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Figure 1: Our purpose is to issue notifications about missing actions given an unsegmented input stream of egocentric video.

For the latte making sequence above, our system recognizes the actions that happened so far, predicts the ongoing action,

reasons about missing actions and the associated cost, and generates notifications for the costly missing actions. In this figure,

the brackets refer to segmented action boundaries, the blue arrows show the prediction points and the graphs below show the

inter-action dependencies. The most recently completed action is marked in red, the predicted action is marked in blue, and

the missing action is marked in orange. In this example, the actor is about to miss an important action: steam milk, and a

reminder for that is given.

Abstract

We all have experienced forgetting habitual actions

among our daily activities. For example, we probably have

forgotten to turn the lights off before leaving a room or turn

the stove off after cooking. In this paper, we propose a so-

lution to the problem of issuing notifications on actions that

may be missed. This involves learning about interdependen-

cies between actions and being able to predict an ongoing

action while segmenting the input video stream. In order

to show a proof of concept, we collected a new egocentric

dataset, in which people wear a camera while making lat-

tes 1. We show promising results on the extremely challeng-

1A latte is a coffee drink made with espresso and steamed milk [1].

ing task of issuing correct and timely reminders. We also

show that our model reliably segments the actions, while

predicting the ongoing one when only a few frames from the

beginning of the action are observed. The overall predic-

tion accuracy is 46.2% when only 10 frames of an action

are seen (2/3 of a sec). Moreover, the overall recognition

and segmentation accuracy is shown to be 72.7% when the

whole activity sequence is observed. Finally, the online pre-

diction and segmentation accuracy is 68.3% when the pre-

diction is made at every time step.

1. Introduction

We all have witnessed prospective memory failures in

our daily activities. How often do we forget to turn the

14669



lights off before leaving a room? Or to turn the stove off

after boiling water? Prospective memory failures are often

devastating and sometime disastrous. Several researchers in

cognitive sciences have explored the causes of prospective

memory failures and shown effective medical practices [5].

One of the most effective medical practices is to use re-

minders [12] [30].

In this paper, we study the problem of automatically issu-

ing reminders about actions that users might forget. These

reminders can potentially prevent catastrophic events. Such

notifications can also be useful for individuals with mem-

ory and cognition problem such as Alzheimer’s disease. We

also envision that these reminders can eventually be helpful

in completing complex procedures.

Egocentric cameras are suitable for these kinds of frame-

works, as they move with the user. For a proof of con-

cept, we collected a latte making dataset using an egocentric

camera, in which subjects wore a head-mounted camera to

record their actions during the latte making activity in their

own style.

We propose a novel system, which notifies people when

they forget to perform an action before their current action

finishes. Such a system needs to understand the ongoing ac-

tion before it completes and decide whether there is a miss-

ing action or not, and if it is necessary give a notification

about this missing action. For that, it needs to extract inter-

action dependencies and possess a decision mechanism that

takes the importance of the missing action into account.

Furthermore, predicting the ongoing actions as early as pos-

sible is needed. For example, when a leave room action is

predicted, the system can check whether it needs to remind

the user for turning the stove off by checking whether the

stove is set to on and decide how important that reminder is

by analyzing the associated cost.

2. Related Work

Egocentric Vision: Recently, egocentric activity recog-

nition is gaining a lot of interest among the computer vi-

sion community. There are many works analyzing either

the camera wearers actions [7, 8, 7, 33, 21, 29] or the peo-

ple surrounding the camera wearer [38, 37]. For a review of

egocentric vision please see [20].

Our notification system requires prediction of actions

from partial observations. [37] uses the video recordings

of a camera worn by a robot and predicts the actions of the

people around the robot. To the best of our knowledge, we

are the first to study action prediction in egocentric videos,

where the camera wearer’s actions are analyzed. This set-

ting is especially suitable for daily living activity prediction.

