Image Formation and Cameras

CSE 455

Linda Shapiro

Projection

http://www.julianbeever.net/pave.htm

- Do sizes, lengths seem accurate?
- How do you know?

Projection

http://www.julianbeever.net/pave.htm

- What's wrong?
- Why do you think it's wrong?

Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze muelue/index.html

- What do you know about perspective projection?
- Vertical lines?
- Other lines?

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Camera Obscura

- Basic principle known to Mozi (470-390 BC), Aristotle (384-322 BC)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Camera Obscura

The first camera

- How does the aperture size affect the image?

Shrinking the aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effects...

Diffraction

- Light rays passing through a small aperture will begin to diverge and interfere with one another.
- This becomes more significant as the size of the aperture decreases relative to the wavelength of light passing through.

- This effect is normally negligible, since smaller apertures often improve sharpness.
- But at some point, your camera becomes diffraction limited, and the quality goes down.

Shrinking the aperture

Pinhole Cameras: Total Eclipse

- A total eclipse occurs when the moon comes between the earth and the sun, obscuring the sun.

Pinhole cameras everywhere

Sun "shadows" during a solar eclipse by Henrik von Wendt http://www.flickr.com/photos/hvw/2724969199/

The holes between fingers work like a camera obscura and show the eclipsed sun

Pinhole cameras everywhere

Sun "shadows" during a partial solar eclipse

Pinhole cameras everywhere

Tree shadow during a solar eclipse
photo credit: Nils van der Burg
http://www.physicstogo.org/index.cfm

Adding a lens

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
- other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

Lenses

A lens focuses parallel rays onto a single focal point

- focal point at a distance f beyond the plane of the lens
- f is a function of the shape and index of refraction of the lens
- Aperture of diameter D restricts the range of rays
- aperture may be on either side of the lens
- Lenses are typically spherical (easier to produce)
- Real cameras use many lenses together (to correct for abelrrations)

Thin lenses

Thin lens equation:

$$
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}
$$

- Any object point satisfying this equation is in focus

Thin lens assumption

The thin lens assumption assumes the lens has no thickness, but this isn' t true...

By adding more elements to the lens, the distance at which a scene is in focus can be made roughly planar.

Depth of field

Changing the aperture size affects depth of field

- A smaller aperture increases the range in which the object is approximately in focus

The eye

The human eye is a camera

- Iris - colored annulus with radial muscles
- Pupil - the hole (aperture) whose size is controlled by the iris
- What's the "film"?
- photoreceptor cells (rods and cones) in the retina
- How do we refocus?
- Change the shape of the lens

Digital camera

A digital camera replaces film with a sensor array

- Each cell in the array is a Charge Coupled Device (CCD)
- light-sensitive diode that converts photons to electrons
- CMOS is becoming more popular (esp. in cell phones)
- http://electronics.howstuffworks.com/digital-camera.htm

Issues with digital cameras

Noise

- big difference between consumer vs. SLR-style cameras
- low light is where you most notice noise

Compression

- creates artifacts except in uncompressed formats (tiff, raw)

Color

- color fringing artifacts from Bayer patterns

Blooming

- charge overflowing into neighboring pixels

In-camera processing

- oversharpening can produce halos

Interlaced vs. progressive scan video

- even/odd rows from different exposures

Are more megapixels better?

- requires higher quality lens
- noise issues

Stabilization

- compensate for camera shake (mechanical vs. electronic)

More info online, e.g.,

- http://electronics.howstuffworks.com/digital-camera.htm
- http://www.dpreview.com/

Projection

Mapping from the world (3d) to an image (2d)

- Can we have a 1-to-1 mapping?
- How many possible mappings are there?

An optical system defines a particular projection. We'll talk about 2:

1. Perspective projection (how we see "normally")
2. Orthographic projection (e.g., telephoto lenses)

Modeling projection

The coordinate system

- We will use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
- The camera looks down the negative z axis
- we need this if we want right-handed-coordinates

Modeling projection

Projection equations

- Compute intersection with PP of ray from (x, y, z) to COP
- Derived using similar triangles

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z},-d\right)
$$

- We get the projection by throwing out the last coordinate:

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)
$$

Homogeneous coordinates

Is this a linear transformation?

- no-division by z is nonlinear

Trick: add one more coordinate:

$$
(x, y) \Rightarrow\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \quad(x, y, z) \Rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

homogeneous image coordinates
homogeneous scene coordinates

Converting from homogeneous coordinates

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)} \\
& \text { projection matrix }
\end{aligned}
$$

This is known as perspective projection

- The matrix is the projection matrix

Perspective Projection Example

1. Object point at ($10,6,4$), $\mathrm{d}=2$

$$
\begin{aligned}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] } & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / 2 & 0
\end{array}\right]\left[\begin{array}{c}
10 \\
6 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{lll}
10 & 6 & -2
\end{array}\right] \\
& \Rightarrow x^{\prime}=-5, y^{\prime}=-3
\end{aligned}
$$

2. Object point at $(25,15,10)$

$$
\begin{aligned}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] } & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / 2 & 0
\end{array}\right]\left[\begin{array}{c}
25 \\
15 \\
10 \\
1
\end{array}\right]=\left[\begin{array}{lll}
25 & 15 & -5
\end{array}\right] \\
& \Rightarrow x^{\prime}=-5, y^{\prime}=-3
\end{aligned}
$$

Perspective Projection

How does scaling the projection matrix change the transformation?

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)} \\
& {\left[\begin{array}{cccc}
-d & 0 & 0 & 0 \\
0 & -d & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
-d x \\
-d y \\
z
\end{array}\right] \Rightarrow\left(-d \frac{x}{z}, \quad-d \frac{y}{z}\right)}
\end{aligned}
$$

Perspective Projection

- What happens to parallel lines?
- What happens to angles?
- What happens to distances?

