
HW5: Feature
Detection and Matching

Assigned: Tuesday, November 4
Due: Tuesday, November 18

void ComputeHarris(CFloatImage &image, CFloatImage &harris)

The ComputeHarris function calculates the Harris response matrix (R) for the RGB
image. It will come from the formula det(M) – k*trace(M)^2.

CFloatImage &image RGB image input

CFloatImage &harris Harris response matrix (a matrix of size height x width)
 which you need to fill in.

void ComputeHarris(CFloatImage &image, CFloatImage &harris)

// Convert to grey
CFloatImage greyImage;
ConvertToGrey(image, greyImage);
CShape shape = greyImage.Shape(); shape is a struct keeping
 the height, the width and
 the number bands of the image.

// Compute Harris matrix
harris.ReAllocate(shape); harris matrix is allocated with
 the same size as greyImage
 (which is height x width x 1)

harris = greyImage; This is to make the program run,
 replace this with your code, which
 should fill in harris with the
 R values.

void ExtractDescriptor(int x, int y, CFloatImage &img,
 FeatureSet &features)

The ExtractDescriptor method calculates the feature vector for a point from the
RGB image and adds this vector to the feature set of the image.

int x x coordinate of the point

int y y coordinate of the point

CFloatImage &img RGB image to which the point (x, y) belongs

FeatureSet &features A data structure that keeps all the features calculated
 for the image. It is a vector class.

void ExtractDescriptor(int x, int y, CFloatImage &img,
 FeatureSet &features)

Feature f; A new feature for the point is created and
f.type = 1; necessary fields are populated.
f.id += 1; Do not change these.
f.x = x; Each feature f has a data vector of size 243.
f.y = y;

f.data.resize(1); Set the size of the feature vector.
 Yours should be 243.

float pix = img.Pixel(x, y, 0); This is how you access the R(ed) value
 of the pixel at (x, y). [1 is G, 2 is B]

f.data[0] = pix; This is how you set the value of
 the feature vector at position 0.

features.push_back(f); Once you fill in the feature vector f,
 this call adds it to feature set.

void dummyComputeFeatures(CFloatImage &image,
 FeatureSet &features)

The dummyCompute Features method first calls the ComputeHarris method for
the image.

It then finds all the pixels that are local maxima in the harris response matrix
calculated by the ComputeHarris method. These are the Harris corner detections.

Finally it calls the ExtractDescriptor method for the detected pixels and fills the
feature set for this image.

CFloatImage &image RGB input image.

FeatureSet &features A data structure that keeps all the feature
 vectors calculated for this image.

void dummyComputeFeatures(CFloatImage &image,
 FeatureSet &features)

// Compute the interest function

CShape shape0 = image.Shape(); The Harris matrix is created with the

CShape shape = shape0; same dimensions as the input

shape.nBands = 1; image but with 1 band (channel).

CFloatImage harris(shape);

// TODO: write your interest point detector in ComputeHarris()

ComputeHarris(image, harris); Then your function is called.

void dummyComputeFeatures(CFloatImage &image,
 FeatureSet &features)

// Find local maxima in a 3x3 window, and extract descriptors

CFloatImage greyImage;

ConvertToGrey(image, greyImage);

CFloatImage blurImage(shape);

ConvolveGaussian(greyImage, blurImage, 2.0f);

You don’t need this. You are going to use the RGB image to calculate the feature
descriptors, not the gray-tone image.

void dummyComputeFeatures(CFloatImage &image,
 FeatureSet &features)

int border = 20;

for (int x = border; x < shape.width - border; x++){

 for (int y = border; y < shape.height - border; y++){

…

 if (pix > pix0) You can change this to
 isMax = false; pix >= pix0 to get
 1 point as the local
… maxima

 OR

 Add a condition to
 check if pix0 is higher
 than threshold

void dummyComputeFeatures(CFloatImage &image,
 FeatureSet &features)

if (isMax)

{

// TODO: Write your feature descriptor in ExtractDescriptor()

ExtractDescriptor(x, y, blurImage, features);

} // end if isMax

Change blurImage to image, since you are going to calculate features from the RGB
image.

Tips

To get the height and width of an image:

CShape shape = greyImage.Shape();
int height = shape.height;
int width = shape.width;
int band = shape.nBands;

See image.h, line 52 for the declaration of CShape.

Tips

To get and set the pixel at (x, y) in the i’th channel of an
image:

float pix = harris.Pixel(x, y, i);
harris.Pixel(x, y, i) = val;

Remember that gray tone images have 1 channel (band),
but RGB images have 3 channels (0,1,2).
We usually store response matrices of detectors as
images. That’s why the harris matrix is stored as an
image. (Remember the Hough transform homework.)

Tips

• You may change the skeleton code as much as you
want depending on your implementation.

• In order to implement the extra credit parts, you
need to add your own functions and change the
matchFeatures and computeFeatures
functions to call your new functions as the
second/third cases.

	Slide Number 1
	void ComputeHarris(CFloatImage &image, CFloatImage &harris)
	void ComputeHarris(CFloatImage &image, CFloatImage &harris)
	void ExtractDescriptor(int x, int y, CFloatImage &img, �	FeatureSet &features)
	void ExtractDescriptor(int x, int y, CFloatImage &img, �	FeatureSet &features)
	void dummyComputeFeatures(CFloatImage &image, �	FeatureSet &features)
	void dummyComputeFeatures(CFloatImage &image, �	FeatureSet &features)
	void dummyComputeFeatures(CFloatImage &image, �	FeatureSet &features)
	void dummyComputeFeatures(CFloatImage &image, �	FeatureSet &features)
	void dummyComputeFeatures(CFloatImage &image, �	FeatureSet &features)
	Tips
	Tips
	Tips

