HW5: Feature Detection and Matching

Assigned: Tuesday, November 4 Due: Tuesday, November 18

img1

img3

img5

Your task

- Write Harris detector ComputeHarris() in features.cpp
- Write Feature descriptor ExtractDescriptor() in features.cpp
- Run your program to get required numerical and image results
- Compare results from your features and SIFT features

Interest Point Detection

- 1. Convert the RGB image to a gray-scale image. (Save the RGB image for later.)
- 2. Apply a 9 x 9 Gaussian filter we give you.
- 3. Construct the Harris matrix M using a 5 x 5 neighborhood around each pixel.
- Compute corner response R = det(M) k*Tr(M)² at each pixel.
- If R is above a threshold and is a local maximum in a 3 x 3 neighborhood, select it as an interest point.
- 6. 600 to 3000 points are expected to be detected for each image

Feature Description

- 1. Go back to RGB space.
- 2. Take a 45 x 45 window around each feature point.
- 3. Divide that window into 9 x 9 squares, each of them size 5 x 5.
- Applying a (given) 5 x 5 mask to each of these squares in each of R, G, and B, gives 3 results per square x 81 squares = a vector V of 243 values.
- 5. Compute $V' = V/||V||_2$ (V divided by its L2-norm).
- 6. V' is the descriptor.

Evaluation

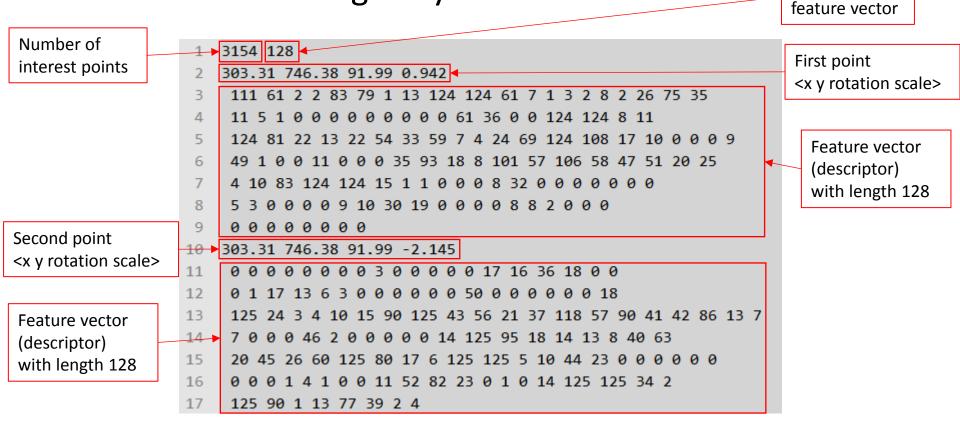
- Working implementation of all the required parts: 11 points
 - Harris operator: 4 points
 - Feature descriptor: 5 points
 - Feature matching: 2 points
- Quality of code including code structure, comments and documentation: 4 points
- Completion and quality of the report: 5 points
- Quality of results: 5 points
 - Harris operator: 2 points
 - Simple descriptor: 3 points

Evaluation

- Extra credit:
 - Advanced way of match finding: 3 points
 - Advanced descriptor: Rotation invariant descriptor only: 7 points
 - Advanced descriptor: Rotation and scale invariant descriptor: 10 points

Data sets

• Required: bikes and leuven


• Extra credit: graf and wall

Data sets

• SIFT features: img1.key

Length of

Data sets

 Image database: img.kdb (SIFT) imgsimple.kdb (Your Harris)

1	img1.ppm	img1.key	
2	img2.ppm	img2.key	
3	img3.ppm	img3.key	
4	img4.ppm	img4.key	
5	img5.ppm	img5.key	
6	img6.ppm	img6.key	

1	<pre>img1.ppm feature1.f</pre>
2	<pre>img2.ppm feature2.f</pre>
З	<pre>img3.ppm feature3.f</pre>
4	<pre>img4.ppm feature4.f</pre>
5	<pre>img5.ppm feature5.f</pre>
6	img6.ppm feature6.f

 Homography files: H1to2p (transformation matrix from image 1 to image 2)

1	1.0107879e+00	8.2814684e-03	1.8576800e+01
2	-4.9128885e-03	1.0148779e+00	-2.8851517e+01
З	-1.9166087e-06	8.1537620e-06	1.0000000e+00