Action Prediction: Action prediction is defined in [36]

as a probabilistic process, which estimates the action in

progress when only the beginning part of the action ex-

ists. [36] represents an action as an integral histogram of

spatio-temporal features and uses a dynamic bag-of-words

approach to predict. [37] predicts the human actions dur-

ing human-robot interactions. They use previous actions as

cues to infer the following ones, therefore requiring partic-

ular action pairings. It is different from our model in that,

although there is a partial-order among the actions in our

model, we do not require one action to be a predecessor of

another; a person either steams the milk first and grinds the

coffee next or vice-versa. [4] studies recognizing actions

where the missing part of the action (temporal gap), can be

anywhere. They used sparse coding to determine the likeli-

hood that a certain type of activity is present in the partially

observed video. [27, 28] propose an activity prediction

framework; their purpose is to predict higher-level activi-

ties using actionlets, and the dependencies between them

are represented by a probabilistic suffix tree.

A max-margin early event detector (MMED) is proposed

by [13, 15] for training temporal event detectors for early

detection of actions. Their model extends the structured

output SVM (SOSVM) to accommodate sequential data.

In general MMED is designed for early event detection,

while for the problem we are tackling we need to recognize

the actions from partially observed videos. [43] proposes

a moving pose descriptor framework on depth sequences,

which is also used for activity detection and low-latency

recognition. After the successful application of a modi-

fied SOSVM model to an early event detection problem, the

popularity of SOSVM-based models for action prediction

has risen over the years. [23] proposed a multi-scale model

for action prediction for already segmented videos. Their

model uses both the global and the local history of features

to learn temporal dynamics. Similarly, [24] used hierarchi-

cal “movemes” for describing human movements at multi-

ple levels of granularities, ranging from atomic movements

to the ones that exist in a larger temporal extent to predict

actions in segmented videos. Both [23, 24] used modified

versions of the SOSVM. [6] explored the trade-off between

accuracy and observational latency by determining distinc-

tive canonical poses of the subjects.

Activity forecasting aims to predict future actions

rather than recognizing ongoing ones from partial observa-

tions. [22, 17] proposed methods for activity forecasting,

which is out of the scope of our paper.

Event detectors in general suffer from a major funda-

mental drawback of overlapping detections for different ac-

tions. In our paper, besides prediction we also address tem-

poral segmentation in a coupled, supervised setting.

Joint Segmentation & Recognition: Most studies in the

literature perform recognition/prediction on pre-segmented

videos. There exist techniques for coupled segmenta-

tion/recognition, but most of them rely on generative mod-

els [10, 2, 26, 44]. [14] proposed a maximum margin tem-

poral clustering, which determines the start and the end
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of each segment, and discriminates among temporal clus-

ters by a multi-class SVM. [31] represented activities as

temporal compositions of motion segments. To train their

action classifier model, they used both temporal composi-

tion information and visual features of motion segments. [3]

used spatio-temporal graphs of an activity class to parse a

test video by matching its graph with the closest activity

model. [34] achieved online parsing of videos to its actions

and sub-actions using specialized grammars, which define

temporal structure and can be parsed with a finite-state-

machine. [16] jointly performed video segmentation and ac-

tion recognition using a method based on a discriminative

temporal extension of the spatial bag-of-words model. The

most similar to our work, [9] segmented actions by using a

model that encodes the change in the states of the world.

Orderings in an Activity Sequence: An action is de-

fined by [35, 18] as a sequence of key poses of actors de-

picting key states. Their model assumes a partial ordering

between the key frames, making it tolerant to action dura-

tion. [41] proposed a method to learn the partially ordered

structure inherent in human everyday activities by analyz-

ing the variability in the data. [40] represented each ac-

tivity using partially ordered intervals and used Dynamic

Bayesian Networks to represent the partial order. [11] ex-

tracted the storyline of a video using AND/OR graphs to

represent the causal relationships among actions. [19] used

co-occurrence graphs to represent the relations among low-

level events. In our work we focus on the ordering among

actions and propose to use directed graphs, where a rela-

tion between two nodes represents an action ordering but

the relation defining the graph does not have to be antisym-

metric as in the case of partial orders, allowing the inclu-

sion of cycles. Strictly sequential models like HMM do not

directly allow inferences about missing actions. P-Nets re-

quire temporal and logical relationships between nodes to

be engineered manually, which also does not allow circles.

