
Recognition III 
EM, G/D, and SVMs 

Linda Shapiro 
CSE 455 



What’s Coming 

• How does EM clustering work? 
• How can it be used for generating features for 

image classification? 
• A generative/discriminative system that uses 

both EM and neural nets 
• How do support vector machines (SVMs) work? 
• How are they used with the HOG feature for 

detection people (and other things)? 
• What is the Deformable Parts Model (DPM)? 



K-Means and EM Clustering 

K-Means 

• Clusters are represented by their means μ 
• A vector is assigned to a single cluster whose mean it 
     is closest to. 

EM (Expectation-Maximization) Clustering 
• Clusters are represented by their means, covariance 
      matrices and weights  μ, Σ, w 
• A vector is soft assigned to each cluster  (components)  
     according to its probability of belonging to that cluster 
• Usually we assume each cluster has a Gaussian distribution 



K-Means and EM Clustering 

• Both K-Means and EM start with a given K 
• Both iterate between 

–  assigning (or soft assigning) each vector to a 
(each) cluster 

– recalculating the parameters of each cluster 

• The result of EM is called a mixture model 
and when using Gaussian components, it is a 
mixture of Gaussians 



Mixture of Gaussians 
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Full EM Algorithm 
Multi-Dimensional 

• Boot Step: 
– Initialize K clusters: C1, …, CK 
  
 
 

• Iteration Step: 
– Expectation Step 

 
 

– Maximization Step 

 

 

(µj, Σj) and P(Cj) for each cluster j.   
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Yi Li’s Generative Discriminative 
Classification: a BOW Approach 

• Uses EM clustering with each component 
represented by a Gaussian distribution in 
feature space (color, texture, structure) 

• Uses the K EM clusters to construct fixed 
length feature vectors representing positive 
and negative samples of the object class being 
learned. 

• Feeds these vectors into a neural net to learn 
the class. 
 



Given: Some images and their corresponding descriptions 

{trees, grass, cherry trees} {cheetah, trunk} {mountains, sky} {beach, sky, trees, water} 

? ? ? ? 

••• 

To solve: What object classes are present in new images 

••• 

Problem Statement 



• Structure 

• Color 

Image Features for Object 
Recognition 

• Texture 

• Context  



Abstract Regions 

Original Images Color Regions Texture Regions Line Clusters 



Approach to Combining Different Feature Types 

• Treat each type of abstract region 
separately 
 

• For abstract region type a and for object 
class o, use the EM algorithm to construct a 
model that is a mixture of multivariate 
Gaussians over the features for type a 
regions. 

Phase 1: 



Consider only abstract region type 
 color (c) and object class object (o) 

• At the end of Phase 1, we can compute the 
distribution of  color feature vector X in an image 
containing object o. 

•    P(X | o) = Σ wk N(X, μk, Σk) 
 

• K is the number of Gaussian components. 
• The w’s are the weights of the components. 
• The µ’s and ∑’s are the parameters of the Gaussians 
• P(X | o) is the probability of vector X given object o. 

k=1 to K 



Color Clusters for Class o 
We call them components. 

  

component 1            component 2                            component K 
 
 
 
  µ1 , ∑1 , w1                               µ2 , ∑2 , w2                                                             µK , ∑K , wK  

color feature vector 
X for some region r 

r 

P(X | o) = Σ wk N(X, μk, Σk) 



Now we can determine which  
components are likely to be present in an image. 

• The probability that the feature vector X  
   from  color region r of image Ii   comes  
   from component k is given by 
• P(X,k) = wk * N(X, μk, Σk) 

 
 

 
r 

component k 

X 

? 



And determine the probability that the whole image is related 
to component k as a function of the feature vectors of all its 

regions.   

• Then the probability that image I has a region r 
that comes from component k is 
 

• P(I, k) = max(P(Xr , k | r = 1,2,....) 
 

r1 r2 

r3 

 X1 

X2 

X3 

component 1 
 
component 2 

P(X1,1) 
P(X2,1) 
P(X3,1) 

max 

image with 3 regions 
3 feature 
vectors 

2 components 

probabilities 
for compo- 
nent 1 



Aggregate Scores for Color 
 

Components 
1      2     3       4      5     6      7      8 

beach 
 
 
 
beach 
 
 
 
 
not 
beach 

.93 .16 .94 .24 .10 .99 .32 .00 

.66 .80 .00 .72 .19 .01 .22  .02 

.43 .03 .00 .00 .00 .00 .15  .00 

maximum probability 
of all regions in first 
beach image belonging 
to component 1 

beach 
training 
images 
 
 
 
not beach 
training 
images 



We now use positive and negative training images, calculate 
for each the probabilities of regions of each component, and 

form a training matrix. 

