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Outline 

• Object detection 
• the task, evaluation, datasets 

 
• Neural Net: how do they work? 

 
• Convolutional Neural Networks (CNNs) 

• overview and history 
 

• Region-based Convolutional Networks (R-CNNs) 
 

• New Speedier R-CNNs 



Image classification 

• 𝐾 classes 
• Task: assign correct class label to the whole image 

Digit classification (MNIST) Object recognition (Caltech-101) 



Classification vs. Detection 

 Dog 

Dog 
Dog 



Problem formulation 

person 

motorbike 

Input Desired output 

{  airplane,  bird,  motorbike,  person,  sofa  } 



Evaluating a detector 

Test image (previously unseen) 



First detection ... 

‘person’ detector predictions 

0.9 



Second detection ... 

0.9 

0.6 

‘person’ detector predictions 



Third detection ... 

0.9 

0.6 

0.2 

‘person’ detector predictions 



Compare to ground truth 

ground truth ‘person’ boxes 

0.9 

0.6 

0.2 

‘person’ detector predictions 



Sort by confidence 

... ... ... ... ... 

✓ ✓ ✓ 

0.9 0.8 0.6 0.5 0.2 0.1 

true 
positive 
(high overlap) 

false 
positive 
(no overlap, 
low overlap, or  
duplicate) 

X X X 



Evaluation metric 

... ... ... ... ... 

0.9 0.8 0.6 0.5 0.2 0.1 

✓ ✓ ✓ X X X 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
#𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

#𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + #𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
#𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

#𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜
 

𝑡 

✓ 
✓ + X 



Evaluation metric 

Average Precision (AP) 
    0%  is worst 
    100%  is best 
 
mean AP over classes 
(mAP) 

... ... ... ... ... 

0.9 0.8 0.6 0.5 0.2 0.1 

✓ ✓ ✓ X X X 



Pedestrians 
Histograms of Oriented Gradients for Human Detection, 
Dalal and Triggs, CVPR 2005 
 
AP ~77% 
More sophisticated methods: AP ~90%                     

(a) average gradient image over training examples 
(b) each “pixel” shows max positive SVM weight in the block centered on that pixel 
(c) same as (b) for negative SVM weights 
(d) test image 
(e) its R-HOG descriptor 
(f) R-HOG descriptor weighted by positive SVM weights 
(g) R-HOG descriptor weighted by negative SVM weights 



Why did it work? 

Average gradient image 



Generic categories 

Can we detect people, chairs, horses, cars, dogs, buses, bottles, sheep …? 
PASCAL Visual Object Categories (VOC) dataset 



Generic categories 
Why doesn’t this work (as well)? 

Can we detect people, chairs, horses, cars, dogs, buses, bottles, sheep …? 
PASCAL Visual Object Categories (VOC) dataset 



Quiz time 



Warm up 

This is an average image of which object class? 



Warm up 

pedestrian 



A little harder 

? 



A little harder 

? 
Hint: airplane, bicycle, bus, car, cat, chair, cow, dog, dining table  



A little harder 

bicycle (PASCAL) 



A little harder, yet 

? 



A little harder, yet 

? 
Hint: white blob on a green background 



A little harder, yet 

sheep (PASCAL) 



Impossible? 

? 



Impossible? 

dog (PASCAL) 



Impossible? 

dog (PASCAL) 
Why does the mean look like this? 

There’s no alignment between the examples! 
How do we combat this? 



PASCAL VOC detection history 
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Part-based models & multiple 
features (MKL) 
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Kitchen-sink approaches 
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Region-based Convolutional 
Networks (R-CNNs) 
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R-CNN v1 
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[R-CNN. Girshick et al. CVPR 2014] 
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Region-based Convolutional 
Networks (R-CNNs) 

[R-CNN. Girshick et al. CVPR 2014] 



Convolutional Neural Networks 

• Overview 



Standard Neural Networks 

𝒙 = 𝑥1, … , 𝑥784 𝑇 𝑧𝑗 = 𝑔(𝒘𝑗 
𝑇𝒙) 𝑔 𝑡 =

1
1 + 𝑒−𝑡

 