Software

- Command line
 ./CSE455 computeFeatures

 ./bikes/img1.ppm ../bikes/feature1.f
 ./CSE455 testMatch
 ./bikes/feature1.f ./bikes/feature2.f
 ./bikes/H1to2p
 ./CSE455 testSIFTMatch
 ./bikes/img1.key ../bikes/img2.key
 ./bikes/H1to2p
 - Graphical User Interface (GUI): visualization

Computing features

./CSE455 computeFeatures ../bikes/img1.ppm ../bikes/feature1.f

features.cpp	→ ×
(Global S	cope)
7 🗄	<pre>bool computeFeatures(CFloatImage ℑ, FeatureSet &features, int featureType) {</pre>
8 🗄	// Instead of calling dummyComputeFeatures, you can write your own
9	<pre>// feature computation routines and call them here.</pre>
10	<pre>switch (featureType) {</pre>
11	case 1:
12	<pre>dummyComputeFeatures(image, features);</pre>
13	break;
14	case 2:
15	<pre>dummyComputeFeatures(image, features);</pre>
16	break;
17	default:
18	return false;
19	}
20	
21	// This is just to make sure the IDs are assigned in order, because
22	// the ID gets used to index into the feature array.
23	<pre>for (unsigned int i=0; i<features.size(); i++)="" pre="" {<=""></features.size();></pre>
24	<pre>features[i].id = i+1;</pre>
25	}
26	
27	return true;
28	}

Computing features

• It executes your code!

features.cp	o* ≠ X
(Global S	Scope)
111	
112	<pre>void dummyComputeFeatures(CFloatImage ℑ, FeatureSet &features)</pre>
113	{
114	// Compute the interest function
115	
116	<pre>CShape shape0 = image.Shape();</pre>
117	CShape shape = shape0;
118	<pre>shape.nBands = 1;</pre>
119	
120	CFloatImage harris(shape);
121	
122	<pre>// TODO: write your interest point detector in ComputeHarris()</pre>
123	ComputeHarris(image, harris);

140	
149	<pre>if (isMax){</pre>
150	<pre>// TODO: Write your feature descriptor in ExtractDescriptor()</pre>
151	<pre>ExtractDescriptor(x, y, blurImage, features);</pre>
152	} // end if isMax

Matching features

./CSE455 testMatch ../bikes/feature1.f ../bikes/feature2.f ../bikes/H1to2p

Global Sco	ope)	Ø m
55 /	// Match one feature set with another.	
56 🖃 b	<pre>bool matchFeatures(const FeatureSet &f1, const FeatureSet &f2, vector<featurematch> &matches, d</featurematch></pre>	double
57 🚊	<pre>// Instead of calling dummyMatchFeatures, you can write your own</pre>	
58	<pre>// feature matching routines and call them here.</pre>	
59	<pre>switch (matchType) {</pre>	
60	case 1:	
61	<pre>dummyMatchFeatures(f1, f2, matches, totalScore);</pre>	
62	return true;	
63	case 2:	
64	<pre>dummyMatchFeatures(f1, f2, matches, totalScore);</pre>	
65	return true;	
66	default:	
67	return false;	
68	}	

Matching features

features.cpp	+ X
(Global S	cope) - 🛇 dummyM
163 🗉	void dummyMatchFeatures(const FeatureSet &f1, const FeatureSet &f2, vector <featurematch> &matches, double</featurematch>
164	<pre>int m = f1.size();</pre>
165	<pre>int n = f2.size();</pre>
166	
167	<pre>matches.resize(m);</pre>
168	totalScore = 0;
169	
170	double d;
171	double dBest;
172	int idBest;
173	
174	for (int i=0; i <m; i++)="" td="" {<=""></m;>
175	dBest = 1e100;
176	idBest = 0;
177	
178	for (int j=0; j <n; j++)="" td="" {<=""></n;>
179	<pre>d = distanceEuclidean(f1[i].data, f2[j].data);</pre>
180	
181	if $(d < dBest)$ {
182	dBest = d;
183	<pre>idBest = f2[j].id;</pre>
184	}
185	}
186	
187	<pre>matches[i].id = idBest;</pre>
188	<pre>matches[i].score = exp(-dBest);</pre>
189	<pre>totalScore += matches[i].score;</pre>