3. Approach

Our end goal is to notify users when they forget to per-

form an important action before the ongoing one ends. In

order to do this we need to: (1) recognize what the user

has already done so far, (2) determine what the user is

about to do, (3) identify the missing actions, (4) compute

the corresponding cost of missing them, and (5) use this

cost to generate reminders. In this framework, the first two

tasks require performing action recognition and prediction

together with segmentation, (3) and (4) require extracting

inter-action dependencies, and (5) requires a notification de-

cision mechanism.

Suppose we are given the segmentation of actions, and

we have a function F (t) that for each small window L be-

fore time t can give us the action category (F (t) = aj ∈
A = {a1, a2, ..., aM}, the set of all actions), and a func-

tion ψ(t, F (t)), that for each time t and the given action

category F (t), provides the state of the progression of the

action:

ψ(t, F (t)) =







−1 if t ∈ BF (t)

0 if t ∈MF (t)

1 if t ∈ EF (t)

where B, M , E, represents the action beginning, middle

and end states. Let t+ be the next time step after t; t+ =
t + L. Then we can formulate a scoring function Z for the

utility of issuing a reminder at time t+ as:

Z(t+) = ∆(t) ∗ [C(F (t+),N (F (t), F (t+))) + λ ∗ α] (1)

∆(t) = −ψ(t+, F (t+)) ∗ ψ(t, F (t))

where C(aj , aq) is the cost of performing action aq after aj ,

N (ai, aj) returns the first missing action between the last

completed action ai and the predicted one aj , ai, aj , aq ∈
A. ∆(t) is a function that specifies the candidate times

for issuing a reminder; these are the times a prediction is

made after a completed action. α is a constant penalty for

a reminder about an unnecessary action or for missing a

required reminder, and λ is a trade off factor. The value

of Z(t+) at time t+ determines if a notification should be

given.

In order to obtain a list of missing actions and compute

N and C, we need to extract the dependencies between ac-

tions and calculate the cost of performing one action after

another. We use action orderings to model the inter-action

dependencies.

3.1. Extracting Dependencies Between Actions:

Every individual might follow a different order of ac-

tions while completing an activity. For example, one per-

son might prefer to add milk after adding espresso, while

the other might prefer to do the opposite. We represent

the space of all dependencies between actions as a possi-

bly cyclic, directed graph 2, which we call a flexible ordered

graph 3.

A flexible ordered graph is a directed graph G = (V,E),
in which the vertices V represent actions and the weighted

directed edges E represent ordering constraints (Figure 2).

The flexible ordered graph is transitive, possibly cyclic but

not reflexive. Having cycles does not hurt the process

but rather gives the flexibility to complete some action se-

quences multiple times. For example, a person might decide

to add more milk after having added some.

Flexible Ordered Graph Construction: Assume that we

have a set of videos, S = {S1, S2, ..., SK}. To construct a

2Different from partially ordered graphs, which do not allow cycles.
3To make the solution simpler, we do not allow self-loops although our

model can be easily adjusted to handle them.
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Figure 2: An example flexible ordered graph, where the

most recent action is take milk box, marked in red,

and the predicted action is pour milk into mug. The

possible paths from the most recent action to the predicted

one are marked in green and yellow.

flexible ordered graph, we use the complete set of actions,

which is assumed to contain possible action orderings when

the activity is completed correctly. Over this set, a flexi-

ble ordered graph is constructed by computing the transi-

tion probabilities, T , between every pair of actions (ai, aj).
T (ai, aj) shows the transition probability from action ai to

aj . For each action pair (ai, aj), if aj follows ai, an edge

eij ∈ E is created from vi to vj ; vi, vj ∈ V . The weight of

each edge w(vi, vj) = w(eij) = 1/T (ai, aj).

For the latte making activity, the flexible ordered graph

has fixed entrance and exit states, namely, entering

the room and leaving the room. An example flex-

ible ordered graph is given in Figure 2.

Cost of performing one action after another (C): We

calculate the cost of taking action aq after aj , C(aj , aq) as

the minimum weighted geodesic distance from aj to aq on

the flexible ordered graph G:

Cj
q = C(aj , aq) = minP (

∑

e∈P

w(e))

where P (aj , aq) is any path from aj to aq , and e ∈ P . The

path corresponding to C(aj , aq) is represented as P ∗

jq . Since

the weights on the edges are always positive, taking circular

paths repeatedly can never produce a value less than taking

the direct path once.

