Recognition IV: Object
Detection through Deep
Learning and R-CNNs

Linda Shapiro

CSE 455
Most slides from Ross Girshick



Outline

e Object detection
e the task, evaluation, datasets

* Neural Net: how do they work?

e Convolutional Neural Networks (CNNs)
e overview and history

e Region-based Convolutional Networks (R-CNNs)

* New Speedier R-CNNs



Image classification

e K classes
e Task: assign correct class label to the whole image

Digit classification (MNIST) Object recognition (Caltech-101)



Classification vs. Detection




Problem formulation

{ airplane, bird, motorbike, person, sofa }




Evaluating a detector

Test image (previously unseen)



First detection ...




Second detection ...

|| ‘person’ detector predictions



Third detection ...

|| ‘person’ detector predictions



Compare to ground truth

|| ‘person’ detector predictions
] ground truth ‘person’ boxes



Sort by confidence
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Evaluation metric

t
sion@t #true positives@t v
recision@t = —
P #true positives@t + #false positives@t /S +X

#true positives@t
recall@t =

#ground truth objects



Evaluation metric

Average Precision (AP)
0% is worst
100% is best

precision

AP mean AP over classes
(mAP)

0
0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall



Histograms of Oriented Gradients for Human Detection,
Dalal and Triggs, CVPR 2005

Pedestrians ...,

More sophisticated methods: AP ~90%
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(d) (8)

(a) average gradient image over training examples

(b) each “pixel” shows max positive SVM weight in the block centered on that pixel
(c) same as (b) for negative SVM weights

(d) test image

(e) its R-HOG descriptor

(f) R-HOG descriptor weighted by positive SVM weights

(g) R-HOG descriptor weighted by negative SVM weights



Why did it work?

-

Average gradient image



Generic categories

Can we detect people, chairs, horses, cars, dogs, buses, bottles, sheep ...?
PASCAL Visual Object Categories (VOC) dataset



Generic categories
Why doesn’t this work (as well)?

Can we detect people, chairs, horses, cars, dogs, buses, bottles, sheep ...?
PASCAL Visual Object Categories (VOC) dataset



QuIz time



Warm up

This is an average image of which object class?



Warm up

pedestrian



A little harder




A little harder

?
Hint: airplane, bicycle, bus, car, cat, chair, cow, dog, dining table



A little harder

bicycle (PASCAL)



A little harder, yet




A little harder, yet

?
Hint: white blob on a green background



A little harder, yet

sheep (PASCAL)



Impossible?




Impossible?

dog (PASCAL)



Impossible?

dog (PASCAL)
Why does the mean look like this?
There’s no alignment between the examples!
How do we combat this?



PASCAL VOC detection history

mean Average Precision (mAP)
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Part-based models & multiple

features (MKL)

mean Average Precision (mAP)
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Kitchen-sink approaches

mean Average Precision (mAP)
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Region-based Convolutional
Networks (R-CNNs)

mean Average Precision (mAP)
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Region-based Convolutional
Networks (R-CNNs)

mean Average Precision (mAP)
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Convolutional Neural Networks

e Overview



Standard Neural Networks

hidden layer
“Fully connected”
outputs
Y.
Y
inputs g(sum of weights w times inputs x) 1/’

X = (xl, ...,x784)T Zj = g(wzwx) g(t) =

1 0.5
1+et /




Let’s look at how these work



Perceptrons

* Initial proposal of connectionist networks
e Rosenblatt, 50’s and 60’s

e Essentially a linear discriminant composed of
nodes, weights

\ Wl
W2

.(Zwlllj+6?>0

0: otherwise



Perceptron Example

(s
oEs®

2(0.5) + 1(0.3) +-1=0.3>0, s0 O=1

Learning Procedure:
Randomly assign weights (between 0 andl)

Present inputs from training data

Get output O, nudge weights to gives results toward our
desired output T

Repeat; stop when no errors, or enough epochs completed



Perception Training @\

W, (t+1) = w. (1) + Aw. (1)

Aw,(t) = (T -0)l,

Weights include Threshold. T=Desired, O=Actual output.
Example: T=0, O=1, W1=0.5, W2=0.3, 11=2, 12=1, 6=-1

W, (t+1)=0.5+(0-1)(2) =15
W, (t+1) = 0.3+ (0-1)(1) =-0.7
W, (t+1) = —1+(0-1)(1) = -2

If we present this input again, we’d output O instead



Perceptrons are not powerful

e Essentially a linear discriminant

e Perceptron theorem: If a linear discriminant exists that can
separate the classes without error, the training procedure
is guaranteed to find that line or plane.

