Image Formation and Cameras

CSE 455 Linda Shapiro

1

Projection

http://www.julianbeever.net/pave.htm

- Do sizes, lengths seem accurate?
- How do you know?

Projection

http://www.julianbeever.net/pave.htm

- What's wrong?
- Why do you think it's wrong?

Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze_muelue/index.html

- What do you know about perspective projection?
- Vertical lines?
- Other lines?

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the **aperture**
- How does this transform the image?

Camera Obscura

Gemma Frisius, 1558

- Basic principle known to Mozi (470-390 BC), Aristotle (384-322 BC)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Camera Obscura

The first camera

• How does the aperture size affect the image?

Shrinking the aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effects...

Diffraction

- Light rays passing through a small aperture will begin to diverge and interfere with one another.
- This becomes more significant as the size of the aperture decreases relative to the wavelength of light passing through.

- This effect is normally negligible, since smaller apertures often improve sharpness.
- But at some point, your camera becomes diffraction limited, and the quality goes down.

Shrinking the aperture

0.15 mm

0.07 mm

11

Pinhole Cameras: Total Eclipse

• A total eclipse occurs when the moon comes between the earth and the sun, obscuring the sun.

Pinhole cameras everywhere

Sun "shadows" during a solar eclipse by Henrik von Wendt <u>http://www.flickr.com/photos/hvw/2724969199/</u>

The holes between fingers work like a camera obscura and show the eclipsed sun 13

Pinhole cameras everywhere

Sun "shadows" during a partial solar eclipse 14 http://www.flickr.com/photos/73860948@N08/6678331997/

Pinhole cameras everywhere

Tree shadow during a solar eclipse

photo credit: Nils van der Burg http://www.physicstogo.org/index.cfm

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
 other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

A lens focuses parallel rays onto a single focal point

- focal point at a distance *f* beyond the plane of the lens
 f is a function of the shape and index of refraction of the lens
- Aperture of diameter D restricts the range of rays
 - aperture may be on either side of the lens
- Lenses are typically spherical (easier to produce)
- Real cameras use many lenses together (to correct for aberrations)

Thin lenses

Any object point satisfying this equation is in focus

Thin lens assumption

The thin lens assumption assumes the lens has no thickness, but this isn't true...

By adding more elements to the lens, the distance at which a scene is in focus can be made roughly planar.

Depth of field

Changing the aperture size affects depth of field

 A smaller aperture increases the range in which the object is approximately in focus

Flower images from Wikipedia <u>http://en.wikipedia.org/wiki/Depth_of_field</u>

The eye

The human eye is a camera

- Iris colored annulus with radial muscles
- **Pupil** the hole (aperture) whose size is controlled by the iris
- What's the "film"?
 - photoreceptor cells (rods and cones) in the retina
- How do we refocus?
 - Change the shape of the lens

Digital camera

A digital camera replaces film with a sensor array

- Each cell in the array is a Charge Coupled Device (CCD)
 - light-sensitive diode that converts photons to electrons
- CMOS is becoming more popular (esp. in cell phones)
 - http://electronics.howstuffworks.com/digital-camera.htm

Issues with digital cameras

Noise

- big difference between consumer vs. SLR-style cameras
- low light is where you most notice noise

Compression

- creates artifacts except in uncompressed formats (tiff, raw)

Color

- <u>color fringing</u> artifacts from <u>Bayer patterns</u>

Blooming

- charge overflowing into neighboring pixels

In-camera processing

- oversharpening can produce halos

Interlaced vs. progressive scan video

- <u>even/odd rows from different exposures</u>
- Are more megapixels better?
 - requires higher quality lens
 - noise issues

Stabilization

- compensate for camera shake (mechanical vs. electronic) More info online, e.g.,

• http://electronics.howstuffworks.com/digital-camera.htm

http://www.dpreview.com/

Projection

Mapping from the world (3d) to an image (2d)

- Can we have a 1-to-1 mapping?
- How many possible mappings are there?

An optical system defines a particular projection. We'll talk about 2:

- 1. Perspective projection (how we see "normally")
- 2. Orthographic projection (e.g., telephoto lenses)

Modeling projection

The coordinate system

- We will use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
- The camera looks down the *negative* z axis
 - we need this if we want right-handed-coordinates

Modeling projection

Projection equations

- Compute intersection with PP of ray from (x,y,z) to COP
- Derived using similar triangles

$$(x,y,z)
ightarrow (-drac{x}{z}, \ -drac{y}{z}, \ -d)$$

• We get the projection by throwing out the last coordinate:

$$(x, y, z) \rightarrow \left(-d\frac{x}{z}, -d\frac{y}{z}\right)$$
 26

Homogeneous coordinates

Is this a linear transformation?

no—division by z is nonlinear

Trick: add one more coordinate:

$$(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad (x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

homogeneous image
coordinates homogeneous scene
coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Г., Л

Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by third coordinate
projection matrix 3D point 2D point

This is known as perspective projection

• The matrix is the **projection matrix**

Perspective Projection Example

1. Object point at (10, 6, 4), d=2

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/2 & 0 \end{bmatrix} \begin{bmatrix} 10 \\ 6 \\ 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 & 6 & -2 \end{bmatrix}$$
$$\Rightarrow x' = -5, y' = -3$$

2. Object point at (25, 15, 10)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/2 & 0 \end{bmatrix} \begin{bmatrix} 25 \\ 15 \\ 10 \\ 1 \end{bmatrix} = \begin{bmatrix} 25 & 15 & -5 \end{bmatrix}$$
$$\Rightarrow x' = -5, y' = -3$$

Perspective projection is not 1-to-1!