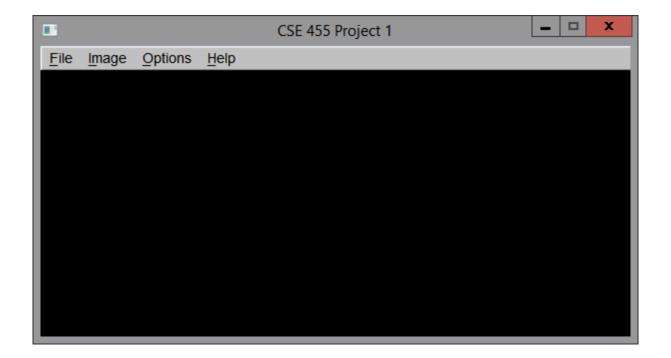
Matching SIFT features

./CSE455 testSIFTMatch ../bikes/img1.key ../bikes/img2.key
../bikes/H1to2p

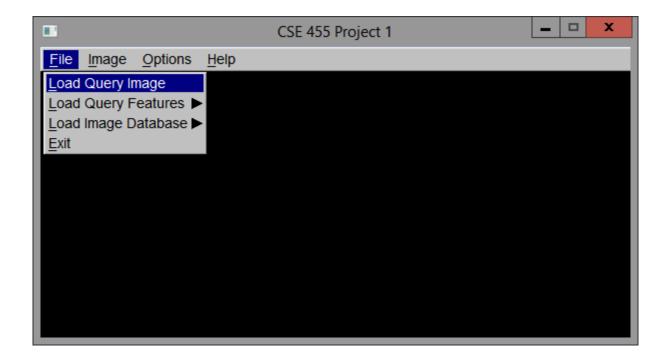
attu.cs.washington.edu - PuTTY	
<pre>[ezgi@attu2 hw5_lin]\$./CSE455 testSIFTMatch/bikes/img1.key/bikes/img2.key /bikes/H1to2p</pre>	1
nInliers = 1927	L
nMatches = 3154	I.
Fraction of correct matches = 0.610970 0.610970	I.
[ezgi@attu2 hw5_lin]\$	I.
	I.
	ł.
	8
	8
	8
	8
	8

Benchmark

./CSE455 benchmark ../bikes

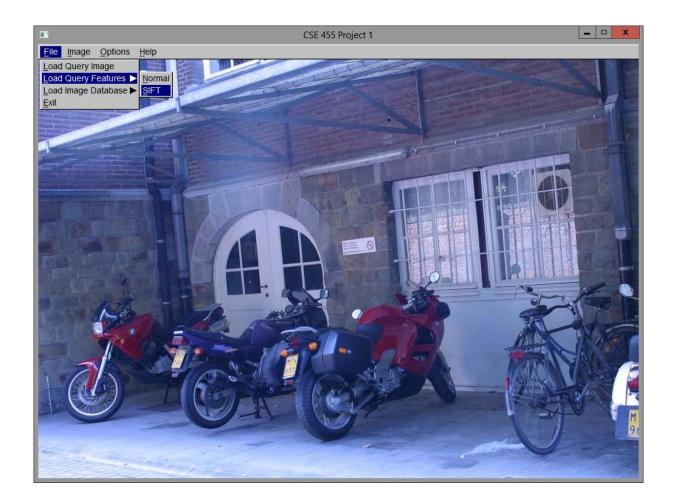

طttu.cs.washington.edu - PuTTY	 x
<pre>attucs.washington.edu - PullY [ezgi@attu2 hw5_lin]\$./CSE455 benchmark/bikes computing features for image 1 computing features for image 2 computing features for image 3 computing features for image 4 computing features for image 6 matching image 1 with image 2 nInliers = 718 nMatches = 48192 Fraction of correct matches = 0.014899 matching image 1 with image 3 nInliers = 827 nMatches = 48192 Fraction of correct matches = 0.017161 matching image 1 with image 4 nInliers = 769 nMatches = 48192 Fraction of correct matches = 0.015957 matching image 1 with image 5 nInliers = 750 nMatches = 48192 Fraction of correct matches = 0.015563 matching image 1 with image 6 nInliers = 563 nMatches = 48192</pre>	
nMatches = 48192 Fraction of correct matches = 0.011682 average correct matches: 1.505229 % [ezgi@attu2 hw5_lin]\$	
	~

Benchmark


./CSE455 benchmark ../bikes

It computes Harris features and match them using SSD for all the images in the given directory. It reports the average match score.