Classl, Class2




LMS Learning

LMS = Least Mean Square Learning Systems, more general than the
previous perceptron learning rule. The concept is to minimize the total
error, as measured over all training examples, P. O is the raw output, as

calculated by ZWih 1+ 0
Dis tan ce(LMS) = %Z(TP ~0,)

P

E.g. if we have two patterns and
T1=1, 01=0.8, T2=0, 02=0.5 then D=(0.5)[(1-0.8)?+(0-0.5)?]=.145

We want to minimize the LMS:

C-learning rate
M

E ~— W(old)
TW(new)

W



Activation Function

e To apply the LMS learning rule, also known as the
delta rule, we need a differentiable activation
function.

see next slide!

Aw, = cl I<(Tj -0, )£ *(ActivationFunction)
Old: New:

5 {1:Zwili+6’>0} o= 1

-> wl;+0
0: otherwise 1+e i

1




Gradient Descent Learning from
Russell and Norvig Al Text

examples is the training set
Each input x is a a tuple x,, ..., X,, and has true output y.
Weights are in vector W; activation function is g.

repeat

for each e in examples do
in=2 W, xj[e]
Err =y[e] —g(in)
W;=W,+axErrxg’(in) x x[e]

until some stopping criterion is satisfied




LMS vs. Limiting Threshold

e With the new sigmoidal function that is differentiable, we
can apply the delta rule toward learning.

e Perceptron Method
e Forced output to 0 or 1, while LMS uses the net output

e Guaranteed to separate, if no error and is linearly separable
e Otherwise it may not converge

e Gradient Descent Method:

e May oscillate and not converge
e May converge to wrong answer

e Will converge to some minimum even if the classes are not linearly
separable, unlike the earlier perceptron training method



Backpropagation Networks

e Attributed to Rumelhart and McClelland, late 70’s

e To bypass the linear classification problem, we can
construct multilayer networks. Typically we have fully
connected, feedforward networks.

Ir@ayer Hidden Layer Outi ut Layer

@ Wi; WK H(x) = 12W. |.

1’s - bias



Backprop - Learning

Learning Procedure:

Randomly assign weights (between 0-1)
Present inputs from training data, propagate to outputs

Compute outputs O, adjust weights according to the delta
rule, backpropagating the errors. The weights will be
nudged closer so that the network learns to give the
desired output.

Repeat; stop when no errors, or enough epochs completed



Backprop - Modifying Weights

See Russell and Norvig algorithm in Figure 20.25 for
details.

Lots of nested for loops for all the layers.

This is the idea from NN slides.

AW, =cH (1-H )1, > (T, -0,)0,(1-O)w;,

k
OrmOsmO
Wi1j Wj,k




Backprop

e Very powerful - can learn any function, given enough
hidden units! With enough hidden units, we can generate
any function.

e Have the same problems of Generalization vs.
Memorization. With too many units, we will tend to
memorize the input and not generalize well. Some schemes
exist to “prune” the neural network.

* Networks require extensive training, many parameters to
fiddle with. Can be extremely slow to train. May also fall
into local minima.

* Inherently parallel algorithm, ideal for multiprocessor
hardware.

e Despite the cons, a very powerful algorithm that has seen
widespread successful deployment.



