
Recognition IV: Object
Detection through Deep

Learning and R-CNNs

Linda Shapiro

CSE 455
Most slides from Ross Girshick

Outline

• Object detection
• the task, evaluation, datasets

• Neural Net: how do they work?

• Convolutional Neural Networks (CNNs)

• overview and history

• Region-based Convolutional Networks (R-CNNs)

• New Speedier R-CNNs

Image classification

• 𝐾 classes
• Task: assign correct class label to the whole image

Digit classification (MNIST) Object recognition (Caltech-101)

Classification vs. Detection

 Dog

Dog
Dog

Problem formulation

person

motorbike

Input Desired output

{ airplane, bird, motorbike, person, sofa }

Evaluating a detector

Test image (previously unseen)

First detection ...

‘person’ detector predictions

0.9

Second detection ...

0.9

0.6

‘person’ detector predictions

Third detection ...

0.9

0.6

0.2

‘person’ detector predictions

Compare to ground truth

ground truth ‘person’ boxes

0.9

0.6

0.2

‘person’ detector predictions

Sort by confidence

...

✓ ✓ ✓

0.9 0.8 0.6 0.5 0.2 0.1

true
positive
(high overlap)

false
positive
(no overlap,
low overlap, or
duplicate)

X X X

Evaluation metric

...

0.9 0.8 0.6 0.5 0.2 0.1

✓ ✓ ✓ X X X

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
#𝑝𝑝𝑡𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

#𝑝𝑝𝑡𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + #𝑓𝑓𝑓𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝𝑝𝑓𝑓𝑓𝑝𝑝 =
#𝑝𝑝𝑡𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

#𝑔𝑝𝑝𝑡𝑝𝑔 𝑝𝑝𝑡𝑝𝑡 𝑝𝑜𝑜𝑝𝑝𝑝𝑝

𝑝

✓
✓ + X

Evaluation metric

Average Precision (AP)
 0% is worst
 100% is best

mean AP over classes
(mAP)

...

0.9 0.8 0.6 0.5 0.2 0.1

✓ ✓ ✓ X X X

Pedestrians
Histograms of Oriented Gradients for Human Detection,
Dalal and Triggs, CVPR 2005

AP ~77%
More sophisticated methods: AP ~90%

(a) average gradient image over training examples
(b) each “pixel” shows max positive SVM weight in the block centered on that pixel
(c) same as (b) for negative SVM weights
(d) test image
(e) its R-HOG descriptor
(f) R-HOG descriptor weighted by positive SVM weights
(g) R-HOG descriptor weighted by negative SVM weights

Why did it work?

Average gradient image

Generic categories

Can we detect people, chairs, horses, cars, dogs, buses, bottles, sheep …?
PASCAL Visual Object Categories (VOC) dataset

Generic categories
Why doesn’t this work (as well)?

Can we detect people, chairs, horses, cars, dogs, buses, bottles, sheep …?
PASCAL Visual Object Categories (VOC) dataset

Quiz time

Warm up

This is an average image of which object class?

Warm up

pedestrian

A little harder

?

A little harder

?
Hint: airplane, bicycle, bus, car, cat, chair, cow, dog, dining table

A little harder

bicycle (PASCAL)

A little harder, yet

?

A little harder, yet

?
Hint: white blob on a green background

A little harder, yet

sheep (PASCAL)

Impossible?

?

Impossible?

dog (PASCAL)

Impossible?

dog (PASCAL)
Why does the mean look like this?

There’s no alignment between the examples!
How do we combat this?