Determining missing actions (N ): Assume that the

most recently completed action is ai, and our method pre-

dicted that the user is about to perform action aj . We com-

pute C(aj , aq), where aq is the first action on the path P ∗

ij .

If the value of Cj
q is high enough, we report the actions

on P ∗

ij as missing. For example in Figure 2, after take

milk box, our system predicted that the user is about

to pour milk into mug. The action steam milk

is then reported as a missing action, because it is on the

minimum cost path between take milk box and pour

milk into mug and has a high cost of being missing.

3.2. Coupled Prediction and Segmentation Module

Calculation of Z , in Equation 1, requires F and ψ, which

in turn requires action segmentation, recognition and, pre-

diction available. So far, these were assumed. In this section

we describe a model for predicting what the user is about to

do from a video stream. This requires knowing the bound-

ary of the previous action and predicting the ongoing action

from the very first few frames.

Segmentation Using Action Part Classifiers: For a

streaming unsegmented video sample, we designed a dis-

criminative Hidden Markov Model (HMM), which infers

the past (recognition) and the current (prediction) action

categories, while segmenting the activity sequence. In addi-

tion, it provides the current progress of the predicted action:

beginning, end or middle.

In this model, the states are different action parts belong-

ing to all action categories. These actions are connected ac-

cording to their reachability. Actions parts can be in one of

the three categories: action beginning (corresponding to the

firstL frames of an action), action end (corresponding to the

last L frames of an action) and action middle (correspond-

ing to each L consecutive frames between the action begin-

ning and end parts). For a particular action ai, the prob-

ability of reaching to action middle (Mai
) and action end

(Eai
) states from the action beginning (Bai

) state depends

on the length of the action. In addition to in-class reachabil-

ity, the end state of every action class can reach to the begin-

ning states of other action classes according to the transition

probabilities obtained from the full training dataset, which

consists of both complete and incomplete training samples.

Figure 3 shows the states and the allowable transitions in

the model, where the observation probabilities come from

the action beginning, middle and end classifiers described

in the next section.

Action Part Classifiers: For training action part classi-

fiers, we first partition the action samples in the training data

into parts: beginning, middle and end. Figure 4 shows this

partition for different action part classifiers. N represents

an arbitrary length of an action. We only use the first L
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Figure 3: Our coupled HMM model for segmentation and

prediction. The states are beginning, middle and end, and

the observations come from action part classifiers.

frames of actions for training action beginning classifiers.

For training the action end classifiers, we use the last L
frames of each action, and we use all remaining L frames

in each action as a separate sample for training the action

middle classifiers. We use linear SVM’s for the training

of all action part classifiers and calibrate using the method

of [39].

Figure 4: Different parts of training data are used for train-

ing different action part classifiers: beginning, middle, end.

Inference: During the inference process, we need to solve

recognition, segmentation and prediction at the same time.

A given input video Stest
k is divided into non-overlapping

parts of length L and fed into the part classifiers. Given our

model with the observations from the part classifiers, this

problem is solved using the Viterbi algorithm. This pro-

cedure not only finds the action boundaries and recognizes

past actions, but also predicts the ongoing action from par-

tial observations. Figure 5 illustrates this procedure.

4. Experiments

Our purpose is to give proper reminders to users when

they forget to perform some actions. For this purpose we

design a model, which has two main functionalities: (1)seg-

menting, recognizing previous and predicting the current

action at the same time, (2) making a notification decision

based on the segmentation, recognition and prediction.

Test Video 

Sk
test  

Sk
test1 

fixed length L 

… Sk
test2 Sk

test3 Sk
test4 

BA 

EA 

MA MA 

EA EA EA 

MA MA 

BA BA BA 

Figure 5: Inference: Each test video is divided into fixed

length parts and feed to part classifiers. In the Viterbi trel-

lis BA, MA, EA nodes represent 29 class action beginning,

middle and end classifiers, respectively, and every edge rep-

resents 29x29 connections. An example output path is high-

lighted in green.

