
Recognition
Part I: Machine Learning

CSE 455
Linda Shapiro

Visual Recognition

• What does it mean to “see”?

• “What” is “where”, Marr 1982

• Get computers to “see”

Visual Recognition

Verification

Is this a car?

Visual Recognition

Classification:

Is there a car in this picture?

Visual Recognition

Detection:

Where is the car in this picture?

Visual Recognition

Pose Estimation:

Visual Recognition

Activity Recognition:

What is he doing? What is he doing?

Visual Recognition

Object Categorization:

Sky

Tree

Car

Person
Bicycle

Horse

Person

Road

Visual Recognition

Person

Segmentation

Sky

Tree

Car

Object recognition
Is it really so hard?

This is a chair

Find the chair in this image Output of normalized correlation

Object recognition
Is it really so hard?

Find the chair in this image

Pretty much garbage
Simple template matching is not going to make it

Let’s start with
Face detection

How to tell if a face is present?

One simple method: skin detection

Skin pixels have a distinctive range of colors
• Corresponds to region(s) in RGB color space

– for visualization, only R and G components are shown above

skin

Skin classifier
• A pixel X = (R,G,B) is skin if it is in the skin region
• But how to find this region?

Skin detection

Learn the skin region from examples
• Manually label pixels in one or more “training images” as skin or not skin
• Plot the training data in RGB space

– skin pixels shown in orange, non-skin pixels shown in blue
– some skin pixels may be outside the region, non-skin pixels inside. Why?

Skin classifier
• Given X = (R,G,B): how to determine if it is skin or not?

Skin classification techniques

Skin classifier
• Given X = (R,G,B): how to determine if it is skin or not?
• Nearest neighbor classifier

• find labeled pixel closest to X
• choose the label for that pixel

• Data modeling
• Model the distribution that generates the data (Generative)
• Model the boundary (Discriminative)

Skin

Skin

Generative vs. Discriminative

• Generative Model: We learn the parameters of a
distribution that fit the object class we are trying to
learn. Most common is the Gaussian distribution.

• Discriminative Model: We learn a classifier that can
predict whether a sample is in our class or not.

We like Gaussians because

Affine transformation (multiplying by scalar
and adding a constant) are Gaussian
• X ~ N(µ,σ2)
• Y = aX + b Y ~ N(aµ+b,a2σ2)

Sum of Gaussians is Gaussian
• X ~ N(µX,σ2

X)
• Y ~ N(µY,σ2

Y)
• Z = X+Y Z ~ N(µX+µY, σ2

X+σ2
Y)

Easy to differentiate

Learning a Gaussian
• Collect a bunch of data

– Hopefully, i.i.d. samples
– e.g., exam scores

• Learn parameters
– Mean: μ
– Variance: σ

xi
i =

Exam
Score

0 85

1 95

2 100

3 12

… …
99 89

These refer to the true
mean and variance of
the underlying distribution.

MLE for mean and variance of a
Gaussian

The maximum likelihood estimate (MLE) for the mean of a
Gaussian distribution is its sample mean.

The maximum likelihood estimate for the variance of a

Gaussian is its sample variance.

Fitting a Gaussian to Skin samples

What is being
over simplified here?

This is a 2D distribution, so we need
• a mean of vectors
• a covariance matrix Σ instead of a variance

Skin detection results

Generative vs. Discriminative

• Generative Model: We learn the parameters of a
distribution that fit the object class we are trying to
learn. Most common is the Gaussian distribution. We
look at the probability of a sample belonging to
that distribution.

• Discriminative Model: We learn a classifier that can
predict whether a sample is in our class or not.

• What is a classifier?

• Mathematically, it is a function f that when given a
sample can predict its class.

sample 0 or 1

23

Classification

• A class is a set of objects having some important
 properties in common.

• A feature extractor is a program that inputs the
 data (image) and extracts features that can be
 used in classification.

• A classifier is a program that inputs the feature
 vector and assigns it to one of a set of designated
 classes or to the “reject” class.

24

Feature Vector Representation

X=[x1, x2, … , xn], each
xj a real number

xj may be an object
measurement

xj may be a count of
object parts

Example: [area, height, width, #holes, #strokes, cx, cy]

25

Some Terminology

Classes: set of m known categories of objects
 (a) might have a known description for

each
 (b) might have a set of samples for each
Reject Class:
 a generic class for objects not in any of
 the designated known classes
Classifier:
 Assigns object to a class based on

features

Supervised Learning: find f

Given: Training set {(Xi, yi) | i = 1 … n}
Find: A good approximation to f : X Y

What is each Xi?
What is yi?