PASCAL VOC detection history

0%

10%

20%

30%

40%

50%

60%

70%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

m
ea

n
Av

er
ag

e
Pr

ec
isi

on
 (m

AP
)

year

DPM

DPM,
HOG+
BOW

DPM,
MKL

DPM++
DPM++,
MKL,
Selective
Search

Selective
Search,
DPM++,
MKL

41% 41%
37%

28%
23%

17%

Part-based models & multiple
features (MKL)

0%

10%

20%

30%

40%

50%

60%

70%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

m
ea

n
Av

er
ag

e
Pr

ec
isi

on
 (m

AP
)

year

DPM

DPM,
HOG+
BOW

DPM,
MKL

DPM++
DPM++,
MKL,
Selective
Search

Selective
Search,
DPM++,
MKL

41% 41%
37%

28%
23%

17%

Kitchen-sink approaches

0%

10%

20%

30%

40%

50%

60%

70%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

m
ea

n
Av

er
ag

e
Pr

ec
isi

on
 (m

AP
)

year

DPM

DPM,
HOG+
BOW

DPM,
MKL

DPM++
DPM++,
MKL,
Selective
Search

Selective
Search,
DPM++,
MKL

41% 41%
37%

28%
23%

17%

increasing complexity & plateau

Region-based Convolutional
Networks (R-CNNs)

0%

10%

20%

30%

40%

50%

60%

70%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

m
ea

n
Av

er
ag

e
Pr

ec
isi

on
 (m

AP
)

year

DPM

DPM,
HOG+
BOW

DPM,
MKL

DPM++
DPM++,
MKL,
Selective
Search

Selective
Search,
DPM++,
MKL

41% 41%
37%

28%
23%

17%

53%

62%

R-CNN v1

R-CNN v2

[R-CNN. Girshick et al. CVPR 2014]

0%

10%

20%

30%

40%

50%

60%

70%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

m
ea

n
Av

er
ag

e
Pr

ec
isi

on
 (m

AP
)

year

~1 year

~5 years

Region-based Convolutional
Networks (R-CNNs)

[R-CNN. Girshick et al. CVPR 2014]

Convolutional Neural Networks

• Overview

Standard Neural Networks

𝒙 = 𝑥1, … , 𝑥784 𝑇 𝑧𝑗 = 𝑔(𝒘𝑗
𝑇𝒙) 𝑔 𝑝 =

1
1 + 𝑝−𝑡

“Fully connected”

g(sum of weights w times inputs x) inputs

hidden layer

outputs

Let’s look at how these work

Perceptrons
• Initial proposal of connectionist networks
• Rosenblatt, 50’s and 60’s
• Essentially a linear discriminant composed of

nodes, weights

I1

I2

I3

W1

W2

W3

θ O

>+

= ∑

otherwise

IwO i
ii

:0

0:1 θ

I1

I2

I3

W1

W2

W3

θ

O
or

1

Activation Function: g

Perceptron Example
2

1

.5

.3 θ =-1

2(0.5) + 1(0.3) + -1 = 0.3 > 0 , so O=1

Learning Procedure:
Randomly assign weights (between 0 and1)

Present inputs from training data

Get output O, nudge weights to gives results toward our
desired output T

Repeat; stop when no errors, or enough epochs completed

Perception Training

)()()1(twtwtw iii ∆+=+

ii IOTtw)()(−=∆

Weights include Threshold. T=Desired, O=Actual output.

5.1)2)(10(5.0)1(1 −=−+=+tw

Example: T=0, O=1, W1=0.5, W2=0.3, I1=2, I2=1, θ=-1

7.0)1)(10(3.0)1(2 −=−+=+tw
2)1)(10(1)1(−=−+−=+twθ

If we present this input again, we’d output 0 instead

2

1
θ=-1

.5

.3

Perceptrons are not powerful
• Essentially a linear discriminant
• Perceptron theorem: If a linear discriminant exists that can

separate the classes without error, the training procedure
is guaranteed to find that line or plane.

Class1 Class2

LMS Learning
LMS = Least Mean Square Learning Systems, more general than the
previous perceptron learning rule. The concept is to minimize the total
error, as measured over all training examples, P. O is the raw output, as
calculated by

()∑ −=
P

PP OTLMSceDis 2

2
1)(tan

E.g. if we have two patterns and
T1=1, O1=0.8, T2=0, O2=0.5 then D=(0.5)[(1-0.8)2+(0-0.5)2]=.145

We want to minimize the LMS:

E

W

W(old)

W(new)

C-learning rate

∑ +
i

ii Iw θ

Activation Function
• To apply the LMS learning rule, also known as the

delta rule, we need a differentiable activation
function.