Dataset: To the best of our knowledge, there is no ex-

isting dataset, which is designed for notification purposes.

Egocentric settings are more suitable for understanding

daily activities as the camera can move around with the per-

son. For this reason, we collected a new dataset using a

Looxcie HD camera mounted on a cap, which can record

1920x1080 resolution in ∼ 30fps. We have recorded 41

videos of about 20 subjects, some of whom made lattes mul-

tiple times in different days. The total number of frames in

the dataset is 344, 173. During data collection, all subjects

were asked to make lattes according to their own prefer-

ences; therefore the action order and duration, and the ac-

tions in each video vary. Our only request to the subjects

was to look at the action of interest while performing the ac-

tion, in order to avoid irrelevant frames. However, in many

cases the subjects still looked around, making the dataset

more challenging. Another challenge in the dataset is si-

multaneous actions; we noticed that people tend to perform

multiple actions at the same time. For instance, while mak-

ing espresso, they may steam milk at the same time. Simul-

taneous action recognition/prediction is out of scope of this

paper, and we labeled those parts of videos with only one

of the simultaneous actions. Example frames from the col-

lected dataset is given in Figure 6, and the full list of actions

is given in Table 1. In our experiments, we downscaled the

videos to 480x270 resolution and sampled one out of ev-

ery two frames, resulting in a total of 108,159 frames after

irrelevant ones were removed.

Metrics: We use a variety of metrics to evaluate the pro-

posed notification system, and to analyze different parts and

alternative approaches. Our goal is to be as precise as possi-

ble for each user. Therefore, our performance numbers are

the average over the scores of each sample unless otherwise

stated. Moreover, since recognizing each action is very im-
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Figure 6: Example frames from the collected egocentric

dataset of latte making activity.

clean portafilter clean espresso pitcher

clean nozzle clean milk pitcher

wash mug close fridge

flatten milk box steam milk

enter room grind coffee

leave room make espresso

open fridge pour coffee into mug

take coffee portafilter pour milk into mug

pour milk into pitcher put jacket

put keys put milk box back to fridge

throw milk box put milk pitcher

take jacket take keys

take milk box take milk pitcher

turn off lights turn on lights

stir

Table 1: Actions of latte making activity.

portant for giving proper notifications, we believe average

per class accuracy is more important than the average ac-

curacy for the evaluation purposes (despite the fact that our

model produces higher results for average accuracy). Note

that, this is a multi-class problem and accuracy is calculated

over all classes simultaneously.

Experimental Setup: In all of our experiments we use

23 complete samples, where there is no missing action as

our fixed part of training data. We then use 18 incomplete

samples with missing actions for testing in a leave-one-out-

cross-validation fashion. We use our training data such that

every sample of an action has exactly one action beginning

part, exactly one action end part, and zero or more action

middle parts, whose lengths are equal to 10 frames. Dur-

ing the inference time, a test video sequence is divided into

fixed length parts of 10 frames.

Features: The visual data obtained from egocentric

videos are drastically different from the data obtained from

static cameras. Although the high camera movement causes

jitter and requires camera motion handling and perspec-

tive distortions, there is an advantage to the egocentric

Avg. Acc. Avg. per

Class Acc.

STIP 58.61 57.29

GIST 69.74 67.94

Table 2: Accuracies of the STIP vs the GIST features in

recognizing actions using a Discriminative HMM.

cameras: the scene changes with the action as the cam-

era moves. Therefore, the scene-based representations such

as GIST [32] features are useful. In our experiments we

use GIST as our feature representation and extend it to

video part representation using the bag of words (BoW)

paradigm, with 500 words. To show the benefit of GIST,

we also experiment with space-time-interest-point features

(STIP) [25]. For comparison purposes, we use segmented

videos and represent each action using BoW with a dictio-

nary size of 500 words. Table 2 shows comparisons be-

tween GIST and STIP in action recognition on our dataset

using discriminative HMM. Dense Motion Trajectory [42]

features in general are not suitable in egocentric settings be-

cause of continuous drastic camera movement.