“Fully connected” 

g(sum of weights w times inputs x) inputs 

hidden layer 

outputs 



Let’s look at how these work 



Perceptrons 
• Initial proposal of connectionist networks 
• Rosenblatt, 50’s and 60’s 
• Essentially a linear discriminant composed of 

nodes, weights 
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Perceptron Example 
2 

1 

.5 

.3 θ =-1 

2(0.5) + 1(0.3) + -1 = 0.3 > 0 , so O=1 

Learning Procedure: 
Randomly assign weights (between 0 and1) 

Present inputs from training data 

Get output O, nudge weights to gives results toward our 
desired output T 

Repeat; stop when no errors, or enough epochs completed 



Perception Training 

)()()1( twtwtw iii ∆+=+

ii IOTtw )()( −=∆

Weights include Threshold.  T=Desired, O=Actual output. 

5.1)2)(10(5.0)1(1 −=−+=+tw

Example: T=0, O=1, W1=0.5, W2=0.3, I1=2, I2=1, θ=-1 

7.0)1)(10(3.0)1(2 −=−+=+tw
2)1)(10(1)1( −=−+−=+twθ

If we present this input again, we’d output 0 instead 

2 

1 
θ=-1 

.5 

.3 



Perceptrons are not powerful 
• Essentially a linear discriminant 
• Perceptron theorem: If a linear discriminant exists that can 

separate the classes without error, the training procedure 
is guaranteed to find that line or plane. 

Class1 Class2 



LMS Learning 
LMS = Least Mean Square Learning Systems, more general than the 
previous perceptron learning rule.  The concept is to minimize the total 
error, as measured over all training examples, P.  O is the raw output, as 
calculated by  

( )∑ −=
P

PP OTLMSceDis 2

2
1)(tan

E.g. if we have two patterns and 
T1=1, O1=0.8, T2=0, O2=0.5 then D=(0.5)[(1-0.8)2+(0-0.5)2]=.145 

We want to minimize the LMS: 

E 

W 

W(old) 

W(new) 

C-learning rate 

∑ +
i

ii Iw θ



Activation Function 
• To apply the LMS learning rule, also known as the 

delta rule, we need a differentiable activation 
function. 
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Gradient Descent Learning from 
Russell and Norvig AI Text 

examples is the training set 
Each input x is a a tuple x1, … , xn  and has true output y. 
Weights are in vector W; activation function is g. 
 
repeat 
 for each e in examples do 
   in = ∑ Wj xj[e] 
   Err = y[e] – g(in) 
   Wj = Wj + α x Err x g’(in) x xj[e] 
until some stopping criterion is satisfied 



LMS vs. Limiting Threshold 
• With the new sigmoidal function that is differentiable, we 

can apply the delta rule toward learning. 
• Perceptron Method 

• Forced output to 0 or 1, while LMS uses the net output 
• Guaranteed to separate, if no error and is linearly separable 

• Otherwise it may not converge 

• Gradient Descent Method: 
• May oscillate and not converge 
• May converge to wrong answer 
• Will converge to some minimum even if the classes are not linearly 

separable, unlike the earlier perceptron training method 



Backpropagation Networks 
• Attributed to Rumelhart and McClelland, late 70’s 
• To bypass the linear classification problem, we can 

construct multilayer networks.  Typically we have fully 
connected, feedforward networks. 
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Backprop - Learning 
Learning Procedure: 

Randomly assign weights (between 0-1) 

Present inputs from training data, propagate to outputs 

Compute outputs O, adjust weights according to the delta 
rule, backpropagating the errors.  The weights will be 
nudged closer so that the network learns to give the 
desired output. 

Repeat; stop when no errors, or enough epochs completed 



Backprop - Modifying Weights 

I H O 
Wi,j Wj,k 

kj
k

kkkkijjji wOOOTIHcHw ,, )1()()1( ∑ −−−=∆

See Russell and Norvig algorithm in Figure 20.25 for 
details.  
 
Lots of nested for loops for all the layers. 
 