From NNs to Convolutional NNs

* Local connectivity

e Shared (“tied”) weights
 Multiple feature maps
* Pooling



Convolutional NNs

* Local connectivity

compare

e Each green unit is only connected to (3)
neighboring blue units

@O

\Z



Convolutional NNs

e Shared (“tied”) weights

@ ° All green units share the same parameters w

@- - @ Each green unit computes the same function,
Wi - but with a different input window




Convolutional NNs

e Convolution with 1-D filter: [w3, w,, wy |

e All green units share the same parameters w

e Each green unit computes the same function,
but with a different input window

00O



Convolutional NNs

e Convolution with 1-D filter: [w3, w,, wy |

Wy O

O W2 e All green units share the same parameters w

e Each green unit computes the same function,
but with a different input window



Convolutional NNs

e Convolution with 1-D filter: [w3, w,, wy |

O
O O
W, @ ° Allgreen units share the same parameters w
O 2 : :
W, e Each green unit computes the same function,
but with a different input window
O



Convolutional NNs

e Convolution with 1-D filter: [w3, w,, wy |

® ° All green units share the same parameters w

e Each green unit computes the same function,
but with a different input window




Convolutional NNs

e Convolution with 1-D filter: [w3, w,, wy |

O

O O

O @ ° Allgreen units share the same parameters w

® ©® . Each green unit computes the same function,
Wy O but with a different input window

L



Convolutional NNs

 Multiple feature maps

e All orange units compute the same function
but with a different input windows

e QOrange and green units compute
different functions

Feature map 2
(array of orange
units)

Feature map 1
(array of green
units)



Convolutional NNs

* Pooling (max, average)

O
_.9 * Pooling area: 2 units
- O
- e Pooling stride: 2 units
@- 0] -
’ >9 e Subsamples feature maps
O



2D Iinput

Pooling

]

Convolution

]

Image




Historical perspective — 1980

Biol. Cybernetics 36, 193-202 {1980) Bi0|og|Ca|
Cybernetics

(C) by Springer-Verlag 1980

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

Kunihiko Fukushima

NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan



Historical perspective — 1980

——————— visual area : »e-association areq — .
ik Hubel and Wiesel
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Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron

Included basic ingredients of ConvNets, but no supervised learning algorithm



Supervised learning — 1986

Gradient descent training with error backpropagation

Learning Internal Representations
by Error Propagation

D. E. RUMELHART, G. E. HINTON, and R. J. WILLIAMS

Early demonstration that error backpropagation can be used
for supervised training of neural nets (including ConvNets)



Supervised learning — 1986
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Practical ConvNets

) C3: 1. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

B 6@28x28

S2:f. maps

C5: layer pg.
6@14x14 YeT Fé: layer ouTPUT

120 i

‘ Full con|J1ection ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Gradient-Based Learning Applied to Document Recognition,
Lecun et al., 1998



The fall of ConvNets

* The rise of Support Vector Machines (SVMs)

 Mathematical advantages (theory, convex
optimization)

e Competitive performance on tasks such as digit
classification

* Neural nets became unpopular in the mid 1990s



The key to SVMs

e [t’s all about the features

HOG features SVM weights
(+) (-)

(b) ' (8)

Histograms of Oriented Gradients for Human Detection,
Dalal and Triggs, CVPR 2005



Core idea of “deep learning”
e Input: the “raw” signal (image, waveform, ...)

e Features: hierarchy of features is learned from the
raw input



 If SVMs killed neural nets, how did they come back
(in computer vision)?



What’s new since the 1980s?

 More layers
e LeNet-3 and LeNet-5 had 3 and 5 learnable layers
e Current models have 8 — 20+

e “ReLU” non-linearities (Rectified Linear Unit) 96
* g(x) = max(0, x)
e Gradient doesn’t vanish X

e “Dropout” regularization
e Fast GPU implementations
 More data



Ross’s Own System: Region CNNSs

R-CNN: Regions with CNN features

warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classity
1mage proposals (~2k) CNN features regions