How does scaling the projection matrix change the transformation?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$
$$\begin{bmatrix} -d & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} -dx \\ -dy \\ z \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

- What happens to parallel lines?
- What happens to angles?
- What happens to distances?

What happens when $d \rightarrow \infty$?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

Orthographic projection

Special case of perspective projection

• Distance from the COP to the PP is infinite

- Good approximation for telephoto optics
- Also called "parallel projection": $(x, y, z) \rightarrow (x, y)$
- What's the projection matrix?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$
33

Orthographic ("telecentric") lenses

Navitar telecentric zoom lens

http://www.lhup.edu/~dsimanek/3d/telecent.htm

Orthographic Projection

- What happens to parallel lines?
- What happens to angles?
- What happens to distances?

Camera parameters

How many numbers do we need to describe a camera?

- We need to describe its *pose* in the world
- We need to describe its internal *parameters*

A Tale of Two Coordinate Systems

 \boldsymbol{z}

Two important coordinate systems:1. *World* coordinate system2. *Camera* coordinate system

"The World"

Camera parameters

- •To project a point (*x*,*y*,*z*) in *world* coordinates into a camera
- •First transform (*x*,*y*,*z*) into *camera* coordinates
- •Need to know
 - Camera position (in world coordinates)
 - Camera orientation (in world coordinates)
- •Then project into the image plane
 - Need to know camera intrinsics
- •These can all be described with matrices

3D Translation

• 3D translation is just like 2D with one more coordinate

 $= [x+tx, y+ty, z+tz, 1]^T$

3D Rotation (just the 3 x 3 part shown) About X axis: $\begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ About Y: $\cos \theta = 0 \sin \theta$

About X axis:10About Y: $\cos \theta$ 0 $\sin \theta$ 00 $\cos \theta$ 01000000000000000

About Z axis:cosθ –sinθ0sinθcosθ0001

General (orthonormal) rotation matrix used in practice:

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point (x'_c, y'_c), pixel size (s_x, s_y)
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

identity matrix

$$\mathbf{\Pi} = \begin{bmatrix} -fs_x & 0 & x'_c \\ 0 & -fs_y & y'_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3x3} & \mathbf{0}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{f}_{3x3} & \mathbf{T}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix} \leftarrow [\mathbf{tx}, \mathbf{ty}, \mathbf{tz}]^{\mathrm{T}}$$

intrinsics projection rotation translation

- The definitions of these parameters are **not** completely standardized
- especially intrinsics—varies from one book to another

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Perspective projection

 \mathcal{Q} : **aspect ratio** (1 unless pixels are not square)

S : skew (0 unless pixels are shaped like rhombi/parallelograms)

 (c_x, c_y) : principal point ((0,0) unless optical axis doesn't intersect projection plane at origin)

Focal length

• Can think of as "zoom"

24mm

50mm

• Related to *field of view*

Distortion

Radial distortion of the image

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Correcting radial distortion

from <u>Helmut Dersch</u>

Many other types of projection exist...

360 degree field of view...

Basic approach

- Take a photo of a parabolic mirror with an orthographic lens (Nayar)
 - <u>http://www.cs.columbia.edu/CAVE/projects/cat_cam_360/gallery1/index.html</u>
- Or buy one a lens from a variety of omnicam manufacturers...
 - See <u>http://www.cis.upenn.edu/~kostas/omni.html</u>

Tilt-shift

http://www.northlight-images.co.uk/article_pages/tilt_and_shift_ts-e.html

Tilt-shift images from <u>Olivo Barbieri</u> and Photoshop <u>imitations</u>

Rotating sensor (or object)

Rollout Photographs © Justin Kerr http://research.famsi.org/kerrmaya.html

Also known as "cyclographs", "peripheral images"

Photofinish

Human eye

Colors

What colors do humans see?

RGB tristimulus values, 1931 RGB CIE

Colors

Plot of all visible colors (Hue and saturation):

Where does all this lead?

- We need it to understand stereo
- And 3D reconstruction
- It also leads into camera calibration, which is usually done in factory settings to solve for the camera parameters before performing an industrial task.
- The extrinsic parameters must be determined.
- Some of the intrinsic are given, some are solved for, some are improved.

Camera Calibration

The idea is to snap images at different depths and get a lot of 2D-3D point correspondences.

x1, y1, z1, u1, v1 x2, y2, z1, u2, v2

xn, yn, zn, un, vn

Then solve a system of equations to get camera parameters.