This is the idea from NN slides. 



Backprop 
• Very powerful - can learn any function, given enough 

hidden units! With enough hidden units, we can generate 
any function. 

• Have the same problems of Generalization vs. 
Memorization.  With too many units, we will tend to 
memorize the input and not generalize well.  Some schemes 
exist to “prune” the neural network. 

• Networks require extensive training, many parameters to 
fiddle with.  Can be extremely slow to train.  May also fall 
into local minima. 

• Inherently parallel algorithm, ideal for multiprocessor 
hardware. 

• Despite the cons, a very powerful algorithm that has seen 
widespread successful deployment. 



From NNs to Convolutional NNs 

• Local connectivity 
• Shared (“tied”) weights 
• Multiple feature maps 
• Pooling 



Convolutional NNs 

• Local connectivity 

• Each green unit is only connected to (3) 
neighboring blue units 

compare 



Convolutional NNs 

• Shared (“tied”) weights 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 

𝑤1 

𝑤2 
𝑤3 

𝑤1 

𝑤2 
𝑤3 



Convolutional NNs 

• Convolution with 1-D filter: [𝑤3,𝑤2,𝑤1] 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 

𝑤1 

𝑤2 
𝑤3 



Convolutional NNs 

• Convolution with 1-D filter: [𝑤3,𝑤2,𝑤1] 
 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 

𝑤1 

𝑤2 
𝑤3 



Convolutional NNs 

• Convolution with 1-D filter: [𝑤3,𝑤2,𝑤1] 
 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 

𝑤1 

𝑤2 
𝑤3 



Convolutional NNs 

• Convolution with 1-D filter: [𝑤3,𝑤2,𝑤1] 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 

𝑤1 

𝑤2 
𝑤3 



Convolutional NNs 

• Convolution with 1-D filter: [𝑤3,𝑤2,𝑤1] 
 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 𝑤1 

𝑤2 
𝑤3 



Convolutional NNs 

• Multiple feature maps 

• All orange units compute the same function 
but with a different input windows 
 

• Orange and green units compute  
different functions 

𝑤1 

𝑤2 
𝑤3 

𝑤𝑤1 
𝑤𝑤2 
𝑤𝑤3 

Feature map 1 
(array of green 
 units) 

Feature map 2 
(array of orange 
 units) 



Convolutional NNs 

• Pooling (max, average) 

1 

4 

0 

3 

4 

3 

• Pooling area: 2 units 
 

• Pooling stride: 2 units 
 

• Subsamples feature maps 



Image 

Pooling 

Convolution 

2D input 



Historical perspective – 1980 



Historical perspective – 1980 
Hubel and Wiesel 
1962 

Included basic ingredients of ConvNets, but no supervised learning algorithm 



Supervised learning – 1986 

Early demonstration that error backpropagation can be used 
for supervised training of neural nets (including ConvNets) 

Gradient descent training with error backpropagation 



Supervised learning – 1986  

“T” vs. “C” problem Simple ConvNet 



Practical ConvNets 

Gradient-Based Learning Applied to Document Recognition,  
Lecun et al., 1998 



The fall of ConvNets 

• The rise of Support Vector Machines (SVMs) 
• Mathematical advantages (theory, convex 

optimization) 
• Competitive performance on tasks such as digit 

classification 
• Neural nets became unpopular in the mid 1990s 
 



The key to SVMs 

• It’s all about the features 

Histograms of Oriented Gradients for Human Detection, 
Dalal and Triggs, CVPR 2005 

SVM weights 
(+)                    (-) 

HOG features 



Core idea of “deep learning” 

• Input: the “raw” signal (image, waveform, …) 
 

• Features: hierarchy of features is learned from the 
raw input 

 



• If SVMs killed neural nets, how did they come back 
(in computer vision)? 



What’s new since the 1980s? 