() ()FunctionActivationfOTcIw jjkk '−=∆

 >+

=
∑

otherwise

Iw
O i

ii

:0

0:1 θ
Old:

θ−

New:

∑
+

=
Θ+−

i
ii Iw

e
O

1

1

see next slide!

Gradient Descent Learning from
Russell and Norvig AI Text

examples is the training set
Each input x is a a tuple x1, … , xn and has true output y.
Weights are in vector W; activation function is g.

repeat
 for each e in examples do
 in = ∑ Wj xj[e]
 Err = y[e] – g(in)
 Wj = Wj + α x Err x g’(in) x xj[e]
until some stopping criterion is satisfied

LMS vs. Limiting Threshold
• With the new sigmoidal function that is differentiable, we

can apply the delta rule toward learning.
• Perceptron Method

• Forced output to 0 or 1, while LMS uses the net output
• Guaranteed to separate, if no error and is linearly separable

• Otherwise it may not converge

• Gradient Descent Method:
• May oscillate and not converge
• May converge to wrong answer
• Will converge to some minimum even if the classes are not linearly

separable, unlike the earlier perceptron training method

Backpropagation Networks
• Attributed to Rumelhart and McClelland, late 70’s
• To bypass the linear classification problem, we can

construct multilayer networks. Typically we have fully
connected, feedforward networks.

I1

I2

1

Hidden Layer

H1

H2

O1

O2

Input Layer Output Layer

Wi,j Wj,k

1’s - bias

∑
+

=
−

j
jxj Hw

e
xO

,

1

1)(

I3

1
∑

+
=

−
i

ixi Iw

e
xH

,

1

1)(

Backprop - Learning
Learning Procedure:

Randomly assign weights (between 0-1)

Present inputs from training data, propagate to outputs

Compute outputs O, adjust weights according to the delta
rule, backpropagating the errors. The weights will be
nudged closer so that the network learns to give the
desired output.

Repeat; stop when no errors, or enough epochs completed

Backprop - Modifying Weights

I H O
Wi,j Wj,k

kj
k

kkkkijjji wOOOTIHcHw ,,)1()()1(∑ −−−=∆

See Russell and Norvig algorithm in Figure 20.25 for
details.

Lots of nested for loops for all the layers.

This is the idea from NN slides.

Backprop
• Very powerful - can learn any function, given enough

hidden units! With enough hidden units, we can generate
any function.

• Have the same problems of Generalization vs.
Memorization. With too many units, we will tend to
memorize the input and not generalize well. Some schemes
exist to “prune” the neural network.

• Networks require extensive training, many parameters to
fiddle with. Can be extremely slow to train. May also fall
into local minima.

• Inherently parallel algorithm, ideal for multiprocessor
hardware.

• Despite the cons, a very powerful algorithm that has seen
widespread successful deployment.

From NNs to Convolutional NNs

• Local connectivity
• Shared (“tied”) weights
• Multiple feature maps
• Pooling

Convolutional NNs

• Local connectivity

• Each green unit is only connected to (3)
neighboring blue units

compare

Convolutional NNs

• Shared (“tied”) weights

• All green units share the same parameters 𝒘

• Each green unit computes the same function,
but with a different input window

𝑤1

𝑤2
𝑤3

𝑤1

𝑤2
𝑤3

Convolutional NNs

• Convolution with 1-D filter: [𝑤3,𝑤2,𝑤1]

• All green units share the same parameters 𝒘

• Each green unit computes the same function,
but with a different input window

𝑤1

𝑤2
𝑤3

Convolutional NNs

• Convolution with 1-D filter: [𝑤3,𝑤2,𝑤1]

• All green units share the same parameters 𝒘

• Each green unit computes the same function,
but with a different input window

𝑤1

𝑤2
𝑤3

Convolutional NNs

• Convolution with 1-D filter: [𝑤3,𝑤2,𝑤1]

• All green units share the same parameters 𝒘

• Each green unit computes the same function,
but with a different input window

𝑤1

𝑤2
𝑤3

Convolutional NNs

• Convolution with 1-D filter: [𝑤3,𝑤2,𝑤1]

