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Visual Recognition 

 
• What does it mean to “see”? 
 

• “What” is “where”, Marr 1982  
 

• Get computers to “see” 



Visual Recognition 

Verification 

Is this a car? 



Visual Recognition 

Classification: 

Is there a car in this picture? 



Visual Recognition 

Detection: 

Where is the car in this picture? 



Visual Recognition 

Pose Estimation: 



Visual Recognition 

Activity Recognition: 

What is he doing? What is he doing? 



Visual Recognition 

Object Categorization: 

Sky 

Tree 

Car 

Person 
Bicycle 

Horse 

Person 

Road 



Visual Recognition 

Person 

Segmentation 

Sky 

Tree 

Car 



Object recognition 
Is it really so hard? 

This is a chair 

Find the chair in this image  Output of normalized correlation 



Object recognition 
Is it really so hard? 

Find the chair in this image  

Pretty much garbage 
Simple template matching is not going to make it 



Let’s start with  
Face detection 

How to tell if a face is present? 



One simple method:  skin detection 

Skin pixels have a distinctive range of colors 
• Corresponds to region(s) in RGB color space 

– for visualization, only R and G components are shown above  

skin 

Skin classifier 
• A pixel X = (R,G,B) is skin if it is in the skin region 
• But how to find this region? 



Skin detection 

Learn the skin region from examples 
• Manually label pixels in one or more “training images” as skin or not skin 
• Plot the training data in RGB space 

– skin pixels shown in orange, non-skin pixels shown in blue 
– some skin pixels may be outside the region, non-skin pixels inside.  Why? 

Skin classifier 
• Given X = (R,G,B):  how to determine if it is skin or not? 



Skin classification techniques 

Skin classifier 
• Given X = (R,G,B):  how to determine if it is skin or not? 
• Nearest neighbor classifier 

• find labeled pixel closest to X  
• choose the label for that pixel 

• Data modeling 
• Model the distribution that generates the data (Generative) 
• Model the boundary (Discriminative) 

 

Skin 

Skin 



Generative vs. Discriminative 

• Generative Model: We learn the parameters of a 
distribution that fit the object class we are trying to 
learn. Most common is the Gaussian distribution. 

 
 

• Discriminative Model: We learn a classifier that can 
predict whether a sample is in our class or not. 



We like Gaussians because 

Affine transformation (multiplying by scalar 
and adding a constant) are Gaussian 
• X ~ N(µ,σ2) 
• Y = aX + b  Y ~ N(aµ+b,a2σ2) 

 

Sum of Gaussians is Gaussian 
• X ~ N(µX,σ2

X) 
• Y ~ N(µY,σ2

Y) 
• Z = X+Y   Z ~ N(µX+µY, σ2

X+σ2
Y) 

 

Easy to differentiate 



Learning a Gaussian 
• Collect a bunch of data 

– Hopefully, i.i.d. samples 
– e.g., exam scores 

• Learn parameters 
– Mean: μ 
– Variance: σ 

xi 
i = 

Exam 
Score 

0 85 

1 95 

2 100 

3 12 

… … 
99 89 

These refer to the true 
mean and variance of 
the underlying distribution. 



MLE for mean and variance of a 
Gaussian 

The maximum likelihood estimate (MLE) for the mean of a 
Gaussian distribution is its sample mean. 

 
 
 
 
The maximum likelihood estimate for the variance of a 

Gaussian is its sample variance. 



Fitting a Gaussian to Skin samples 

What is being  
over simplified here? 

This is a 2D distribution, so we need  
• a mean of vectors 
• a covariance matrix Σ instead of a variance 



Skin detection results 



Generative vs. Discriminative 

• Generative Model: We learn the parameters of a 
distribution that fit the object class we are trying to 
learn. Most common is the Gaussian distribution. We 
look at the probability of a sample belonging to 
that distribution. 
 

• Discriminative Model: We learn a classifier that can 
predict whether a sample is in our class or not. 
 

• What is a classifier?   
 

• Mathematically, it is a function f that when given a 
sample can predict its class. 

sample                                0 or 1 
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Classification 

• A class is a set of objects having some important 
   properties in common. 
 
• A feature extractor is a program that inputs the 
   data (image) and extracts features that can be 
   used in classification. 
 