P(beach1,1)        P(beach1,2)  ....         P(beach1,K) 
P(beach2,1)        P(beach2,2)  ....         P(beach2,K) 
 
P(beachn,1)        P(beachn,2)  .....        P(beachn,K) 
P(nbeach1,1)      P(nbeach1,2) ....        P(nbeach1,K) 
P(nbeach2,1)      P(nbeach2,2) ....        P(nbeach2,K) 
 
P(nbeachm,1)     P(nbeachm,2) ....      P(nbeachm,K) 



Phase 2 Learning 

• Let  Ci  be row i of the training matrix. 
 

• Each such row is a feature vector for the color 
features of regions of image Ii that relates them to 
the Phase 1 components. 
 

• Now we can use a second-stage classifier to learn 
P(o|Ii ) for each object class o and image Ii . 

training 
matrix 

neural 
net 
classifier 



Multiple Feature Case 

• We calculate separate Gaussian mixture models for 
each different features type: 
 

• Color:     Ci     
• Texture:     Ti 

• Structure:   Si 

 
• and any more features we have (motion). 



Now we concatenate the matrix rows from the 
different region types to obtain a multi-feature-type 
training matrix. 
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Final Neural Net Classifier 
       C1
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Training 
 
 
 
 
 
 
Testing 

Neural Net 
for beach 

Neural Net 
for beach NOT BEACH 



ICPR04 Data Set with General Labels 

EM-variant 
with single 

Gaussian per 
object 

EM-variant 
extension to 

mixture models 

Gen/Dis 
with Classical EM 

clustering 

Gen/Dis 
with EM-variant 

extension 

African animal 71.8% 85.7% 89.2% 90.5% 

arctic 80.0% 79.8% 90.0% 85.1% 

beach 88.0% 90.8% 89.6% 91.1% 

grass 76.9% 69.6% 75.4% 77.8% 

mountain 94.0% 96.6% 97.5% 93.5% 

primate 74.7% 86.9% 91.1% 90.9% 

sky 91.9% 84.9% 93.0% 93.1% 

stadium 95.2% 98.9% 99.9% 100.0% 

tree 70.7% 79.0% 87.4% 88.2% 

water 82.9% 82.3% 83.1% 82.4% 

MEAN 82.6% 85.4% 89.6% 89.3% 



Comparison to ALIP: 
the Benchmark Image Set 

ALIP cs ts st ts+st cs+st cs+ts cs+ts+st 

African 52 69 23 26 35 79 72 74 

beach 32 44 38 39 51 48 59 64 

buildings 64 43 40 41 67 70 70 78 

buses 46 60 72 92 86 85 84 95 

dinosaurs 100 88 70 37 86 89 94 93 

elephants 40 53 8 27 38 64 64 69 

flowers 90 85 52 33 78 87 86 91 

food 68 63 49 41 66 77 84 85 

horses 60 94 41 50 64 92 93 89 

mountains 84 43 33 26 43 63 55 65 

MEAN 63.6 64.2 42.6 41.2 61.4 75.4 76.1 80.3 



Groundtruth Data Set 
• UW Ground truth database (1224 images) 
• 31 elementary object categories: river (30), beach (31), 

bridge (33), track (35), pole (38), football field (41), frozen 
lake (42), lantern (42), husky stadium (44), hill (49), cherry 
tree (54), car (60), boat (67), stone (70), ground (81), flower 
(85), lake (86), sidewalk (88), street (96), snow (98), cloud 
(119), rock (122), house (175), bush (178), mountain (231), 
water (290), building (316), grass (322), people (344), tree 
(589), sky (659) 

• 20 high-level concepts: Asian city , Australia, Barcelona, 
campus, Cannon Beach, Columbia Gorge, European city, 
Geneva, Green Lake, Greenland, Indonesia, indoor, Iran, Italy, 
Japan, park, San Juans, spring flowers, Swiss mountains, and 
Yellowstone. 



