

SAD/SSD/NCC compute the match Cost.

It measures the similarity of the pixels (aggregated over window). The 1-D array stores the match cost of each pixel at each disparity.

matchCost - 1D array
size = [m_NumDisparities*height*width]

FindBestDisparity

Computes the disparity with minimum match cost for each pixel and saves it in disparities array.

disparities - 1D array
size = [height*width]

Segmentation

Image 1 (I₁)

Image 2 (I₂)

Segment - K-means to segment the image in *color* and *position* space

 I_1

GridSegmentation

Computes initial segmentation

segment - 1D array

size = [width*height]
Stores the segment assignment for each pixel

 I_1

ComputeSegmentMeans

Compute the mean color and position for each segment

meanSpatial[2] and meanColor[3]

size = number of segments
Store the segment's mean position and color

 I_1

AssignPixelsToSegments

Assign each pixel to the closest segment using position and color

Updated segment - 1D array

size = [width*height]

${\bf Segment Average Match Cost}$

Average the match cost for each pixel in a segment.

Updated matchCost - 1D array

 I_1

SSD

matchCost - 1D array

FindBestDisparity