• A classifier is a program that inputs the feature  
   vector and assigns it to one of a set of designated  
   classes or to the “reject” class. 
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Feature Vector Representation 

X=[x1, x2, … , xn], each 
xj a real number 

xj may be an object 
measurement 

xj may be a count of 
object parts 

 

Example:  [area, height, width, #holes, #strokes, cx, cy] 
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Some Terminology 

Classes: set of m known categories of objects 
         (a) might have a known description for 

each 
         (b) might have a set of samples for each 
Reject Class: 
          a generic class for objects not in any of   
          the designated known classes 
Classifier: 
          Assigns object to a class based on 

features 



Supervised Learning: find f 

Given: Training set {(Xi, yi)  | i = 1 … n} 
Find: A good approximation to  f  : X  Y 
 
 
What is each Xi? 
What is yi? 
 



Naive Bayes Classifier 
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• Uses Bayes rule for classification 
 

• One of the simpler classifiers 
 
• Part of the free WEKA suite of classifiers 



Bayes Rule 

 
 

Which is shorthand for: 

This slide and those following are from Tom Mitchell’s course in Machine Learning. 



.008 .992 

.980 .020 
.970 .030 





MAP:  maximum  
a posteriori probability. 

by Bayes Rule 

Assume P(a1,...,an) 
same for all a1,...an. 

Conditional independence 

V is set of possible classes 

most 
probable 
class 



for each class 
 
estimate its probability 
 
 
              and estimate the  
              probability of that class 
              for each attribute value 



Elaboration 
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The set of examples is actually a set of preclassified feature 
vectors called the training set. 
 
From the training set, we can estimate the a priori probability of 
each class: 
 
P(C) = # training vectors from class C / total # of training vectors 

 
For each class C, attribute a, and possible value for that attribute 
ai, we can estimate the conditional probability: 
 

P(ai| Cj) = # training vectors from class Cj in which value(a) = ai 
 



class                some estimates features 

P(y) =   
 
P(n) = 
 
P(sun | y) = 
 
P(cool | y) = 
 
P(high | y) = 
 
P(strong | y) = 

9/14 
 
5/14 

2/9 

3/9 

3/9 

3/9 

P(y)P(sun | y)P(cool | y)P(high | y)P(strong | y) = 
(9/14) * (2/9)   *  (3/9)     *     (3/9)      *   (3/9) = 
.005         

(probability of class Yes times product of probabilities of certain values for 
each of its attributes.) 



This is a prediction. If it is sunny, cool, highly humid, and strong wind, 
it is more likely that we won’t play tennis than that we will. 

v1 is y 
v2 is n 



A Digit Recognizer 

Input: pixel grids 
 
 
 
 
 
 
 
 
 
Output: a digit 0-9 



Naïve Bayes for Digits (Binary Inputs) 
Simple version: 

• One feature Fij for each grid position <i,j> 
• Possible feature values are on / off, based on whether intensity 

is more or less than 0.5 in underlying image 
• Each input maps to a feature vector, e.g. 

 
 

• Here: lots of features, each is binary valued 

Naïve Bayes model: 
 
 
Are the features independent given class? 
What do we need to learn? 



Example Distributions 

1 0.1 
2 0.1 
3 0.1 
4 0.1 
5 0.1 
6 0.1 
7 0.1 
8 0.1 
9 0.1 
0 0.1 

1 0.01 
2 0.05 
3 0.05 
4 0.30 
5 0.80 
6 0.90 
7 0.05 
8 0.60 
9 0.50 
0 0.80 

1 0.05 
2 0.01 
3 0.90 
4 0.80 
5 0.90 
6 0.90 
7 0.25 
8 0.85 
9 0.60 
0 0.80 



MLE for the parameters of NB 

Given dataset 
• Count(A=a,B=b)  number of examples 

where A=a and B=b 
MLE for discrete NB, simply: 

• Prior: 
 

 
• Likelihood:  



Violating the NB assumption 

Usually, features are not conditionally independent: 
 
 
 

• NB often performs well, even when assumption is 
violated 

• [Domingos & Pazzani ’96] discuss some conditions for 
good performance 
 

But it’s not the only trick in our bag. 



Logistic Regression 

Logistic function (Sigmoid): 

• Learn P(Y|X) directly! 
• Assume a particular 

functional form 
• Sigmoid applied to a 

linear function of the 
data: 

Z 



Logistic Regression: decision boundary  

A Linear Classifier! 

• Prediction: Output the Y with 
highest P(Y|X) 
– For binary Y, output Y=0 if 
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Decision Trees 

#holes 

moment of 
inertia #strokes #strokes 

best axis 
direction #strokes 

    -     /     1         x       w      0    A                8       B 

0 
1 

2 

< t ≥ t 

2 4 

0 1 

0 
60 

90 

0 1 
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Decision Tree Characteristics 

1.  Training 
   How do you construct one from training data? 
   Entropy-based Methods 

 
2.   Strengths 
 
    Easy to Understand 

 
3.   Weaknesses 
 
    Overfitting (the classifier fits the training data 
    very well, but not new unseen data) 
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Entropy-Based Automatic Decision 
Tree Construction 

Node 1 
What feature  

should be used? 