Naive Bayes Classifier

27

• Uses Bayes rule for classification

• One of the simpler classifiers

• Part of the free WEKA suite of classifiers

Bayes Rule

Which is shorthand for:

This slide and those following are from Tom Mitchell’s course in Machine Learning.

.008 .992

.980 .020
.970 .030

MAP: maximum
a posteriori probability.

by Bayes Rule

Assume P(a1,...,an)
same for all a1,...an.

Conditional independence

V is set of possible classes

most
probable
class

for each class

estimate its probability

 and estimate the
 probability of that class
 for each attribute value

Elaboration

33

The set of examples is actually a set of preclassified feature
vectors called the training set.

From the training set, we can estimate the a priori probability of
each class:

P(C) = # training vectors from class C / total # of training vectors

For each class C, attribute a, and possible value for that attribute
ai, we can estimate the conditional probability:

P(ai| Cj) = # training vectors from class Cj in which value(a) = ai

class some estimates features

P(y) =

P(n) =

P(sun | y) =

P(cool | y) =

P(high | y) =

P(strong | y) =

9/14

5/14

2/9

3/9

3/9

3/9

P(y)P(sun | y)P(cool | y)P(high | y)P(strong | y) =
(9/14) * (2/9) * (3/9) * (3/9) * (3/9) =
.005

(probability of class Yes times product of probabilities of certain values for
each of its attributes.)

This is a prediction. If it is sunny, cool, highly humid, and strong wind,
it is more likely that we won’t play tennis than that we will.

v1 is y
v2 is n

A Digit Recognizer

Input: pixel grids

Output: a digit 0-9

Naïve Bayes for Digits (Binary Inputs)
Simple version:

• One feature Fij for each grid position <i,j>
• Possible feature values are on / off, based on whether intensity

is more or less than 0.5 in underlying image
• Each input maps to a feature vector, e.g.

• Here: lots of features, each is binary valued

Naïve Bayes model:

Are the features independent given class?
What do we need to learn?

Example Distributions

1 0.1
2 0.1
3 0.1
4 0.1
5 0.1
6 0.1
7 0.1
8 0.1
9 0.1
0 0.1

1 0.01
2 0.05
3 0.05
4 0.30
5 0.80
6 0.90
7 0.05
8 0.60
9 0.50
0 0.80

1 0.05
2 0.01
3 0.90
4 0.80
5 0.90
6 0.90
7 0.25
8 0.85
9 0.60
0 0.80

MLE for the parameters of NB

Given dataset
• Count(A=a,B=b) number of examples

where A=a and B=b
MLE for discrete NB, simply:

• Prior:

• Likelihood:

Violating the NB assumption

Usually, features are not conditionally independent:

• NB often performs well, even when assumption is
violated

• [Domingos & Pazzani ’96] discuss some conditions for
good performance

But it’s not the only trick in our bag.

Logistic Regression

Logistic function (Sigmoid):

• Learn P(Y|X) directly!
• Assume a particular

functional form
• Sigmoid applied to a

linear function of the
data:

Z

Logistic Regression: decision boundary

A Linear Classifier!

• Prediction: Output the Y with
highest P(Y|X)
– For binary Y, output Y=0 if

44

Decision Trees

#holes

moment of
inertia #strokes #strokes

best axis
direction #strokes

 - / 1 x w 0 A 8 B

0
1

2

< t ≥ t

2 4

0 1

0
60

90

0 1

45

Decision Tree Characteristics

1. Training
 How do you construct one from training data?
 Entropy-based Methods

2. Strengths

 Easy to Understand

3. Weaknesses

 Overfitting (the classifier fits the training data
 very well, but not new unseen data)

46

Entropy-Based Automatic Decision
Tree Construction

Node 1
What feature

should be used?

What values?

Training Set S
 x1=(f11,f12,…f1m)
 x2=(f21,f22, f2m)
 .
 .
 xn=(fn1,f22, f2m)

Quinlan suggested information gain in his ID3 system
and later the gain ratio, both based on entropy.

47

Entropy

Given a set of training vectors S, if there are c classes,

Entropy(S) = ∑ -pi log (pi)

Where pi is the proportion of category i examples in S.
i=1

c

2

If all examples belong to the same category, the entropy
is 0 (no discrimination).

The greater the discrimination power, the larger the
entropy will be.

48

Information Gain

The information gain of an attribute A is the expected
reduction in entropy caused by partitioning on this attribute.

Gain(S,A) = Entropy(S) - ∑ ----- Entropy(Sv)
v ∈ Values(A)

|Sv|

|S|

where Sv is the subset of S for which attribute A has
value v.