beach, sky, tree, water people, street, tree building, grass, people,  
sidewalk, sky, tree 

flower, house, people,  
pole, sidewalk, sky 

flower, grass, house,  
pole, sky, street, tree 

building, flower, sky,  
tree, water 

building, car, people, tree car, people, sky boat, house, water 

building, bush, sky,  
tree, water 

building 

boat, rock, sky,  
tree, water 



Groundtruth Data Set:  
ROC Scores 

street 60.4 tree 80.8 stone 87.1 columbia gorge 94.5 

people 68.0 bush 81.0 hill 87.4 green lake 94.9 

rock 73.5 flower 81.1 mountain 88.3 italy 95.1 

sky 74.1 iran 82.2 beach 89.0 swiss moutains 95.7 

ground 74.3 bridge 82.7 snow 92.0 sanjuans 96.5 

river 74.7 car 82.9 lake 92.8 cherry tree 96.9 

grass 74.9 pole 83.3 frozen lake 92.8 indoor 97.0 

building 75.4 yellowstone 83.7 japan 92.9 greenland 98.7 

cloud 75.4 water 83.9 campus 92.9 cannon beach 99.2 

boat 76.8 indonesia 84.3 barcelona 92.9 track 99.6 

lantern 78.1 sidewalk 85.7 geneva 93.3 football field 99.8 

australia 79.7 asian city 86.7 park 94.0 husky stadium 100.0 

house 80.1 european city 87.0 spring flowers 94.4 



Groundtruth Data Set:  
Top Results 

Asian city 

Cannon beach 

Italy 

park 



Groundtruth Data Set:  
Top Results 

sky 

spring flowers 

tree 

water 



Groundtruth Data Set: Annotation 
Samples 

sky(99.8),  
Columbia gorge(98.8), 
lantern(94.2), street(89.2), 
house(85.8), bridge(80.8),  
car(80.5), hill(78.3),  
boat(73.1), pole(72.3), 
water(64.3), mountain(63.8), 
building(9.5) 

tree(97.3), bush(91.6),  
spring flowers(90.3), 
flower(84.4), 
park(84.3), 
sidewalk(67.5), 
grass(52.5), pole(34.1) 

sky(95.1), Iran(89.3), 
house(88.6),  
building(80.1), 
boat(71.7), bridge(67.0), 
water(13.5), tree(7.7) 

Italy(99.9), grass(98.5),  
sky(93.8), rock(88.8),  
boat(80.1), water(77.1), 
Iran(64.2), stone(63.9),  
bridge(59.6), European(56.3),  
sidewalk(51.1), house(5.3) 



Comparison to Fergus and to 
Dorko/Schmid using their Features 

Using their features and image sets, we compared our generative / 
discriminative approach to those of Fergus and Dorko/Schmid. 
 
The image set contained 1074 airplane images, 826 motor bike images, 
450 face images, and 900 background.  Half were used to train and half 
to test.  We added half the background images to the training set for 
our negative examples. 



Structure Feature Experiments 
(from other data sets with more manmade structures) 

• 1,951 total from freefoto.com 
• bus (1,013)           house/building      skyscraper (329) 
                                 (609) 



Structure Feature Experiments: 
Area Under the ROC Curves 

1. Structure (with color pairs)  
– Attributes (10)  

• Color pair 
• Number of lines 
• Orientation of lines 
• Line overlap 
• Line intersection 

 

2. Structure (with color pairs) + 
Color Segmentation 
 
3. Structure (without color   pairs) 
+ Color Segmentation 

bus house/ 
building 

skyscraper 

Structure 
only 

0.900 0.787 0.887 

Structure + 
Color Seg 

0.924 0.853 0.926 

Structure2 + 
Color Seg 

 0.940  0.860    0.919 



Support Vector Machines 
• 2 class problem 
• n-dimensional feature vectors 
• We want to separate the two classes with an  
     (n-1)-dimensional hyperplane 
 



Linear SVM 

 modified from https://commons.wikimedia.org/w/index.php?curid=3566688 

Given a training dataset 
(X1,y1), ... , (Xn,yn) 
where yi is 1 or -1, find the 
maximum-margin hyperplane 
that divides the y=1 group from 
the y=-1 group. 
 
The hyperplane will have an  
equation of the form 
w x + b = 0 
where w is the normal vector 
to the hyperplane. 



Hard Margin SVM 
• If the training data are linearly separable, we select two parallel 

hyperplanes that separate the two classes and maximize the 
distance between them.  

• The region between them is called the margin. 
• The two hyperplanes are: 

– w · x + b = 1 
– w · x + b = -1 

• The distance between them  is 2/||w|| 
• To prevent data points falling into the 
      margin, we add constraints: 

– w · xi +b ≥ 1 if yi = 1 
– w · xi +b ≤ 1 if yi = -1 
 

yi (w · xi + b) ≥ 1 
   1 ≤ i ≤ n 

Solution: minimize w,b subject to  yi (w · xi +b) ≥ 1 
Classifier: class(x) = sgn(w · x + b) 
  



Support vector machines (SVMs) 

• Solve efficiently by quadratic 
programming (QP) 
– Well-studied solution algorithms 
– Not simple gradient ascent, but close 

• Hyperplane defined by support 
vectors 

Support Vectors: 
• data points on the 

canonical lines 

Non-support Vectors: 
• everything else 
• moving them will not 

change w 

jj 



A bit of the theory 

• We want to transform vectors x to another 
space ϕ(x) where the classes can be 
separated. 