What values? 

  

Training Set S 
 x1=(f11,f12,…f1m) 
 x2=(f21,f22,    f2m) 
               . 
               . 
 xn=(fn1,f22,    f2m) 

Quinlan suggested information gain in his ID3 system 
and later the gain ratio, both based on entropy. 
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Entropy 

Given a set of training vectors S, if there are c classes, 
 

Entropy(S) = ∑ -pi log  (pi) 
 

Where pi is the proportion of category i examples in S. 
i=1 

c 

2 

If all examples belong to the same category, the entropy 
is 0  (no discrimination). 
 
The greater the discrimination power, the larger the 
entropy will be. 
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Information Gain 

The information gain of an attribute A is the expected 
reduction in entropy caused by partitioning on this attribute. 

Gain(S,A) = Entropy(S) -          ∑          -----  Entropy(Sv) 
v ∈ Values(A) 

|Sv| 

|S| 

where Sv is the subset of S for which attribute A has 
value v. 

Choose the attribute A that gives the maximum 
information gain. 
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Information Gain (cont) 

Attribute A 

v1 vk v2 

Set S 

Set S ′ 

repeat 
recursively 

S′={s∈S | value(A)=v1} 

The attribute A selected at the top of the tree is 
the one with the highest information gain.  
 
Subtrees are constructed for each possible  
value vi of attribute A. 
 
The rest of the tree is constructed in the same way. 



Summary: Decision Trees 
Limitations 

• Often produce noisy (bushy) or weak (stunted) classifiers. 
• Do not generalize too well. 
• Training data fragmentation:  

– As tree progresses, splits are selected based on less and less 
data. 

• Overtraining and undertraining: 
– Deep trees: fit the training data well, will not generalize well to 

new test data. 
– Shallow trees: not sufficiently refined. 

• Stability 
– Trees can be very sensitive to details of the training points. 
– If a single data point is only slightly shifted, a radically different 

tree may come out! 
⇒ Result of discrete and greedy learning procedure.  

• Expensive learning step 
– Mostly due to costly selection of optimal split. 

50 

B. Leibe 



Randomized Decision Trees (Amit & Geman 1997) 

Decision trees: main effort on finding good split 
• Training runtime:  
• This is what takes most effort in practice. 
• Especially cumbersome with many attributes (large D). 

 

Idea: randomize attribute selection 
• No longer look for globally optimal split. 
• Instead randomly use subset of K attributes on which to 

base the split. 
• Choose best splitting attribute e.g. by maximizing the 

information gain (= reducing entropy): 

51 B. Leibe 

O(DN 2 logN )



Randomized Decision Trees 

Randomized splitting 
• Faster training:                                          . 
• Use very simple binary feature tests. 
• Typical choice 

– K = 10 for root node. 
– K = 100d  for node at level d. 

 

Effect of random split 
• Of course, the tree is no longer as powerful as a single 

classifier… 
• But we can compensate by building several trees. 
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O(K N 2 logN )



Applications 

Computer Vision: Optical character recognition 
• Classify small (14x20) images of hand-written 

characters/digits 
into one of 10 or 26 classes. 
 

Simple binary features 
• Tests for individual binary pixel 

values. 
• Organized in randomized tree. 

53 B. Leibe 
Y. Amit, D. Geman, Shape Quantization and Recognition with Randomized Trees,  
Neural Computation, Vol. 9(7), pp. 1545-1588, 1997. 



Applications 

Computer Vision: fast keypoint detection 
• Detect keypoints: small patches in the image used for 

matching 
• Classify into one of ~200 categories (visual words) 

 

Extremely simple features 
• E.g. pixel value in a color channel (CIELab) 
• E.g. sum of two points in the patch 
• E.g. difference of two points in the patch 
• E.g. absolute difference of two points 

 

Create forest of randomized decision trees 
 

54 B. Leibe 



Application: Fast Keypoint Detection 

55 B. Leibe 

M. Ozuysal, V. Lepetit, F. Fleuret, P. Fua, Feature Harvesting for  
Tracking-by-Detection. In ECCV’06, 2006. 

http://cvlab.epfl.ch/~vlepetit/papers/ozuysal_eccv06.pdf
http://cvlab.epfl.ch/~vlepetit/papers/ozuysal_eccv06.pdf


Random Forests (Breiman 2001) 

General ensemble method 
• Idea: Create “forest” of many (very simple) trees. 