Competitive Results

VOC 2010 test | aero bike bird boat bottle bus car  cat chair cow table dog horse mbike person plant sheep sofa train  tv | mAP
DPM w3 [20]F [49.2 53.8 130 153 355 534 497 27.0 172 288 147 178 464 512 477 108 342 207 438 383|334
UVA [39] 56.2 424 153 126 218 493 368 461 129 321 300 365 435 529 329 153 411 318 470 448|351
Regionlets [£1] [63.0 45.9 259 246 245 3561 545 51.2 170 289 302 358 402 557 435 143 439 3Le 540 459|397
SepDPM [15]F [61.4 534 256 252 355 517 506 508 193 33.8 268 404 483 544 471 148 387 350 528 431|404
R-CNN 67.1 641 467 320 305 564 572 659 270 473 409 666 578 659 536 267 565 381 528 502(502
R-CNN BB TLE 658 530 368 350 507 600 60.9 270 506 414 700 620 690 581 295 504 M3 612 524|537

Table 1: Detection average precision (%) on VOC 2010 test. R-CNN is most directly comparable to UVA and Regionlets since all
methods use selective search region proposals. Bounding-box regression (BB) is described in Section C. At publication time, SegDPM
was the top-performer on the PASCAL VOC leaderboard. TDPM and SegDPM use context rescoring not used by the other methods.
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Figure 3: (Left) Mean average precision on the ILSVRC2013 detection test set. Methods preceeded by * use outside training data
(images and labels from the ILSVRC classification dataset in all cases). (Right) Box plots for the 200 average precision values per
method. A box plot for the post-competition OverFeat result is not shown because per-class APs are not yet available (per-class APs for
R-CNN are in Table % and also included in the tech report source uploaded to arXiv.org; see B—CHN-ILSVRCZ013-AF=. txt). The red
ling marks the median AP, the box bottom and top are the 25th and 75th percentiles. The whiskers extend to the min and max AP of each
method. Each AP is plotted as a green dot over the whiskers (best viewed digitally with zoomy).



Top Regions for Six Object Classes

@ L
S anasd

Figure 4: Tup regions for six pool; units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts,
such as people (row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6).




But it wasn’t fast enough! So we have:
Fast Region-based ConvNets (R-CNNs)
for Object Detection

Localization
Where?
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mean Average Precision (mAP)

Object detection renaissance
(2013-present)
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Region-based convnets (R-CNNs)

e R-CNN (aka “slow R-CNN”) [airshick et al. cvPR14]

e SPP-net [He et al. ECCV14]



Slow R-CNN

Input image

Girshick et al. CVPR14.



Slow R-CNN

—~— Regions of Interest (Rol)

e
—y

from a proposal method
(~2k)

Input image

Girshick et al. CVPR14.



Slow R-CNN

y 4 Warped image regions

¥ —~— Regions of Interest (Rol)
from a proposal method

(~2k)

Input image

Girshick et al. CVPR14.



Slow R-CNN

Forward each region

ConvNet through ConvNet

b Warped image regions

Regions of Interest (Rol)
from a proposal method
(~2k)

Girshick et al. CVPR14.



Slow R-CNN

SVMs Classify regions with SVMs

SVMs

SVMs Forward each region

ConvNet through ConvNet
ConvNet
ConvNet i | |
‘ Warped image regions

Regions of Interest (Rol)
from a proposal method
(~2k)

Girshick et al. CVPR14. Post hoc component



S | OW R_C N N Apply bounding-box regressors

Bbox reg ' SVMs Classify regions with SVMs
Bboxreg @ SVMs

Bboxreg  SVMs Forward each region

ConvNet through ConvNet
ConvNet
ConvNet i | |
‘ Warped image regions

Regions of Interest (Rol)
from a proposal method
(~2k)

Girshick et al. CVPR14. Post hoc component



What’s wrong with slow R-CNN?



What’s wrong with slow R-CNN?

e Fine-tune network with softmax classifier (log loss)
e Train post-hoc linear SVMs (hinge loss)
e Train post-hoc bounding-box regressors (squared loss)



What’s wrong with slow R-CNN?

* Ad hoc training objectives
* Fine-tune network with softmax classifier (log loss)
* Train post-hoc linear SVMs (hinge loss)
* Train post-hoc bounding-box regressors (squared loss)

e Training is slow (84h), takes a lot of disk space



What’s wrong with slow R-CNN?

e 47s /image with VGG16 [Simonyan & Zisserman. ICLR15]
[He et al. ECCV14]

~2000 ConvNet forward passes per image



SPP-net

He et al. ECCV14.