Perspective Projection

What happens when $d \rightarrow \infty$?

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z}, \quad-d \frac{y}{z}\right)
$$

Orthographic projection

Special case of perspective projection

- Distance from the COP to the PP is infinite

- Good approximation for telephoto optics
- Also called "parallel projection": $(\mathrm{x}, \mathrm{y}, \mathrm{z}) \rightarrow(\mathrm{x}, \mathrm{y})$
- What's the projection matrix?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

Orthographic ("telecentric") lenses

Navitar telecentric zoom lens

http://www.Ihup.edu/~dsimanek/3d/telecent.htm

Orthographic Projection

Camera parameters

How many numbers do we need to describe a camera?

- We need to describe its pose in the world
- We need to describe its internal parameters

A Tale of Two Coordinate Systems

Two important coordinate systems:

1. World coordinate system
2. Camera coordinate system

Camera parameters

-To project a point (x, y, z) in world coordinates into a camera
-First transform (x, y, z) into camera coordinates
-Need to know

- Camera position (in world coordinates)
- Camera orientation (in world coordinates)
-Then project into the image plane
- Need to know camera intrinsics
-These can all be described with matrices

3D Translation

- 3D translation is just like 2D with one more coordinate

$\left[\begin{array}{l}\mathrm{x}^{\prime} \\ \mathrm{y}^{\prime} \\ \mathrm{z}^{\prime} \\ 1\end{array}\right]$	$=\left[\begin{array}{cccc}1 & 0 & 0 & \mathrm{tx} \\ 0 & 1 & 0 & \mathrm{ty} \\ 0 & 0 & 1 & \mathrm{tz} \\ 0 & 0 & 0 & 1\end{array}\right] \quad\left[\begin{array}{c}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z} \\ 1\end{array}\right]$
	$=[\mathrm{x}+\mathrm{tx}, \mathrm{y}+\mathrm{ty}, \mathrm{z}+\mathrm{tz}, 1]^{\mathrm{T}}$

3D Rotation (just the 3×3 part shown)
About X axis: $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array} \|\right.$ About $Y:\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array} \|\right.$
About Z axis: $\left|\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right|$

General (orthonormal) rotation matrix used in practice:

$$
\left[\left.\begin{array}{lll}
r 11 & r 12 & r 13 \\
\text { r21 } & \text { r22 } & \text { r23 } \\
\text { r31 } & \text { r32 } & \text { r33 }
\end{array} \right\rvert\,\right.
$$

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point ($x^{\prime}{ }_{c}, y^{\prime}{ }_{c}$), pixel size (s_{x}, s_{y})
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
\mathbf{x}=\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi X} \quad y^{\prime \prime} \xrightarrow[x^{\prime}]{\underset{\left(x_{c}^{\prime}, y_{c}^{\prime}\right)}{\text { a }}}
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations
- The definitions of these parameters are not completely standardized
- especially intrinsics-varies from one book to another

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by -c

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by -c Step 2: Rotate by \mathbf{R}
3×3 rotation matrix

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z -axis points backwards)

Step 1: Translate by -c
Step 2: Rotate by \mathbf{R}

$$
\mathbf{R}=\left[\begin{array}{c}
\mathbf{u}^{T} \\
\mathbf{v}^{T} \\
\mathbf{w}^{T}
\end{array}\right]
$$

Perspective projection

in general, $\mathbf{K}=\left[\begin{array}{ccc}-f & s & c_{x} \\ 0 & -\alpha f & c_{y} \\ 0 & 0 & 1\end{array}\right] \begin{gathered}\text { lingth of the } \\ \text { camera }\end{gathered}$
α : aspect ratio (1 unless pixels are not square)
S : skew (0 unless pixels are shaped like rhombi/parallelograms)
$\left(c_{x}, c_{y}\right)$: principal point ((0,0) unless optical axis doesn't intersect projection plane at origin)

Focal length

- Can think of as "zoom"

24 mm
50 mm

- Related to field of view

Projection matrix

Projection matrix

Distortion

No distortion

Pin cushion

Barrel

Radial distortion of the image

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Correcting radial distortion

from Helmut Dersch

Many other types of projection exist...

360 degree field of view...

Basic approach

- Take a photo of a parabolic mirror with an orthographic lens (Nayar)
- http://www.cs.columbia.edu/CAVE/projects/cat cam 360/gallery1/index.html
- Or buy one a lens from a variety of omnicam manufacturers...
- See http://wwww.cis.upenn.edu/~kostas/omni.html

Tilt-shift

Tilt-shift images from Olivo Barbieri and Photoshop imitations

Rotating sensor (or object)

K1219

Rollout Photographs © Justin Kerr http://research.famsi.org/kerrmaya.htm|

Also known as "cyclographs", "peripheral images"

Photofinish

The 2000 Sydney Olympic Games -200 m Women Final

Human eye

Colors

What colors do humans see?

RGB tristimulus values, 1931 RGB CIE

Colors

Plot of all visible colors (Hue and saturation):

Where does all this lead?

- We need it to understand stereo
- And 3D reconstruction
- It also leads into camera calibration, which is usually done in factory settings to solve for the camera parameters before performing an industrial task.
- The extrinsic parameters must be determined.
- Some of the intrinsic are given, some are solved for, some are improved.

Camera Calibration

The idea is to snap images at different depths and get a lot of 2D-3D point correspondences.
x1, y1, z1, u1, v1
$\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 1, \mathrm{u} 2$, v2
-
xn, yn, zn, un, vn
Then solve a system of equations to get camera parameters.