• All green units share the same parameters 𝒘

• Each green unit computes the same function,
but with a different input window

𝑤1

𝑤2
𝑤3

Convolutional NNs

• Convolution with 1-D filter: [𝑤3,𝑤2,𝑤1]

• All green units share the same parameters 𝒘

• Each green unit computes the same function,
but with a different input window 𝑤1

𝑤2
𝑤3

Convolutional NNs

• Multiple feature maps

• All orange units compute the same function
but with a different input windows

• Orange and green units compute
different functions

𝑤1

𝑤2
𝑤3

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3

Feature map 1
(array of green
 units)

Feature map 2
(array of orange
 units)

Convolutional NNs

• Pooling (max, average)

1

4

0

3

4

3

• Pooling area: 2 units

• Pooling stride: 2 units

• Subsamples feature maps

Image

Pooling

Convolution

2D input

Historical perspective – 1980

Historical perspective – 1980
Hubel and Wiesel
1962

Included basic ingredients of ConvNets, but no supervised learning algorithm

Supervised learning – 1986

Early demonstration that error backpropagation can be used
for supervised training of neural nets (including ConvNets)

Gradient descent training with error backpropagation

Supervised learning – 1986

“T” vs. “C” problem Simple ConvNet

Practical ConvNets

Gradient-Based Learning Applied to Document Recognition,
Lecun et al., 1998

The fall of ConvNets

• The rise of Support Vector Machines (SVMs)
• Mathematical advantages (theory, convex

optimization)
• Competitive performance on tasks such as digit

classification
• Neural nets became unpopular in the mid 1990s

The key to SVMs

• It’s all about the features

Histograms of Oriented Gradients for Human Detection,
Dalal and Triggs, CVPR 2005

SVM weights
(+) (-)

HOG features

Core idea of “deep learning”

• Input: the “raw” signal (image, waveform, …)

• Features: hierarchy of features is learned from the
raw input

• If SVMs killed neural nets, how did they come back
(in computer vision)?

What’s new since the 1980s?

• More layers
• LeNet-3 and LeNet-5 had 3 and 5 learnable layers
• Current models have 8 – 20+

• “ReLU” non-linearities (Rectified Linear Unit)
• 𝑔 𝑥 = max 0, 𝑥
• Gradient doesn’t vanish

• “Dropout” regularization
• Fast GPU implementations
• More data

𝑥

𝑔(𝑥)

Ross’s Own System: Region CNNs

 Competitive Results

Top Regions for Six Object Classes

But it wasn’t fast enough! So we have:
Fast Region-based ConvNets (R-CNNs)
for Object Detection

Recognition
What?

car : 1.000

dog : 0.997

person : 0.992

person : 0.979

horse : 0.993

Localization
Where?

Figure adapted from Kaiming He

Object detection renaissance
(2013-present)

+ Accurate
- Slow
- Inelegant

R-CNNv1

Fast R-CNN

+ Accurate
+ Fast
+ Streamlined

PASCAL VOC

Region-based convnets (R-CNNs)

• R-CNN (aka “slow R-CNN”) [Girshick et al. CVPR14]

• SPP-net [He et al. ECCV14]

Slow R-CNN

Girshick et al. CVPR14.

Input image

Slow R-CNN

Girshick et al. CVPR14.

Input image

Regions of Interest (RoI)
from a proposal method
(~2k)

Slow R-CNN

Girshick et al. CVPR14.

Input image

Warped image regions

Regions of Interest (RoI)
from a proposal method
(~2k)

Slow R-CNN

Girshick et al. CVPR14.

Input image

ConvNet

ConvNet

ConvNet
Warped image regions

Forward each region
through ConvNet

Regions of Interest (RoI)
from a proposal method
(~2k)

Slow R-CNN

Girshick et al. CVPR14.

Input image

ConvNet

ConvNet

ConvNet

SVMs

SVMs

SVMs

Warped image regions

Forward each region
through ConvNet

Classify regions with SVMs

Regions of Interest (RoI)
from a proposal method
(~2k)

Post hoc component

Slow R-CNN

Girshick et al. CVPR14.