4.1. Evaluation

We evaluate the proposed system in two tasks: 1) Eval-

uation of the notification module. 2) Evaluation of the pre-

diction and segmentation model.

Notification Module: Our system is designed to give ap-

propriate notifications, while the users continue their activ-

ities. Since the activity of latte making always ends with

the leave room action, we also check for the required

actions that are not completed until a leave room ac-

tion is detected. Some of these reminders can be previously

given when a missing action is detected. The cost of any

required action after performing the leave room action

is set to infinity, always resulting in a notification when it is

missed. Required actions are defined in two parts: the first

part consists of the minimum set of actions, Amin ⊂ A,

that are manually determined as required for latte making

activity to be complete, and the second part is updated on-

line at every new prediction, according to automatically cal-

culated co-occurrences with other actions. (For example,

an open fridge action always co-occurs with a close

fridge action. When an open fridge action is de-

tected, a close fridge action is added to the set of re-

quired actions.). For the calculation of co-occurrences, we

use the complete set defined above. When a required action

is completed, we remove it from the set.

The accuracy of our notification system can be measured

in 3 ways: 1) Existence of a reminder: We measure if we

give a reminder for the samples that need one regardless of
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Figure 7: Evaluation of the notification module: (a) shows

the precision-recall curve for notification correctness eval-

uation regardless of time. (b) shows the precision-recall

curve for giving the correct notification at the right time.

time and action type. Our system gives a notification when-

ever it is required, precision and recall are equal to 1 for all

samples. 2) Correctness of the type of the reminder: We

measure if our method give the proper notification regard-

less of timeliness. 3) Timeliness of reminder: We measure

both the correctness and timeliness of the notification. The

timeliness of a notification is measured in a δ neighborhood.

This means that if a reminder is given in the δ neighborhood

of the groundtruth time, it is counted as correct. In our ex-

periments, δ is set as 25 frames. Figure 7 represents the

precision-recall curves for the last two evaluations, when

α = 0.5, λ = 1. Note that, issuing the correct and timely re-

minders is extremely challenging. As a baseline, we gener-

ated random notifications by making a random notification

decision at the end of every action part. Over 10 random

notification generations, the average precision and recall we

could get are 0.0007 and 0.1, respectively.

Segmentation and Prediction Model: Table 3 shows the

performance of our model when the whole sequence is al-

ready observed using different metrics, both in partwise

and framewise. When we evaluate partwise, we assign the

groundtruth label of a part with max pooling. The first col-

umn shows the average accuracy of all samples. The sec-

ond column shows the accuracy calculated by concatenating

the recognition labels and comparing with the concatenated

groundtruth. This evaluation is biased towards the results

of the longer sequences. First and second rows give average

accuracy and average per class accuracy respectively, over

parts. The third and fourth rows give the framewise average

accuracy and framewise average per class accuracy, respec-

tively.

Baselines: Tables 4, 5, 6 show different baselines.

To explore our model in different settings, we first cal-

Avg. Over Overall Avg.

Samples

Accuracy 72.66 73.82

Avg. per Class Acc. 63.39 64.78

Framewise Acc. 72.25 73.42

Framewise Avg. per

Class Acc. 61.96 63.91

Table 3: Accuracies of our prediction and segmentation

model when L=10 and the whole sequence is observed.

culate the prediction accuracy. For this purpose, we use the

groundtruth locations of action beginning states for decid-

ing prediction times. Figure 8 shows an example scenario,

in which the prediction times are represented by arrows,

brackets show groundtruth action boundaries, and the red

boxes are the parts on which a prediction is made. The first

line of Table 4 shows the results of the action beginning

classifier, which does not use temporal information. The

second line shows the results when we use an ordinary dis-

criminative HMM, where the observations come from the

action beginning classifier. In both of these experiments the

segmentation is provided.

Row 3 of Table 4 shows the results for coupled predic-

tion and segmentation. Prediction times are the same as the

first two experiments and the red boxes in Figure 8 show the

corresponding parts. Row 4 of Table 4 shows the results of

online prediction. We measure the online prediction accu-

racies for the labels predicted at each time step. As more

frames are observed, the earlier predictions might be up-

dated, but the accuracies are computed only on the current

predictions; the green boxes in Figure 8 show the corre-

sponding parts. This is the evaluation suitable for a real life

scenario, since we make decisions as we observe frames.