• More layers 
• LeNet-3 and LeNet-5 had 3 and 5 learnable layers 
• Current models have 8 – 20+ 

• “ReLU” non-linearities (Rectified Linear Unit) 
• 𝑔 𝑥 = max 0, 𝑥  
• Gradient doesn’t vanish 

• “Dropout” regularization 
• Fast GPU implementations 
• More data 

𝑥 

𝑔(𝑥) 



Ross’s Own System: Region CNNs 



           Competitive Results 



Top Regions for Six Object Classes 



But it wasn’t fast enough! So we have: 
Fast Region-based ConvNets (R-CNNs)  
for Object Detection 

Recognition 
What? 

car : 1.000

dog : 0.997

person : 0.992

person : 0.979

horse : 0.993

Localization 
Where? 

Figure adapted from Kaiming He 



Object detection renaissance 
(2013-present) 

+ Accurate 
- Slow 
- Inelegant 

R-CNNv1 

Fast R-CNN 

+ Accurate 
+ Fast 
+ Streamlined 

PASCAL VOC 



Region-based convnets (R-CNNs) 

• R-CNN (aka “slow R-CNN”) [Girshick et al. CVPR14] 

• SPP-net [He et al. ECCV14] 



Slow R-CNN 

Girshick et al. CVPR14. 

Input image 



Slow R-CNN 

Girshick et al. CVPR14. 

Input image 

Regions of Interest (RoI) 
from a proposal method 
(~2k) 



Slow R-CNN 

Girshick et al. CVPR14. 

Input image 

Warped image regions 

Regions of Interest (RoI) 
from a proposal method 
(~2k) 



Slow R-CNN 

Girshick et al. CVPR14. 

Input image 

ConvNet 

ConvNet 

ConvNet 
Warped image regions 

Forward each region 
through ConvNet 

Regions of Interest (RoI) 
from a proposal method 
(~2k) 



Slow R-CNN 

Girshick et al. CVPR14. 

Input image 

ConvNet 

ConvNet 

ConvNet 

SVMs 

SVMs 

SVMs 

Warped image regions 

Forward each region 
through ConvNet 

Classify regions with SVMs 

Regions of Interest (RoI) 
from a proposal method 
(~2k) 

Post hoc component 



Slow R-CNN 

Girshick et al. CVPR14. 

Input image 

ConvNet 

ConvNet 

ConvNet 

SVMs 

SVMs 

SVMs 

Warped image regions 

Forward each region 
through ConvNet 

Bbox reg 

Bbox reg 

Bbox reg 

Apply bounding-box regressors 

Classify regions with SVMs 

Regions of Interest (RoI) 
from a proposal method 
(~2k) 

Post hoc component 



What’s wrong with slow R-CNN? 



What’s wrong with slow R-CNN? 

• Ad hoc training objectives 
• Fine-tune network with softmax classifier (log loss) 
• Train post-hoc linear SVMs (hinge loss) 
• Train post-hoc bounding-box regressors (squared loss) 

 
 



What’s wrong with slow R-CNN? 

• Training is slow (84h), takes a lot of disk space 
 



What’s wrong with slow R-CNN? 

• Inference (detection) is slow 
• 47s / image with VGG16 [Simonyan & Zisserman. ICLR15] 
• Fixed by SPP-net [He et al. ECCV14] 

~2000 ConvNet forward passes per image 



SPP-net 

Input image 

He et al. ECCV14. 



SPP-net 

ConvNet 

Input image 

Forward whole image through ConvNet 

He et al. ECCV14. 

“conv5” feature map of image 



SPP-net 

ConvNet 

Input image 

Forward whole image through ConvNet 

“conv5” feature map of image Regions of 
Interest (RoIs) 
from a proposal 
method 

He et al. ECCV14. 



SPP-net 

ConvNet 

Input image 

Forward whole image through ConvNet 

“conv5” feature map of image Regions of 
Interest (RoIs) 
from a proposal 
method 

Spatial Pyramid Pooling (SPP) layer 

He et al. ECCV14. 



SPP-net 

ConvNet 

Input image 

Forward whole image through ConvNet 

“conv5” feature map of image Regions of 
Interest (RoIs) 
from a proposal 
method 

Spatial Pyramid Pooling (SPP) layer 

He et al. ECCV14. 