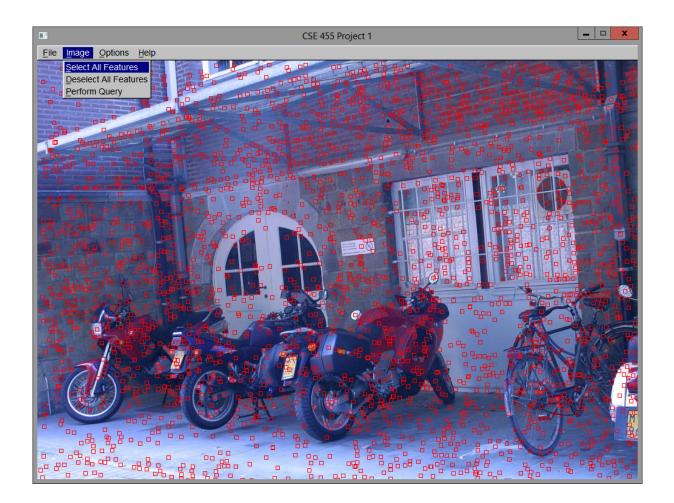
GUI - DEMO



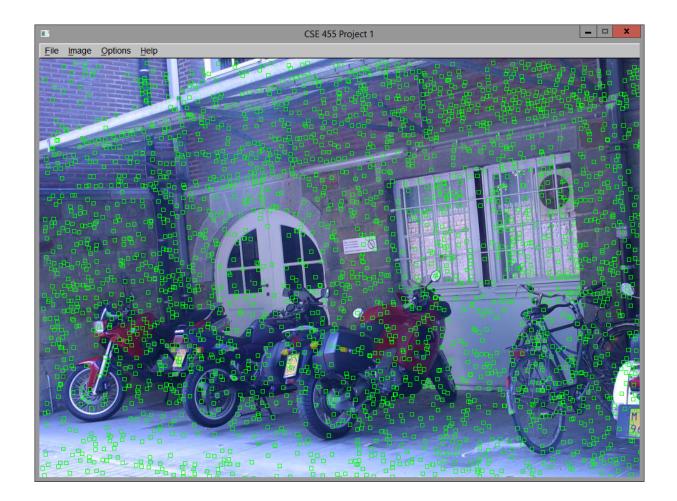
First load the query image This is the image you will compare with the others.

Open File	
Show: *.p[gp]m	Favorites
img1.ppm img2.ppm img3.ppm img4.ppm img5.ppm img6.ppm	
Preview	
Filename: O:/unix/projects/cranio3/	ezgi/cse455/hw_5/bikes/img1.p
	OK <

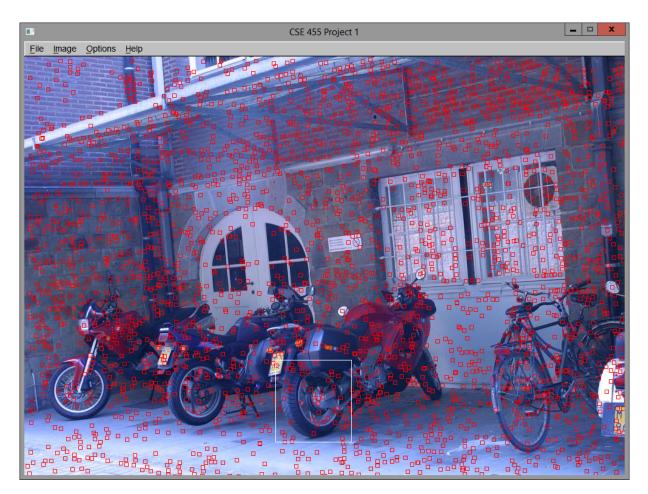
Then load the features for the query image. Normal = Your implementation, SIFT is provided.

