

HW 1 Notes

1

Overview

• Assignment 1 is a big set of exercises to code
functions that are basic and many of which
are needed for future assignments.

• Sample functions are provided at the
beginning of the code, so you get an idea how
to work with the images in Qt.

• The required functions come from the lectures
on filtering, edge finding, and segmentation.

2

QImage Class
in the QT package

• The Qimage class provides a hardware-
independent image representation

• Some of the useful methods
– QImage() (and other forms with parameters)
– copy(int x, int y, int width, int height) const
– setPixel(int x, int y, uint index_or_rgb) can use

function qRgb(int r, int g, int b)
– width() const, height() const

• The QRgb class holds a color pixel.
• from http://doc.qt.io/qt-4.8/qimage.html

3

1. Convolution

• The first task is to code a general convolution
function.

• void Convolution(QImage *image, double *kernel, int
kernelWidth, int kernelHeight, bool add)

• image is a 2D image of class QImage
• kernel is a 2D mask array
• kernelWidth is the width of the mask
• kernelHeight is the height of the mask
• if add is true, then 128 is added to each pixel for the result to

get rid of negatives.

4

Reminder: 2D Gaussian function with standard deviation σ

5

2. Gaussian Blur

• The second task is to code a Gaussian blur
which can be done by calling the Convolution
method with the appropriate kernel.

• void GaussianBlurImage(QImage *image,
double sigma)

• Let the radius of the kernel be 3 times σ
• The kernel size is then 2 * (radius + 1)

6

3. Separable Gaussian Blur

• Now implement a separable Gaussian blur
using separate filters for the horizontal blur
and then the vertical blur. If your Convolution
is general enough, you can just call it twice.

• void SeparableGaussianBlurImage(Qimage
*image, double sigma)

• The results should be identical to the 2D
Gaussian Blur.

7

4. First and Second Derivatives
of the Gaussian

• void FirstDerivative_x(QImage *image, double sigma) takes the
derivative in the x direction using a 1*3 kernel of { -1.0, 0.0, 1.0 }
and then does a standard Gaussian blur.

• void FirstDerivative_y(Qimage *image, double sigma) takes the
derivative in the y direction and then does a standard Gaussian blur

• void SecondDerivImage(Qimage *image, double sigma) computes
the Laplacian function and then does a standard Gaussian. For the
Laplacian, rather than taking the derivative twice, you may use the
2D kernel:

 0.0, 1.0, 0.0
 1.0, -4.0, 1.0
 0.0, 1.0, 0.0
• All of these add 128 to final pixel values in order to see negatives.

That can be done in the call to the Gaussian which calls
Convolution.

 8

5. Sharpen Image

• Sharpen an image by subtracting the second
derivative image from the original. Will need
to subtract back off the 128 that second
derivative added on.

• void SharpenImage(Qimage *image, double
sigma, double alpha)

• Sigma as usual and alpha is the constant to
multiply the sharpened image by as on the
slide.

9

6. Sobel Edge Detector
• Implement the Sobel operator, produce both the

magnitude and orientation of the edges, and display them.
• void SobelImage(QImage *image)
• Use the standard Sobel masks:
 -1, 0, 1,
 -2, 0, 2,
 -1, 0, 1

 1, 2, 1,
 0, 0, 0
 -1, -2, -1

10

7. Bilinear Interpolation

• Given an image and a real-valued point (x,y),
compute the RGB values for that point
through bilinear interpolation.

• void BilinearInterpolation(QImage *image,
double x, double y, double rgb[3])

• Put the red, green, and blue interpolated
results in the vector rgb.

(x,y)

11

8. Find Peaks of Edge Responses
• This function finds the peaks of the edge responses

perpendicular to the edges.
• void FindPeaksImage(Qimage *image, double thres)
• It first uses Sobel to find the magnitude and orientation

at each pixel.
• Then for each pixel, it compares its edge magnitude to

two samples perpendicular to the edge at a distance of
one pixel, which requires BilinearInterpolation.

• If the pixel edge magnitude is e and these two are e1
and e2, a peak e must be larger than “thres” and larger
than e1 and e2.

• See next slide.

12

 e1x = c + 1 * cos(θ);
 e1y = r + 1 * sin(θ);
 e2x = c – 1 * cos(θ);
 e2y = r – 1 * sin(θ);

e1

e2

Example: r=5, c=3, θ=135 degrees
sin θ = .7071, cos θ =-.7071
e1 =(2.2929,5.7071)
e2 = (3.7071, 4.2929)

pixel (c,r)

edge thru
the pixel

perpendicular
to edge

13

9. Color Clustering

• Perform K-means clustering on a color image first
with random seeds and then by selecting seeds
from the image itself.

• void RandomSeedImage(QImage *image, int
numb_clusters)

• void PixelSeedImage(QImage *image, int
numb_clusters)

• Use the RGB color space, and the distance
between two pixels with colors (R1,G1,B1) and
(R2,G2,B2) is |R1-R2|+|G1-G2|+|B1-B2|.

• Use max iteration# = 100

14

	CSE 455
	Overview
	QImage Class�in the QT package
	1. Convolution
	Slide Number 5
	2. Gaussian Blur
	3. Separable Gaussian Blur
	4. First and Second Derivatives �of the Gaussian
	5. Sharpen Image
	6. Sobel Edge Detector
	7. Bilinear Interpolation
	8. Find Peaks of Edge Responses
	Slide Number 13
	9. Color Clustering