SVMs 

Fully-connected layers 

Classify regions with SVMs 

FCs 

Post hoc component 



SPP-net 

ConvNet 

Input image 

Forward whole image through ConvNet 

“conv5” feature map of image Regions of 
Interest (RoIs) 
from a proposal 
method 

Spatial Pyramid Pooling (SPP) layer 

He et al. ECCV14. 

SVMs 

Fully-connected layers 

Classify regions with SVMs 

FCs 

Bbox reg 

Apply bounding-box regressors 

Post hoc component 



What’s good about SPP-net? 

• Fixes one issue with R-CNN: makes testing fast 

ConvNet 

SVMs 

FCs 

Bbox reg 

Region-wise 
computation 

Image-wise 
computation 
(shared) 

Post hoc component 



What’s wrong with SPP-net? 

• Inherits the rest of R-CNN’s problems 
• Ad hoc training objectives 
• Training is slow (25h), takes a lot of disk space 



What’s wrong with SPP-net? 

• Introduces a new problem: cannot update 
parameters below SPP layer during training 



SPP-net: the main limitation 

ConvNet 

He et al. ECCV14. 

SVMs 

Trainable 
(3 layers) 

Frozen 
(13 layers) 

FCs 

Bbox reg 

Post hoc component 



Fast R-CNN 

• Fast test-time, like SPP-net 



Fast R-CNN 

• Fast test-time, like SPP-net 
• One network, trained in one stage 



Fast R-CNN 

• Fast test-time, like SPP-net 
• One network, trained in one stage 
• Higher mean average precision than slow R-CNN 

and SPP-net 



Fast R-CNN (test time) 

ConvNet 

Input image 

Forward whole image through ConvNet 

“conv5” feature map of image Regions of 
Interest (RoIs) 
from a proposal 
method 



Fast R-CNN (test time) 

ConvNet 

Input image 

Forward whole image through ConvNet 

“conv5” feature map of image 

“RoI Pooling” (single-level SPP) layer 

Regions of 
Interest (RoIs) 
from a proposal 
method 



Fast R-CNN (test time) 

ConvNet 

Input image 

Forward whole image through ConvNet 

“conv5” feature map of image 

“RoI Pooling” (single-level SPP) layer 

Linear + 
softmax 

FCs Fully-connected layers 

Softmax classifier 

Regions of 
Interest (RoIs) 
from a proposal 
method 



Fast R-CNN (test time) 

ConvNet 

Input image 

Forward whole image through ConvNet 

“conv5” feature map of image 

“RoI Pooling” (single-level SPP) layer 

Linear + 
softmax 

FCs Fully-connected layers 

Softmax classifier 

Regions of 
Interest (RoIs) 
from a proposal 
method 

Linear Bounding-box regressors 



Fast R-CNN 
(training) 

ConvNet 

Linear + 
softmax 

FCs 

Linear 



Fast R-CNN 
(training) Log loss + smooth L1 loss 

ConvNet 

Linear + 
softmax 

FCs 

Linear 

Multi-task loss 



Main results 
Fast R-CNN R-CNN [1] SPP-net [2] 

Train time (h) 9.5 84 25 

- Speedup 8.8x 1x 3.4x 

Timings exclude object proposal time, which is equal for all methods. 
All methods use VGG16 from Simonyan and Zisserman. 
 
[1] Girshick et al. CVPR14. 
[2] He et al. ECCV14. 



Main results 
Fast R-CNN R-CNN [1] SPP-net [2] 

Test time / image 0.32s 47.0s 2.3s 

Test speedup 146x 1x 20x 

Timings exclude object proposal time, which is equal for all methods. 
All methods use VGG16 from Simonyan and Zisserman. 
 
[1] Girshick et al. CVPR14. 
[2] He et al. ECCV14. 



Main results 
Fast R-CNN R-CNN [1] SPP-net [2] 

mAP 66.9% 66.0% 63.1% 

Timings exclude object proposal time, which is equal for all methods. 
All methods use VGG16 from Simonyan and Zisserman. 
 
[1] Girshick et al. CVPR14. 
[2] He et al. ECCV14. 
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