SPP-net

Forward whole image through ConvNet

ConvNet

He et al. ECCV14.



SPP-net

Regions of -’conVS" feature map of image

Interest (Rols)
from a proposal
method

Forward whole image through ConvNet

ConvNet

=
= Input image

\

He et al. ECCV14.



SPP-net

' ' ' Spatial Pyramid Pooling (SPP) layer

Forward whole image through ConvNet

Regions of
Interest (Rols)

from a proposal
method

He et al. ECCV14.



SPP-net

SVMs Classify regions with SVMs
FCs Fully-connected layers

; ' Spatial Pyramid Pooling (SPP) layer

Forward whole image through ConvNet

Regions of
Interest (Rols)

from a proposal
method

He et al. ECCV14. Post hoc component



S P P- n et Apply bounding-box regressors

Bbox reg | | SVMs Classify regions with SVMs

o |
FCs

Fully-connected layers

; ' Spatial Pyramid Pooling (SPP) layer

Forward whole image through ConvNet

Regions of
Interest (Rols)

from a proposal
method

He et al. ECCV14. Post hoc component



What’s good about SPP-net?

e Fixes one issue with R-CNN: makes testing fast

—

Bbox reg | SVMs

o |

FCs

Region-wise

—

computation

Image-wise
computation —
(shared)

Post hoc component



What’s wrong with SPP-net?

e Ad hoc training objectives
e Training is slow (25h), takes a lot of disk space



What’s wrong with SPP-net?

* Inherits the rest of R-CNN’s problems
* Ad hoc training objectives
* Training is slow (though faster), takes a lot of disk space

* Introduces a hew problem: cannot update
parameters below SPP layer during training



SPP-net: the main limitation

e

Bbox reg | SVMs

Trainable —
(3 layers)

Frozen —
(13 layers)

He et al. ECCV14. Post hoc component



Fast R-CNN

e Fast test-time, like SPP-net



Fast R-CNN

e Fast test-time, like SPP-net
 One network, trained in one stage



Fast R-CNN

e Fast test-time, like SPP-net
 One network, trained in one stage

 Higher mean average precision than slow R-CNN
and SPP-net



Fast R-CNN (test time)

Forward whole image through ConvNet

Regions of
Interest (Rols)

from a proposal
method

ConvNet



Fast R-CNN (test time)

AY g & RolPooling” (single-level SPP) layer

-’conVS" feature map of image

Forward whole image through ConvNet

Regions of
Interest (Rols)
from a proposal
method

"
ConvNet E’

y —— 7

Input image



Fast R-CNN (test time)

Linear +
softmax

Softmax classifier

FCs Fully-connected layers

AY g & RolPooling” (single-level SPP) layer
-’conVS" feature map of image

Forward whole image through ConvNet

Regions of
Interest (Rols)

from a proposal
method

ConvNet



Fast R-CNN (test time)

Linear +
softmax Linear | Bounding-box regressors

Softmax classifier

FCs Fully-connected layers

AY g & RolPooling” (single-level SPP) layer
-’conVS" feature map of image

Forward whole image through ConvNet

Regions of
Interest (Rols)

from a proposal
method

ConvNet



Fast R-CNN
(training)

Linear +
softmax

Linear




Fast R-CNN
(training)

Log loss + smooth L1 loss Multi-task loss

O §
Linear +

softmax Linear




Main results

_ Fast R-CNN_| R-CNN 1] m-

Train time (h)
- Speedup 8.8x 1x 3.4x

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.
[2] He et al. ECCV14.



Main results

____ |FastRONN _[RCNN[1] _|SPPmet[2] _

Test time / image 0.32s 47.0s 2.3s
Test speedup 146x 1x 20x

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.
[2] He et al. ECCV14.



Main results

____ |FastRONN _[RCNN[1] _|SPPmet[2] _

mAP 66.9% 66.0% 63.1%

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.
[2] He et al. ECCV14.
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