Input image

ConvNet

ConvNet

ConvNet

SVMs

SVMs

SVMs

Warped image regions

Forward each region
through ConvNet

Bbox reg

Bbox reg

Bbox reg

Apply bounding-box regressors

Classify regions with SVMs

Regions of Interest (RoI)
from a proposal method
(~2k)

Post hoc component

What’s wrong with slow R-CNN?

What’s wrong with slow R-CNN?

• Ad hoc training objectives
• Fine-tune network with softmax classifier (log loss)
• Train post-hoc linear SVMs (hinge loss)
• Train post-hoc bounding-box regressors (squared loss)

What’s wrong with slow R-CNN?

• Training is slow (84h), takes a lot of disk space

What’s wrong with slow R-CNN?

• Inference (detection) is slow
• 47s / image with VGG16 [Simonyan & Zisserman. ICLR15]
• Fixed by SPP-net [He et al. ECCV14]

~2000 ConvNet forward passes per image

SPP-net

Input image

He et al. ECCV14.

SPP-net

ConvNet

Input image

Forward whole image through ConvNet

He et al. ECCV14.

“conv5” feature map of image

SPP-net

ConvNet

Input image

Forward whole image through ConvNet

“conv5” feature map of image Regions of
Interest (RoIs)
from a proposal
method

He et al. ECCV14.

SPP-net

ConvNet

Input image

Forward whole image through ConvNet

“conv5” feature map of image Regions of
Interest (RoIs)
from a proposal
method

Spatial Pyramid Pooling (SPP) layer

He et al. ECCV14.

SPP-net

ConvNet

Input image

Forward whole image through ConvNet

“conv5” feature map of image Regions of
Interest (RoIs)
from a proposal
method

Spatial Pyramid Pooling (SPP) layer

He et al. ECCV14.

SVMs

Fully-connected layers

Classify regions with SVMs

FCs

Post hoc component

SPP-net

ConvNet

Input image

Forward whole image through ConvNet

“conv5” feature map of image Regions of
Interest (RoIs)
from a proposal
method

Spatial Pyramid Pooling (SPP) layer

He et al. ECCV14.

SVMs

Fully-connected layers

Classify regions with SVMs

FCs

Bbox reg

Apply bounding-box regressors

Post hoc component

What’s good about SPP-net?

• Fixes one issue with R-CNN: makes testing fast

ConvNet

SVMs

FCs

Bbox reg

Region-wise
computation

Image-wise
computation
(shared)

Post hoc component

What’s wrong with SPP-net?

• Inherits the rest of R-CNN’s problems
• Ad hoc training objectives
• Training is slow (25h), takes a lot of disk space

What’s wrong with SPP-net?

• Introduces a new problem: cannot update
parameters below SPP layer during training

SPP-net: the main limitation

ConvNet

He et al. ECCV14.

SVMs

Trainable
(3 layers)

Frozen
(13 layers)

FCs

Bbox reg

Post hoc component

Fast R-CNN

• Fast test-time, like SPP-net

Fast R-CNN

• Fast test-time, like SPP-net
• One network, trained in one stage

Fast R-CNN

• Fast test-time, like SPP-net
• One network, trained in one stage
• Higher mean average precision than slow R-CNN

and SPP-net

Fast R-CNN (test time)

ConvNet

Input image

Forward whole image through ConvNet

“conv5” feature map of image Regions of
Interest (RoIs)
from a proposal
method

Fast R-CNN (test time)

ConvNet

Input image

Forward whole image through ConvNet

“conv5” feature map of image

“RoI Pooling” (single-level SPP) layer

Regions of
Interest (RoIs)
from a proposal
method

Fast R-CNN (test time)

ConvNet

Input image

Forward whole image through ConvNet

“conv5” feature map of image

“RoI Pooling” (single-level SPP) layer

Linear +
softmax

FCs Fully-connected layers

Softmax classifier

Regions of
Interest (RoIs)
from a proposal
method

Fast R-CNN (test time)