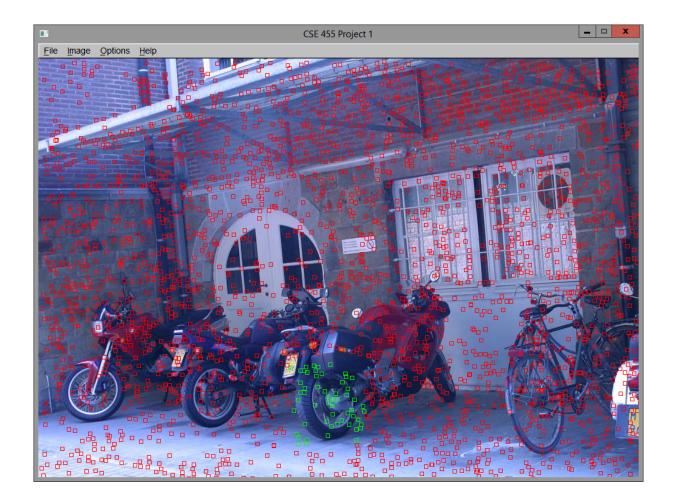

Open File	
Show: *.key Favorite	es 🗸 🗈
/ img1.key img2.key img3.key img4.key img5.key img6.key	3154 128°M 303.31 746.38 91.99 (111 61 2 2 83 79 1 1 11 5 1 0 0 0 0 0 0 0 (124 81 22 13 22 54 5 49 1 0 0 11 0 0 0 35 4 10 83 124 124 15 1 5 3 0 0 0 0 9 10 30 0 0 0 0 0 0 0 0 0 0 M 303.31 746.38 91.99 - 0 0 0 0 0 0 0 0 0 3 0 0 1 17 13 6 3 0 0 0 125 24 3 4 10 15 90 7 0 0 46 2 0 0 0 (20 45 26 60 125 80 1 0 0 0 1 4 1 0 0 11 5 125 90 1 13 77 39 2
✓ Preview Filename: O:/unix/projects/cranio3/ezgi/cse4	455/hw_5/bikes/ima1.
OK	

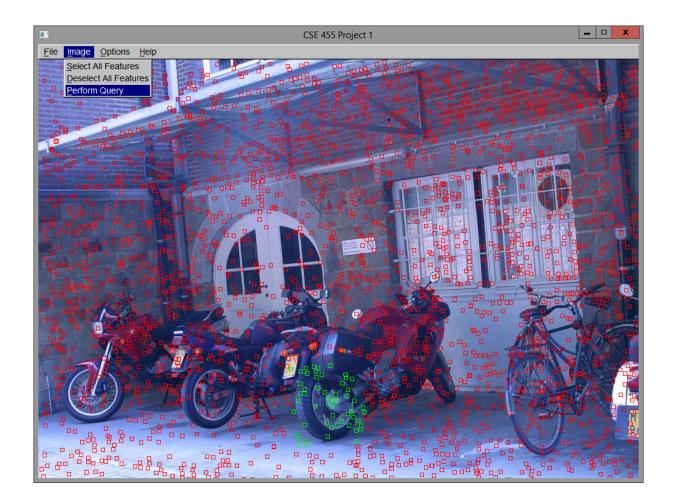
Then load the image database. This is the other image you will compare with the query. It's actually a list of filenames.

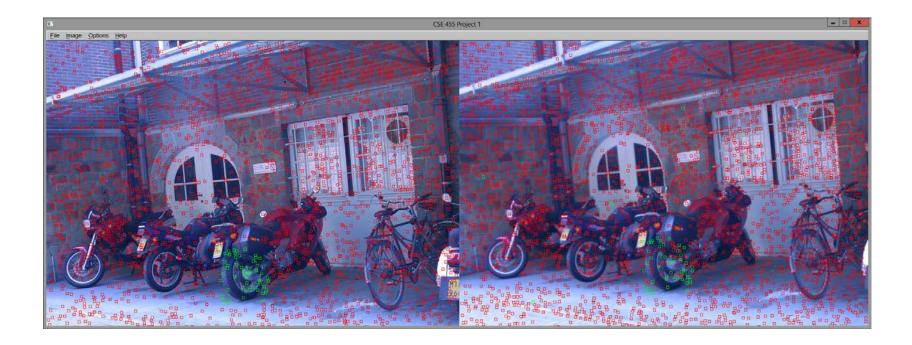


Open File		
Show: *.kdb	▼ F	Favorites ∇
/ img.kdb img1.kdb img1simple.kdb img2.kdb img2simple.kdb img3.kdb img3simple.kdb img4.kdb		img2.ppm img2.key^M
img4simple.kdb img5.kdb		-
Preview		
Filename: O:/unix/projects/cranio3/ezgi/cse455/hw_5/bikes/img:		
		OK <


Then select which interest points will be used in matching. You can select all points.


Selected points are colored green.


OR You can select a bunch of points by using the mouse pointer, right clicking and dragging.


Selected points are colored green.

Finally, perform the query. This may take a while.

Matches are returned.