Choose the attribute A that gives the maximum
information gain.

49

Information Gain (cont)

Attribute A

v1 vk v2

Set S

Set S ′

repeat
recursively

S′={s∈S | value(A)=v1}

The attribute A selected at the top of the tree is
the one with the highest information gain.

Subtrees are constructed for each possible
value vi of attribute A.

The rest of the tree is constructed in the same way.

Summary: Decision Trees
Limitations

• Often produce noisy (bushy) or weak (stunted) classifiers.
• Do not generalize too well.
• Training data fragmentation:

– As tree progresses, splits are selected based on less and less
data.

• Overtraining and undertraining:
– Deep trees: fit the training data well, will not generalize well to

new test data.
– Shallow trees: not sufficiently refined.

• Stability
– Trees can be very sensitive to details of the training points.
– If a single data point is only slightly shifted, a radically different

tree may come out!
⇒ Result of discrete and greedy learning procedure.

• Expensive learning step
– Mostly due to costly selection of optimal split.

50

B. Leibe

Randomized Decision Trees (Amit & Geman 1997)

Decision trees: main effort on finding good split
• Training runtime:
• This is what takes most effort in practice.
• Especially cumbersome with many attributes (large D).

Idea: randomize attribute selection
• No longer look for globally optimal split.
• Instead randomly use subset of K attributes on which to

base the split.
• Choose best splitting attribute e.g. by maximizing the

information gain (= reducing entropy):

51 B. Leibe

O(DN 2 logN)

Randomized Decision Trees

Randomized splitting
• Faster training: .
• Use very simple binary feature tests.
• Typical choice

– K = 10 for root node.
– K = 100d for node at level d.

Effect of random split
• Of course, the tree is no longer as powerful as a single

classifier…
• But we can compensate by building several trees.

52 B. Leibe

O(K N 2 logN)

Applications

Computer Vision: Optical character recognition
• Classify small (14x20) images of hand-written

characters/digits
into one of 10 or 26 classes.

Simple binary features
• Tests for individual binary pixel

values.
• Organized in randomized tree.

53 B. Leibe
Y. Amit, D. Geman, Shape Quantization and Recognition with Randomized Trees,
Neural Computation, Vol. 9(7), pp. 1545-1588, 1997.

Applications

Computer Vision: fast keypoint detection
• Detect keypoints: small patches in the image used for

matching
• Classify into one of ~200 categories (visual words)

Extremely simple features
• E.g. pixel value in a color channel (CIELab)
• E.g. sum of two points in the patch
• E.g. difference of two points in the patch
• E.g. absolute difference of two points

Create forest of randomized decision trees

54 B. Leibe

Application: Fast Keypoint Detection

55 B. Leibe

M. Ozuysal, V. Lepetit, F. Fleuret, P. Fua, Feature Harvesting for
Tracking-by-Detection. In ECCV’06, 2006.

http://cvlab.epfl.ch/~vlepetit/papers/ozuysal_eccv06.pdf
http://cvlab.epfl.ch/~vlepetit/papers/ozuysal_eccv06.pdf

Random Forests (Breiman 2001)

General ensemble method
• Idea: Create “forest” of many (very simple) trees.

Empirically very good results

Standard decision trees: main effort on finding good
split
• Random Forests trees put very little effort in this.
• Each split is only made based on a random subset of the

available attributes.
• Trees are grown fully (important!).

Main secret
• Injecting the “right kind of randomness”. See next slide.

56 B. Leibe

multiple classifiers

Random Forests – Algorithmic Goals

Create many trees (50 – 1,000)

Inject randomness into trees such that
• Each tree has maximal strength

– I.e. a fairly good model on its own
• Each tree has minimum correlation with the other trees.

– I.e. the errors tend to cancel out.

Ensemble of trees votes for final result
• Simple majority vote for category.

57 B. Leibe

α

α

α

α

α α β β

β

β β

T1 T2 T3

Other Important Classifiers

• Neural Nets: We will look at these in detail in
the lecture on deep neural nets, so only a
quick look now

• Support Vector Machines: These are
important in certain object recognition
systems, so we will look at them only briefly
now and more thoroughly later

59

Artificial Neural Nets

Artificial Neural Nets (ANNs) are networks of
artificial neuron nodes, each of which computes
a simple function.

An ANN has an input layer, an output layer, and
“hidden” layers of nodes.

.

.

.

.

.

.