ConvNet

Input image

Forward whole image through ConvNet

“conv5” feature map of image

“RoI Pooling” (single-level SPP) layer

Linear +
softmax

FCs Fully-connected layers

Softmax classifier

Regions of
Interest (RoIs)
from a proposal
method

Linear Bounding-box regressors

Fast R-CNN
(training)

ConvNet

Linear +
softmax

FCs

Linear

Fast R-CNN
(training) Log loss + smooth L1 loss

ConvNet

Linear +
softmax

FCs

Linear

Multi-task loss

Main results
Fast R-CNN R-CNN [1] SPP-net [2]

Train time (h) 9.5 84 25

- Speedup 8.8x 1x 3.4x

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.
[2] He et al. ECCV14.

Main results
Fast R-CNN R-CNN [1] SPP-net [2]

Test time / image 0.32s 47.0s 2.3s

Test speedup 146x 1x 20x

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.
[2] He et al. ECCV14.

Main results
Fast R-CNN R-CNN [1] SPP-net [2]

mAP 66.9% 66.0% 63.1%

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.
[2] He et al. ECCV14.

	Recognition IV: Object Detection through Deep Learning and R-CNNs
	Outline
	Image classification
	Classification vs. Detection
	Problem formulation
	Evaluating a detector
	First detection ...
	Second detection ...
	Third detection ...
	Compare to ground truth
	Sort by confidence
	Evaluation metric
	Evaluation metric
	Pedestrians
	Why did it work?
	Generic categories
	Generic categories�Why doesn’t this work (as well)?
	Quiz time
	Warm up
	Warm up
	A little harder
	A little harder
	A little harder
	A little harder, yet
	A little harder, yet
	A little harder, yet
	Impossible?
	Impossible?
	Impossible?
	PASCAL VOC detection history
	Part-based models & multiple features (MKL)
	Kitchen-sink approaches
	Region-based Convolutional Networks (R-CNNs)
	Region-based Convolutional Networks (R-CNNs)
	Convolutional Neural Networks
	Standard Neural Networks
	Let’s look at how these work
	Perceptrons
	Perceptron Example
	Perception Training
	Perceptrons are not powerful
	LMS Learning
	Activation Function
	Gradient Descent Learning from�Russell and Norvig AI Text
	LMS vs. Limiting Threshold
	Backpropagation Networks
	Backprop - Learning
	Backprop - Modifying Weights
	Backprop
	From NNs to Convolutional NNs
	Convolutional NNs
	Convolutional NNs
	Convolutional NNs
	Convolutional NNs
	Convolutional NNs
	Convolutional NNs
	Convolutional NNs
	Convolutional NNs
	Convolutional NNs
	2D input
	Historical perspective – 1980
	Historical perspective – 1980
	Supervised learning – 1986
	Supervised learning – 1986
	Practical ConvNets
	The fall of ConvNets
	The key to SVMs
	Core idea of “deep learning”
	Slide Number 69
	What’s new since the 1980s?
	Ross’s Own System: Region CNNs
	 Competitive Results
	Top Regions for Six Object Classes
	But it wasn’t fast enough! So we have:�Fast Region-based ConvNets (R-CNNs) �for Object Detection
	Object detection renaissance (2013-present)
	Region-based convnets (R-CNNs)
	Slow R-CNN
	Slow R-CNN
	Slow R-CNN
	Slow R-CNN
	Slow R-CNN
	Slow R-CNN
	What’s wrong with slow R-CNN?
	What’s wrong with slow R-CNN?
	What’s wrong with slow R-CNN?
	What’s wrong with slow R-CNN?
	SPP-net
	SPP-net
	SPP-net
	SPP-net
	SPP-net
	SPP-net
	What’s good about SPP-net?
	What’s wrong with SPP-net?
	What’s wrong with SPP-net?
	SPP-net: the main limitation
	Fast R-CNN
	Fast R-CNN
	Fast R-CNN
	Fast R-CNN (test time)
	Fast R-CNN (test time)
	Fast R-CNN (test time)
	Fast R-CNN (test time)
	Fast R-CNN�(training)
	Fast R-CNN�(training)
	Main results
	Main results
	Main results