 

Empirically very good results 
 

Standard decision trees: main effort on finding good 
split 
• Random Forests trees put very little effort in this. 
• Each split is only made based on a random subset of the 

available attributes. 
• Trees are grown fully (important!). 

 

Main secret 
• Injecting the “right kind of randomness”.  See next slide. 

 
 
 
56 B. Leibe 

multiple classifiers 



Random Forests – Algorithmic Goals 

Create many trees (50 – 1,000) 
 

Inject randomness into trees such that  
• Each tree has maximal strength 

– I.e. a fairly good model on its own 
• Each tree has minimum correlation with the other trees. 

– I.e. the errors tend to cancel out. 
 

Ensemble of trees votes for final result 
• Simple majority vote for category. 
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α 

α 

α 

α 

α α β β 

β 

β β 

T1 T2 T3 



Other Important Classifiers 

• Neural Nets: We will look at these in detail in 
the lecture on deep neural nets, so only a 
quick look now 
 

• Support Vector Machines: These are 
important in certain object recognition 
systems, so we will look at them only briefly 
now and more thoroughly later  
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Artificial Neural Nets 

Artificial Neural Nets (ANNs) are networks of 
artificial neuron nodes, each of which computes 
a simple function. 
 
An ANN has an input layer, an output layer, and 
“hidden” layers of nodes. 

. 

. 

. 

. 

. 

. 

Inputs 

Outputs 
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Node Functions 

a1 
a2 
 
aj 
 
an 

output 

output = g (∑ aj * w(j,i) ) 

Function g is commonly a step function, sign function, 
or sigmoid function. 

neuron i w(1,i) 

w(j,i) 
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Support Vector Machines (SVM) 

Support vector machines are learning algorithms  
that try to find a hyperplane that separates  
the differently classified data the most. 
They are  based on two key ideas: 
 
• Maximum margin hyperplanes  
 
• A kernel ‘trick’. 
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Maximal Margin 

0 

0 

0 
0 

1 

1 
1 

1 

Margin 

Hyperplane 

Find the hyperplane with maximal margin for all 
the points. This originates an optimization problem 
which has a unique solution (convex problem). 
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Non-separable data 

0 
0 

0 0 

0 
0 

0 

0 

1 
1 

1 

1 
1 

0 

0 

1 

1 

1 

1 

0 

0 

What can be done if data cannot be separated with a 
hyperplane? 
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The kernel trick 

The SVM algorithm maps the original data to a 
a different  feature space in which data (which is not  
separable in the original  space) becomes separable  
in the feature space. 

0 
0 

0 
0 

0 1 

1 1 

Original space Rk 

0 

0 
0 

0 
0 

1 

1 

1 

Feature space Rn 

1 

1 Kernel 
trick 



Ensembles 

• When single classifiers alone are not good enough, 
we turn to ensembles. 
 

• An ensemble is a set of classifiers that together 
produce the final decision. 
 

• There are multiple different ways of arranging the 
classifiers and of combining the results. 
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Nonlinear Classification Problem 
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Decision Boundary 



Voting  (Ensemble Methods) 

Instead of learning a single classifier, learn many 
weak classifiers that are good at different 
parts of the data 

Output class: (Weighted) vote of each classifier 
• Classifiers that are most “sure” will vote with more 

conviction 
• Classifiers will be most “sure” about a particular part 

of the space 
• On average, do better than single classifier! 

But how???  
• force classifiers to learn about different parts of the 

input space? different subsets of the data? 
• weigh the votes of different classifiers? 

 



BAGGing = Bootstrap AGGregation 

(Breiman, 1996) 

• for i = 1, 2, …, K: 
– Ti  randomly select M training instances 

  with replacement 
– hi  learn(Ti)     [ID3, NB, kNN, neural net, …] 

 
• Now combine the Ti together with 

uniform voting (wi=1/K for all i) 
 



70 



71 

Decision Boundary 



shades of blue/red indicate strength of vote for particular classification 



Boosting 
Idea: given a weak learner, run it multiple times on 

(reweighted) training data, then let learned classifiers vote 
 
On each iteration t:  

• weight each training example by how incorrectly it was 
classified 

• Learn a hypothesis – ht 
• A strength for this hypothesis – αt  

 
Final classifier: 

 
 

Practically useful 
Theoretically interesting 
 
 

[Schapire, 1989] 



AdaBoost 

• A very popular boosting algorithm 
 

• Can boost learning with an kind of weak  
    learners, ie. decision stumps, decision trees, neural 
     nets, SVMs 
 
• Theoretically proven to boost results if the weak 

learners are good enough (> 50%) 
 

• Used in the face detection algorithm for HW 4 
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