Inputs

Outputs

60

Node Functions

a1
a2

aj

an

output

output = g (∑ aj * w(j,i))

Function g is commonly a step function, sign function,
or sigmoid function.

neuron i w(1,i)

w(j,i)

61

Support Vector Machines (SVM)

Support vector machines are learning algorithms
that try to find a hyperplane that separates
the differently classified data the most.
They are based on two key ideas:

• Maximum margin hyperplanes

• A kernel ‘trick’.

62

Maximal Margin

0

0

0
0

1

1
1

1

Margin

Hyperplane

Find the hyperplane with maximal margin for all
the points. This originates an optimization problem
which has a unique solution (convex problem).

63

Non-separable data

0
0

0 0

0
0

0

0

1
1

1

1
1

0

0

1

1

1

1

0

0

What can be done if data cannot be separated with a
hyperplane?

64

The kernel trick

The SVM algorithm maps the original data to a
a different feature space in which data (which is not
separable in the original space) becomes separable
in the feature space.

0
0

0
0

0 1

1 1

Original space Rk

0

0
0

0
0

1

1

1

Feature space Rn

1

1 Kernel
trick

Ensembles

• When single classifiers alone are not good enough,
we turn to ensembles.

• An ensemble is a set of classifiers that together
produce the final decision.

• There are multiple different ways of arranging the
classifiers and of combining the results.

66

Nonlinear Classification Problem

67

Decision Boundary

Voting (Ensemble Methods)

Instead of learning a single classifier, learn many
weak classifiers that are good at different
parts of the data

Output class: (Weighted) vote of each classifier
• Classifiers that are most “sure” will vote with more

conviction
• Classifiers will be most “sure” about a particular part

of the space
• On average, do better than single classifier!

But how???
• force classifiers to learn about different parts of the

input space? different subsets of the data?
• weigh the votes of different classifiers?

BAGGing = Bootstrap AGGregation

(Breiman, 1996)

• for i = 1, 2, …, K:
– Ti randomly select M training instances

 with replacement
– hi learn(Ti) [ID3, NB, kNN, neural net, …]

• Now combine the Ti together with

uniform voting (wi=1/K for all i)

70

71

Decision Boundary

shades of blue/red indicate strength of vote for particular classification

Boosting
Idea: given a weak learner, run it multiple times on

(reweighted) training data, then let learned classifiers vote

On each iteration t:

• weight each training example by how incorrectly it was
classified

• Learn a hypothesis – ht
• A strength for this hypothesis – αt

Final classifier:

Practically useful
Theoretically interesting

[Schapire, 1989]

AdaBoost

• A very popular boosting algorithm

• Can boost learning with an kind of weak
 learners, ie. decision stumps, decision trees, neural
 nets, SVMs

• Theoretically proven to boost results if the weak

learners are good enough (> 50%)

• Used in the face detection algorithm for HW 4

	Recognition�Part I: Machine Learning
	Visual Recognition
	Visual Recognition
	Visual Recognition
	Visual Recognition
	Visual Recognition
	Visual Recognition
	Visual Recognition
	Visual Recognition
	Object recognition�Is it really so hard?
	Object recognition�Is it really so hard?
	Let’s start with �Face detection
	One simple method: skin detection
	Skin detection
	Skin classification techniques
	Generative vs. Discriminative
	We like Gaussians because
	Learning a Gaussian
	MLE for mean and variance of a Gaussian
	Fitting a Gaussian to Skin samples
	Skin detection results
	Generative vs. Discriminative
	Classification
	Feature Vector Representation
	Some Terminology
	Supervised Learning: find f
	Naive Bayes Classifier
	Bayes Rule
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Elaboration
	Slide Number 34
	Slide Number 35
	A Digit Recognizer
	Naïve Bayes for Digits (Binary Inputs)
	Example Distributions
	MLE for the parameters of NB
	Violating the NB assumption
	Logistic Regression
	Logistic Regression: decision boundary
	Decision Trees
	Decision Tree Characteristics
	Entropy-Based Automatic Decision Tree Construction
	Entropy
	Information Gain
	Information Gain (cont)
	Summary: Decision Trees
	Randomized Decision Trees (Amit & Geman 1997)
	Randomized Decision Trees
	Applications
	Applications
	Application: Fast Keypoint Detection
	Random Forests (Breiman 2001)
	Random Forests – Algorithmic Goals
	Other Important Classifiers
	Artificial Neural Nets
	Node Functions
	Support Vector Machines (SVM)
	Maximal Margin
	Non-separable data
	The kernel trick
	Ensembles
	Slide Number 66
	Slide Number 67
	Voting (Ensemble Methods)
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Boosting
	AdaBoost