• The kernel is related to this transform by 
    k(xi, xj) = ϕ(xi) · ϕ(xj) 
• When performing classification that needs w, 

instead of w · ϕ(x) for some vector x, we use 
the kernel trick of replacing it with 

    Σi αi yi k(xi,x) where w = Σi αi yi ϕ(xi)  



Classification 

• The results for classification of a vector z 
becomes 

• class = sgn(w ·ϕ(z)+b)  

• = sgn(   Σ  ciyik(xi,z)    + b ) 
i=1 to n 








Histograms of Oriented 
Gradients for Human Detection 

Navneet Dalal and Bill Triggs 
CVPR 2005 

Another Descriptor 



Overview 

1. Compute gradients in the region to be described 

2. Put them in bins according to orientation 

3. Group the cells into large blocks 

4. Normalize each block 

5. Train classifiers to decide if these are parts of a human 



Details 

• Gradients 
   [-1 0 1] and [-1 0 1]T  were good enough. 
 

• Cell Histograms 
   Each pixel within the cell casts a weighted vote for an  
   orientation-based histogram channel based on the values  
   found in the gradient computation. (9 channels worked) 
 
• Blocks 
   Group the cells together into larger blocks, either R-HOG 
   blocks (rectangular) or C-HOG blocks (circular). 
 



More Details 
• Block Normalization 

They tried 4 different kinds of normalization. 
Let υ be the block to be normalized and e be a small constant. 



R-HOG compared to SIFT Descriptor 

• R-HOG blocks appear quite similar to the SIFT descriptors.  

• But, R-HOG blocks are computed in dense grids at some  
   single scale without orientation alignment. 

• SIFT descriptors are computed at sparse, scale-invariant  
  key image points and are rotated to align orientation. 



Example: Dalal-Triggs pedestrian 
detector 

1. Extract fixed-sized (64x128 pixel) window at 
each position and scale 

2. Compute HOG (histogram of gradient) 
features within each window 

3. Score the window with a linear SVM classifier 
4. Perform non-maxima suppression to remove 

overlapping detections with lower scores 
Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 



Pictorial Example 

(a) average gradient image over training examples 
(b) each “pixel” shows max positive SVM weight in the block centered on that pixel 
(c) same as (b) for negative SVM weights 
(d) test image 
(e) its R-HOG descriptor 
(f) R-HOG descriptor weighted by positive SVM weights 
(g) R-HOG descriptor weighted by negative SVM weights 

 

* 



Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 



 
 

• Tested with 
– RGB 
– LAB 
– Grayscale 

 

Slightly better performance vs. grayscale 



uncentered 

centered 

cubic-corrected 

diagonal 

Sobel 

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 

Outperforms 



• Histogram of gradient 
orientations 

 
 
 
 
 

– Votes weighted by magnitude 
– Bilinear interpolation between 

cells 

Orientation: 9 bins (for 
unsigned angles) 

Histograms in 8x8 
pixel cells 

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 



Normalize with respect to 
surrounding cells 

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 



X= 

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 

# features = 15 x 7 x 9 x 4 = 3780  

# cells 

# orientations 

# normalizations by 
neighboring cells 



Training set 



Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 

pos w neg w 



 

pedestrian 

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 



Detection examples 





Deformable Parts Model 

• Takes the idea a little further 
• Instead of one rigid HOG model, we have 

multiple HOG models in a spatial arrangement 
• One root part to find first and multiple other 

parts in a tree structure. 



The Idea 

Articulated parts model 
– Object is configuration of parts 
– Each part is detectable 

Images from Felzenszwalb 



Deformable objects 

 

Images from Caltech-256 

Slide Credit: Duan Tran   



Deformable objects 

 

Images from D. Ramanan’s dataset 
 Slide Credit: Duan Tran   



How to model spatial relations? 
• Tree-shaped model 





Hybrid template/parts model 
 

Detections 

Template Visualization 

Felzenszwalb et al. 2008 



Pictorial Structures Model 

Appearance likelihood Geometry likelihood 



Results for person matching 

72 



Results for person matching 

73 



BMVC 2009 



2012 State-of-the-art Detector: 
Deformable Parts Model (DPM) 

75 Felzenszwalb et al., 2008, 2010, 2011, 2012 

Lifetime 
Achievement 

1. Strong low-level features based on HOG 
2. Efficient matching algorithms for deformable part-based 

models (pictorial structures) 
3. Discriminative learning with latent variables (latent SVM) 
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