As another experiment, we use the whole sequence to rec-

ognize and segment actions. The last row in Table 4 shows

the corresponding results.

We evaluated our part classifiers to see how well each

represented its class. Table 5 show their accuracies, when

we assume the segmentation is given and the test input is

from the related part of the action. The values in the last

row are equal to the action prediction accuracies, when the

segmentation is given and temporal information is not used

(Table 4, row 1).

Our model is designed to predict actions for unseg-

mented videos. We compare our model with max-margin

early event detectors (MMED) [13, 15], which is a modified

SOSVM model, detecting the actions in an unsegmented

video before they complete. At each step [13] detects only

the first instance of an action. In order to detect multiple in-

stances of the same class in a sample, we input the remain-

ing video after every detection. We used the same features
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Figure 8: Prediction is evaluated on the action beginning

parts, shown by red boxes. Online prediction evaluation

is done over the predicted labels of parts shown by green

boxes. The labels in the boxes show the predictions at each

time step. Arrows show the times prediction is evaluated.

Brackets show groundtruth action boundaries.

Avg. Acc. Avg. per

Class Acc.

Prediction, not temporal

(segmentation is given) 51.53 48.80

Prediction, temporal

(segmentation is given) 72.04 70.04

Prediction, temporal

(segmentation is unavailable) 46.19 44.06

Online Prediction, temporal

(segmentation is unavailable) 68.32 56.18

Recognition, temporal

(segmentation is unavailable) 72.66 63.39

Table 4: Accuracies of prediction models, in different set-

tings. For all models, the prediction scores represent when

only the first L=10 frames of actions are observed. On-

line prediction scores use the predictions after every part

of L=10 frames.

Avg. Acc. Avg. per

Class Acc.

Action End Classifier 48.77 46.27

Action Middle Classifier 59.25 47.09

Action Beginning Classifier

(Prediction) 51.53 48.80

Table 5: Accuracies of Part Classifiers, when the segmenta-

tion is given, L=10.

as our method. The major drawback of the early event de-

tection approach over coupled prediction and segmentation

is that every detection of action is done separately for each

class; therefore, there can be overlapping frames in the de-

tected action locations. We measure the framewise F value

Precision Recall F measure

MMED 0.32 0.25 0.25

Our Model 0.62 0.57 0.58

Table 6: Our model vs MMED. We use L=10 when evalu-

ating our model.

of each class, and take the average over classes, then com-

pare with that of our method. Our method showed superior

performance in these experiments. The results are given in

Table 6.

5. Conclusion

Prospective memory failures exist in all of our lives. For-

getting an action might cause serious and expensive conse-

quences. In this paper, we introduce a framework that is-

sues notifications on the actions that may be missed during

a sequence of an activity. To show a proof of concept, we

collected an egocentric dataset of people making lattes and

showed that our method can produce action reminders. We

evaluated our notification model by means of correctness

and timeliness and showed promising results. To further

analyze our model, we also evaluated our recognition, pre-

diction and segmentation models and showed comparisons

to state-of-the-art approaches.

Producing accurate and timely reminders is an important
but extremely challenging problem and encourages new
research directions. To reason about missing actions and
their associated costs, we used temporal dependencies
between actions represented by our flexible ordered graph.
Our approach does not take into account semantics of
dependencies between activities in terms of causalities,
preconditions and effect. Future work involves deeper
understanding of inter-action dependencies and discovering
these challenging dependencies. Furthermore, producing
action reminders requires solving segmentation, recog-
nition, and prediction at the same time. We proposed
one solution to this problem that couples these tasks at a
higher level. Tighter coupling at lower levels is another
promising direction to be explored. Finally, generating
action reminders requires a complex decision making
component. Our solution formulates this problem with a
scoring function that trades off between the cost of missing
action and the penalty for issuing a reminder. Devising
suitable reward functions for more complex decision
mechanisms (such as MDPs) that can take into account
future possibilities is the next big step.
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